1
|
Cherepanov G, Danilov I. Thecal and Epithecal Ossifications of the Turtle Shell: Ontogenetic And Phylogenetic Aspects. J Morphol 2024; 285:e21768. [PMID: 39223904 DOI: 10.1002/jmor.21768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/12/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
The problem of the origin of the bony shell in turtles has a two-century history and still has not lost its relevance. First, this concerns the issues of the homology, the sources of formation and the ratio of bones of different nature, that is, thecal and epithecal, in particular. This article analyzes various views on the nature of the shell elements, and proposes their typification, based on modern data on developmental biology. It is proposed that the defining characteristic of the types of shell ossifications is not the level of their anlage in the dermis (thecality or epithecality), but, first of all, the primary sources of their formation: (1) neural crest (nuchal and plastral plates); (2) vertebral and rib periosteum (neural and costal plates); and (3) dermal mesenchyme (peripheral, suprapygal and pygal plates, as well as epithecal elements). In addition, there is complete correspondence between these types of ossifications and the sequence of their appearance in the turtle ontogenesis. The data show fundamental coincidence of the modifications of the ontogenetic development and evolutionary formation of the shell ossifications and are in agreement with a stepwise model for the origin of the turtle body plan. Particular attention is paid to the origin of the epithecal elements of the turtle shell, which correspond to the additional or supernumerary ossifications and seem to have wider distribution among turtles, than previously thought.
Collapse
Affiliation(s)
- Gennady Cherepanov
- Department of Vertebrate Zoology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Igor Danilov
- Laboratory of Herpetology, Zoological Institute of the Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
2
|
Smith HF, Laitman JT. Turtles creep through the pages of The Anatomical Record. Anat Rec (Hoboken) 2023; 306:1189-1192. [PMID: 36913169 DOI: 10.1002/ar.25201] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023]
Affiliation(s)
- Heather F Smith
- Department of Anatomy, Midwestern University, Glendale, Arizona, USA.,School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Jeffrey T Laitman
- Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| |
Collapse
|
3
|
Yang J, Song W, Li C, Fang C, Zhang Y, Wang Q, Zhang M, Qian G. Comparative study of collagen distribution in the dermis of the embryonic carapace of soft- and hard-shelled cryptodiran turtles. J Morphol 2021; 282:543-552. [PMID: 33491791 DOI: 10.1002/jmor.21327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 11/06/2022]
Abstract
Turtles are characterized by their typical carapace, which is primarily composed of corneous beta proteins in the horny part and collagen in the dermal part. The formation of the extracellular matrix in the dermis of the carapace in a hard-shelled and a soft-shelled turtle has been compared. The study examines carapace development, with an emphasis on collagen accumulation, in the soft-shelled turtle Pelodiscus sinensis and hard-shelled turtle Trachemys scripta elegans, using comparative morphological and embryological analyses. The histological results showed that collagen deposition in the turtle carapace increased as the embryos developed. However, significant differences were observed between the two turtle species at the developmental stages examined. The microstructure of the dermis of the carapace of P. sinensis showed light and dark banding of collagen bundles, with a higher overall collagen content, whereas the carapacial matrix of T. scripta was characterized by loosely packed and thinner collagenous fiber bundles with a lower percentage of type I collagen. Overall, the formation and distribution of collagen fibrils at specific developmental stages are different between the soft-and hard-shelled turtles. These results indicate that the pliable epidermis of the soft-shelled turtle is supported by a strong dermis that is regularly distributed with collagen and that it allows improved maneuvering, whereas a strong but inflexible epidermis as observed in case of hard-shelled turtles limits movement.
Collapse
Affiliation(s)
- Jie Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Wei Song
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Caiyan Li
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Chanlin Fang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Yuting Zhang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Qingqing Wang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | | | - Guoying Qian
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| |
Collapse
|
4
|
Lyson TR, Bever GS. Origin and Evolution of the Turtle Body Plan. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-110218-024746] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The origin of turtles and their uniquely shelled body plan is one of the longest standing problems in vertebrate biology. The unfulfilled need for a hypothesis that both explains the derived nature of turtle anatomy and resolves their unclear phylogenetic position among reptiles largely reflects the absence of a transitional fossil record. Recent discoveries have dramatically improved this situation, providing an integrated, time-calibrated model of the morphological, developmental, and ecological transformations responsible for the modern turtle body plan. This evolutionary trajectory was initiated in the Permian (>260 million years ago) when a turtle ancestor with a diapsid skull evolved a novel mechanism for lung ventilation. This key innovation permitted the torso to become apomorphically stiff, most likely as an adaption for digging and a fossorial ecology. The construction of the modern turtle body plan then proceeded over the next 100 million years following a largely stepwise model of osteological innovation.
Collapse
Affiliation(s)
- Tyler R. Lyson
- Department of Earth Sciences, Denver Museum of Nature & Science, Denver, Colorado 80205, USA
| | - Gabriel S. Bever
- Department of Earth Sciences, Denver Museum of Nature & Science, Denver, Colorado 80205, USA
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
5
|
Arrieta MB, Olea GB, Rodríguez FE, Lombardo DM. Ultrastructure of eggshell and embryological development of Salvator merianae (Squamata: Teiidae). Anat Rec (Hoboken) 2020; 304:1420-1438. [PMID: 33099895 DOI: 10.1002/ar.24546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/10/2020] [Accepted: 08/27/2020] [Indexed: 11/11/2022]
Abstract
The objective of this study was to characterize the external morphology of Salvator meriane embryos in different stages of embryonic development and establish a relationship with the ultrastructure of the shell from oviductal transit to hatching. A total of 120 embryos were analyzed to describe their external morphology, and 78 eggs were used for the analysis of the shell. For embryonic development, the series was established according to the total length of the body. We established 40 embryonic stages from the primitive streak. In the early stages, the external morphological features are the C-shaped body, the maxillary, and mandibular fusion processes with the frontal process and the fusion of the forelimb with the digital plate. In the middle stages, the eyelid appears, and there are claws on the toes, cornification of fingers, and the onset of pigmentation. The last stage of embryonic development is characterized by the beginning of the formation of the scales, appear the toenails, and finalize the entire pigmentation. Regarding the relationship that exists with the ultrastructure of the egg during development, it was possible to observe a marked change in the composition of the shell and well-marked compaction during embryonic development, which may be related to the transport of calcium during embryonic ossification. Our results allowed us to show the complete sequence of embryonic development, determining the laying stage for this species. It was possible to establish a relationship with the ultrastructure of the eggshell from the oviductal transit to the moment of hatching.
Collapse
Affiliation(s)
- María Belén Arrieta
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Cátedra de Química Biológica, Corrientes, Argentina
| | - Gabriela Beatriz Olea
- Facultad de Medicina, Laboratorio de Investigaciones Bioquímicas (LIBIM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Florencia Evelyn Rodríguez
- Facultad de Medicina, Laboratorio de Investigaciones Bioquímicas (LIBIM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Daniel Marcelo Lombardo
- Facultad de Cs Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Cátedra de Histología y Embriología, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
6
|
Cherepanov G. Morphogenetic and constructional differences of the carapace of aquatic and terrestrial turtles and their evolutionary significance. J Morphol 2019; 280:1571-1581. [PMID: 31411770 DOI: 10.1002/jmor.21050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/18/2019] [Accepted: 07/13/2019] [Indexed: 01/09/2023]
Abstract
The postembryonic development of the turtle carapace was studied in the aquatic Еmys orbicularis and the terrestrial Тestudo graeca. Differences in the structure of the bony shell in aquatic and terrestrial turtles were shown to be associated with varying degrees of development of epidermal derivatives, namely, the thickness of the scutes and the depth of horny furrows. Sinking of the horny furrows into the dermis causes local changes in the structure of the collagen matrix, which might precondition the acceleration of the ossification. Aquatic turtles possess a relatively thin horny cover, whose derivatives are either weakly developed or altogether absent and thus make no noticeable impact on the growth dynamics of bony plates. Carapace plates of these turtles outgrow more or less evenly around the periphery, which results in uniform costals, relatively narrow and partly reduced neurals, and broad peripherals extending beyond the marginal scutes. In terrestrial turtles (Testudinidae), horny structures are much more developed and exert a considerable impact on the growth of bony elements. As a result, bony plates outgrow unevenly in the dermis, expanding fast in the zones under the horny furrows and slowly outside these zones. This determines the basic features of the testudinid carapace: alternately cuneate shape of costals, an alternation of broad octagonal and narrow tetragonal neurals, and the limitation of the growth of peripherals by pleuro-marginal furrows. The evolutionary significance of morphogenetic and constructional differences in the turtle carapace, and the association of these differences with the turtle habitats are discussed.
Collapse
Affiliation(s)
- Gennady Cherepanov
- Faculty of Biology, Department of Vertebrate Zoology, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
7
|
Lima FC, Py‐Daniel TR, Sartori MR, Abe AS, Santos OPD, Freitas LM, Pereira KF, Sebben A. Developmental staging table of the green iguana. ACTA ZOOL-STOCKHOLM 2018. [DOI: 10.1111/azo.12245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fabiano C. Lima
- Laboratório de Anatomia Humana e ComparativaUniversidade Federal de Goiás Jataí Goiás Brasil
| | - Tainã R. Py‐Daniel
- Instituto de Ciências BiológicasUniversidade de Brasília Brasília DF Brasil
| | | | - Augusto S. Abe
- Departamento de ZoologiaUniversidade Estadual Paulista Rio Claro São Paulo Brasil
| | | | - Letícia M. Freitas
- Laboratório de Anatomia Humana e ComparativaUniversidade Federal de Goiás Jataí Goiás Brasil
| | - Kleber F. Pereira
- Laboratório de Anatomia Humana e ComparativaUniversidade Federal de Goiás Jataí Goiás Brasil
| | - Antonio Sebben
- Laboratório de Anatomia comparativa dos vertebradosUniversidade de Brasília Brasília DF Brasil
| |
Collapse
|
8
|
Moustakas-Verho JE, Cebra-Thomas J, Gilbert SF. Patterning of the turtle shell. Curr Opin Genet Dev 2017; 45:124-131. [DOI: 10.1016/j.gde.2017.03.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/06/2017] [Accepted: 03/21/2017] [Indexed: 12/30/2022]
|
9
|
Szczygielski T, Sulej T. Revision of the Triassic European turtlesProterochersisandMurrhardtia(Reptilia, Testudinata, Proterochersidae), with the description of new taxa from Poland and Germany. Zool J Linn Soc 2016. [DOI: 10.1111/zoj.12374] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tomasz Szczygielski
- Institute of Palaeobiology; Polish Academy of Sciences; Twarda 51/55 00-818 Warsaw Poland
| | - Tomasz Sulej
- Institute of Palaeobiology; Polish Academy of Sciences; Twarda 51/55 00-818 Warsaw Poland
| |
Collapse
|
10
|
Vieira LG, Santos AL, Moura LR, Orpinelli SR, Pereira KF, Lima FC. Morphology, development and heterochrony of the carapace of Giant Amazon River Turtle Podocnemis expansa (Testudines, Podocnemidae). PESQUISA VETERINARIA BRASILEIRA 2016. [DOI: 10.1590/s0100-736x2016000500014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract: With aim to report the ontogeny of the osseous elements of the carapace in Peurodiras, 62 embryos and 43 nestlings of Podocnemis expansa were collected and submitted to the clearing and staining technique of bones and cartilages and study of serial histological slices. The carapace has mixed osseous structure of endo and exoskeleton, formed by 8 pairs of costal bones associated with ribs, 7 neural bones associated with neural arches, 11 pairs of peripheral bones, 1 nuchal, 1 pygal and 1 suprapygal. This structure begins its formation in the beginning of stage 16 with the ossification of the periosteal collar of the ribs. With exception of the peripheral bones, the other ones begin their ossification during the embrionary period. In histologic investigation it was found that the costal bones and neural bones have a close relation to the endoskeleton components, originating themselves as intramembranous expansions of the periosteal collar of the ribs and neural arches, respectively. The condensation of the mesenchyme adjacent to the periosteal collar induces the formation of spikes that grow in trabeculae permeated by fibroblasts below the dermis. The nuchal bone also ossifies in an intramembranous way, but does not show direct relation to the endoskeleton. Such information confirms those related to the other Pleurodira, mainly with Podocnemis unifilis, sometimes with conspicuous variations in the chronology of the ossification events. The formation of dermal plates in the carapace of Pleurodira and Criptodira follow the same pattern.
Collapse
|
11
|
Rice R, Riccio P, Gilbert SF, Cebra-Thomas J. Emerging from the rib: resolving the turtle controversies. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:208-20. [PMID: 25675951 DOI: 10.1002/jez.b.22600] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 09/29/2014] [Indexed: 12/15/2022]
Abstract
Two of the major controversies in the present study of turtle shell development involve the mechanism by which the carapacial ridge initiates shell formation and the mechanism by which each rib forms the costal bones adjacent to it. This paper claims that both sides of each debate might be correct-but within the species examined. Mechanism is more properly "mechanisms," and there is more than one single way to initiate carapace formation and to form the costal bones. In the initiation of the shell, the rib precursors may be kept dorsal by either "axial displacement" (in the hard-shell turtles) or "axial arrest" (in the soft-shell turtle Pelodiscus), or by a combination of these. The former process would deflect the rib into the dorsal dermis and allow it to continue its growth there, while the latter process would truncate rib growth. In both instances, though, the result is to keep the ribs from extending into the ventral body wall. Our recent work has shown that the properties of the carapacial ridge, a key evolutionary innovation of turtles, differ greatly between these two groups. Similarly, the mechanism of costal bone formation may differ between soft-shell and hard-shell turtles, in that the hard-shell species may have both periosteal flattening as well as dermal bone induction, while the soft-shelled turtles may have only the first of these processes.
Collapse
Affiliation(s)
- Ritva Rice
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
12
|
Angielczyk KD, Feldman CR. Are diminutive turtles miniaturized? The ontogeny of plastron shape in emydine turtles. Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Kenneth D. Angielczyk
- Department of Geology; Field Museum of Natural History; 1400 South Lake Shore Drive; Chicago; IL; 60605; USA
| | - Chris R. Feldman
- Department of Biology; University of Nevada, Reno; 1664 North Virginia Street; Reno; NV; 89557; USA
| |
Collapse
|