1
|
Alberdi L, Vergnes A, Manneville JB, Tembo DL, Fang Z, Zhao Y, Schroeder N, Dumont A, Lagier M, Bassereau P, Redondo-Morata L, Gorvel JP, Méresse S. Regulation of kinesin-1 activity by the Salmonella enterica effectors PipB2 and SifA. J Cell Sci 2020; 133:133/9/jcs239863. [PMID: 32409568 DOI: 10.1242/jcs.239863] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/13/2020] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica is an intracellular bacterial pathogen. The formation of its replication niche, which is composed of a vacuole associated with a network of membrane tubules, depends on the secretion of a set of bacterial effector proteins whose activities deeply modify the functions of the eukaryotic host cell. By recruiting and regulating the activity of the kinesin-1 molecular motor, Salmonella effectors PipB2 and SifA play an essential role in the formation of the bacterial compartments. In particular, they allow the formation of tubules from the vacuole and their extension along the microtubule cytoskeleton, and thus promote membrane exchanges and nutrient supply. We have developed in vitro and in cellulo assays to better understand the specific role played by these two effectors in the recruitment and regulation of kinesin-1. Our results reveal a specific interaction between the two effectors and indicate that, contrary to what studies on infected cells suggested, interaction with PipB2 is sufficient to relieve the autoinhibition of kinesin-1. Finally, they suggest the involvement of other Salmonella effectors in the control of the activity of this molecular motor.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | | | - Jean-Baptiste Manneville
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, F-75005, Paris, France.,Sorbonne Université, UPMC University Paris 06, CNRS, UMR 144, 26 rue d'Ulm, F-75005, Paris, France
| | | | - Ziyan Fang
- Aix-Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Yaya Zhao
- Aix-Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Nina Schroeder
- Aix-Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Audrey Dumont
- Aix-Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Margaux Lagier
- Aix-Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Patricia Bassereau
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France.,Sorbonne Université, 1 Place Jussieu, 75005 Paris, France
| | | | | | | |
Collapse
|
2
|
Krieg E, Bastings MMC, Besenius P, Rybtchinski B. Supramolecular Polymers in Aqueous Media. Chem Rev 2016; 116:2414-77. [DOI: 10.1021/acs.chemrev.5b00369] [Citation(s) in RCA: 527] [Impact Index Per Article: 65.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Pol Besenius
- Institute
of Organic Chemistry, Johannes Gutenberg-Universität Mainz, Mainz 55128, Germany
| | - Boris Rybtchinski
- Department
of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
3
|
Khataee H, Liew AWC. Computational modeling of kinesin stepping. J Chem Inf Model 2014; 54:3439-45. [PMID: 25400227 DOI: 10.1021/ci500673z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Kinesin is a walking motor protein that shuttles cellular cargoes along microtubules (MTs). This protein is considered as an information processor capable of sensing cellular inputs and transforming them into mechanical steps. Here, we propose a computational model to describe the mechanochemical kinetics underlying forward and backward stepping behavior of kinesin motor as a digital circuit designed based on an adenosine triphosphate (ATP)-driven finite state machine. Kinetic analysis suggests that the backward stepping of kinesin is mainly driven by ATP hydrolysis, whereas ATP synthesis rises the duration of this stepping. It is shown that kinesin pausing due to waiting for ATP binding at limiting ATP concentration ([ATP]) and low backward loads could be longer than that caused by low rate of ATP synthesis under high backward loads. These findings indicate that the pausing duration of kinesin in MT-bound (M·K) kinetic state is affected by [ATP], which in turn affects its velocity at fixed loads. We show that the proposed computational model accurately simulates the forward and backward stepping behavior of kinesin motor under different [ATP] and loads.
Collapse
Affiliation(s)
- Hamidreza Khataee
- School of Information and Communication Technology, Gold Coast Campus, Griffith University , Gold Coast, Queensland 4222, Australia
| | | |
Collapse
|
4
|
Khataee H, Liew AWC. A stochastic automaton model for simulating kinesin processivity. Bioinformatics 2014; 31:390-6. [PMID: 25304779 DOI: 10.1093/bioinformatics/btu664] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
MOTIVATION Cellular interactions of kinesin-1, an adenosine triphosphate (ATP)-driven motor protein capable of undergoing multiple steps on a microtubule (MT), affect its mechanical processivity, the number of steps taken per encounter with MT. Even though the processivity of kinesin has been widely studied, a detailed study of the factors that affect the stepping of the motor along MT is still lacking. RESULTS We model the cellular interactions of kinesin as a probabilistic timed automaton and use the model to simulate the mechanical processivity of the motor. Theoretical analysis suggests: (i) backward stepping tends to be powered by ATP hydrolysis, rather than ATP synthesis, (ii) backward stepping powered by ATP synthesis is more likely to happen with limiting ATP concentration ([ATP]) at high loads and (iii) with increasing load the frequency of backward stepping powered by ATP hydrolysis at high [ATP] is greater than that powered by ATP synthesis at limiting [ATP]. Together, the higher frequency of backward stepping powered by ATP hydrolysis than by ATP synthesis is found to be a reason for the more dramatic falling of kinesin processivity with rising load at high [ATP] compared with that at low [ATP]. Simulation results further show that the processivity of kinesin can be determined by the number of ATP hydrolysis and synthesis kinetic cycles taken by the motor before becoming inactive. It is also found that the duration of a backward stepping cycle at high loads is more likely to be less than that of a forward stepping cycle. CONTACT h.r.khataee@griffithuni.edu.au or a.liew@griffith.edu.au.
Collapse
Affiliation(s)
- Hamidreza Khataee
- School of Information and Communication Technology, Gold Coast Campus, Griffith University, QLD 4222, Australia
| | - Alan Wee-Chung Liew
- School of Information and Communication Technology, Gold Coast Campus, Griffith University, QLD 4222, Australia
| |
Collapse
|
5
|
Wu KCW, Yang CY, Cheng CM. Using cell structures to develop functional nanomaterials and nanostructures – case studies of actin filaments and microtubules. Chem Commun (Camb) 2014; 50:4148-57. [DOI: 10.1039/c4cc00005f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Actin filaments and microtubules are utilized as building blocks to create functional nanomaterials and nanostructures for nature-inspired small-scale devices and systems.
Collapse
Affiliation(s)
- Kevin Chia-Wen Wu
- Department of Chemical Engineering
- National Taiwan University
- Taipei 10617, Taiwan
| | - Chung-Yao Yang
- Institute of Nanoengineering and Microsystems
- National Tsing Hua University
- Hsinchu 30013, Taiwan
| | - Chao-Min Cheng
- Institute of Nanoengineering and Microsystems
- National Tsing Hua University
- Hsinchu 30013, Taiwan
| |
Collapse
|
6
|
Albertine KH, Dezawa M. A new age of regenerative medicine: fusion of tissue engineering and stem cell research. Anat Rec (Hoboken) 2013; 297:1-3. [PMID: 24293066 DOI: 10.1002/ar.22811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 09/16/2013] [Indexed: 01/21/2023]
Affiliation(s)
- Kurt H Albertine
- Editor-in-Chief, The Anatomical Record, Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | | |
Collapse
|
7
|
Khataee H, Wee-Chung Liew A. A mathematical model describing the mechanical kinetics of kinesin stepping. Bioinformatics 2013; 30:353-9. [PMID: 24292938 DOI: 10.1093/bioinformatics/btt698] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
MOTIVATION Kinesin is a smart motor protein that steps processively forward and backward along microtubules (MTs). The mechanical kinetics of kinesin affecting its stepping behavior is not fully understood. Here, we propose a mathematical model to study the mechanical kinetics of forward and backward stepping of kinesin motor based on the four-state discrete stochastic model of the motor. RESULTS Results show that the probabilities of forward and backward stepping can be modeled using the mean probabilities of forward and backward kinetic transitions, respectively. We show that the backward stepping of kinesin motor starts when the probability of adenosine diphosphate (ADP) binding to the motor is much higher than that of adenosine triphosphate (ATP) binding. Furthermore, our results indicate that the backward stepping is related to both ATP hydrolysis and synthesis with rate limiting factor being ATP synthesis. Low rate of ATP synthesis under high backward loads above 10 pN is also suggested as a reason for the detachment of kinesin motor from MT in the kinetic state MTċKinesinċADPċPi. AVAILABILITY AND IMPLEMENTATION The code for this work is written in Visual C# and is available by request from the authors.
Collapse
Affiliation(s)
- Hamidreza Khataee
- School of Information and Communication Technology, Gold Coast Campus, Griffith University, QLD 4222, Australia
| | | |
Collapse
|
8
|
Hu JR, Liu M, Wang DH, Hu YJ, Tan FQ, Yang WX. Molecular characterization and expression analysis of a KIFC1-like kinesin gene in the testis of Eumeces chinensis. Mol Biol Rep 2013; 40:6645-6655. [PMID: 24078165 DOI: 10.1007/s11033-013-2779-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 09/14/2013] [Indexed: 11/26/2022]
Abstract
The member of the kinesin-14 subfamily, KIFC1, is a carboxyl-terminal motor protein that plays an important role in the elongation of nucleus and acrosome biogenesis during the spermiogenesis of mammals. Here, we had cloned and sequenced the cDNA of a mammalian KIFC1 homologue (termed ec-KIFC1) from the total RNA of the testis of the reptile Eumeces chinensis. The full-length sequence was 2,339 bp that contained a 216 bp 5'-untranslated region (5'UTR), a 194 bp 3'-untranslated region (3'UTR) and a 1,929 bp open reading frame that encoded a special protein of 643 amino acids (aa). The calculated molecular weight of the putative ec-KIFC1 was 71 kDa and its estimated isoelectric point was 9.47. The putative ec-KIFC1 protein owns a tail domain from 1 to 116 aa, a stalk domain from 117 to 291 aa and a conserved carboxyl motor domain from 292 to 642 aa. Protein alignment demonstrated that ec-KIFC1 had 45.6, 42.8, 44.6, 36.9, 43.7, 46.4, 45.1, 55.6 and 49.8 % identity with its homologues in Mus musculus, Salmo salar, Danio rerio, Eriocheir sinensis, Rattus norvegicus, Homo sapiens, Bos taurus, Gallus gallus and Xenopus laevis, respectively. Tissue expression analysis showed the presence of ovary, heart, liver, intestine, oviduct, testis and muscle. The phylogenetic tree revealed that ec-KIFC1 was more closely related to vertebrate KIFC1 than to invertebrate KIFC1. In situ hybridization showed that the ec-KIFC1 mRNA was localized in the periphery of the nuclear membrane and the center of the nucleus in early spermatids. In mid spermatids, the ec-KIFC1 had abundant expression in the center of nucleus, and was expressed in the tail and the anterior part of spermatids. In the late spermatid, the nucleus gradually became elongated, and the ec-KIFC1 mRNA signal was still centralized in the nucleus. In mature spermatids, the signal of the ec-KIFC1 gradually became weak, and was mainly located at the tail of spermatids. Therefore, the ec-KIFC1 probably plays a critical role in the spermatogenesis of E. chinensis.
Collapse
Affiliation(s)
- Jian-Rao Hu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | | | | | | | | | | |
Collapse
|
9
|
Ghosh S, Hentrich C, Surrey T. Micropattern-controlled local microtubule nucleation, transport, and mesoscale organization. ACS Chem Biol 2013; 8:673-8. [PMID: 23294267 DOI: 10.1021/cb300583p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Microtubule organization in living cells is determined by spatial control of microtubule nucleation, their dynamic properties, and transport by molecular motors. Here, we establish a new micropattern-guided method for controlling local microtubule nucleation by spatially confined immobilization of a microtubule polymerase and show that these nucleated microtubules can be transported and organized in space by motor proteins. This assay provides a new platform for deciphering the principles underlying mesoscale microtubule organization.
Collapse
|
10
|
Dinu CZ, Bale SS, Dordick JS. Kinesin I ATPase manipulates biohybrids formed from tubulin and carbon nanotubes. Methods Mol Biol 2011; 743:77-93. [PMID: 21553184 DOI: 10.1007/978-1-61779-132-1_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This chapter describes a method for the formation of novel protein-nanotube hybrid conjugates. Specifically, we took advantage of the self-assembly and self-recognition properties of tubulin cytoskeletal protein immobilized onto carbon nanotubes to form nanotube-based biohybrids. Further biohybrid hierarchical integration in assemblies enabled molecular-level manipulation on engineered surfaces, as demonstrated with biocatalyst kinesin 1 ATPase molecular motor. The method presented herein can be extended for the preparation of biocatalyst-based or protein-based assemblies to be used as sensors or biological templates for nanofabrication.
Collapse
Affiliation(s)
- Cerasela Zoica Dinu
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, Troy, NY, USA.
| | | | | |
Collapse
|
11
|
Nitta T, Tanahashi A, Hirano M. In silico design and testing of guiding tracks for molecular shuttles powered by kinesin motors. LAB ON A CHIP 2010; 10:1447-1453. [PMID: 20480110 DOI: 10.1039/b926210e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We present an extended computer simulation method which allows in silico design and testing of guiding tracks for molecular shuttles powered by kinesin motors. The simulation reproduced molecular shuttle movements under external forces and dissociation of shuttles from guiding track surfaces. The simulation was validated by comparing the simulation results with the corresponding experimental ones. Using the simulation, track designers can change guiding track designs, choose guiding methods, tune the strength of external forces, and test the module performance. This simulation would significantly reduce the effort expended in designing guiding tracks for molecular shuttles powered by kinesin motors.
Collapse
Affiliation(s)
- Takahiro Nitta
- Department of Mathematical and Design Engineering, Gifu University, Gifu, 501-1193, Japan.
| | | | | |
Collapse
|
12
|
Dinu CZ, Bale SS, Zhu G, Dordick JS. Tubulin encapsulation of carbon nanotubes into functional hybrid assemblies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2009; 5:310-315. [PMID: 19148890 DOI: 10.1002/smll.200801434] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Cerasela Zoica Dinu
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Nanotechnology Center, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | |
Collapse
|