1
|
Rajan A, Fame RM. Brain development and bioenergetic changes. Neurobiol Dis 2024; 199:106550. [PMID: 38849103 PMCID: PMC11495523 DOI: 10.1016/j.nbd.2024.106550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024] Open
Abstract
Bioenergetics describe the biochemical processes responsible for energy supply in organisms. When these changes become dysregulated in brain development, multiple neurodevelopmental diseases can occur, implicating bioenergetics as key regulators of neural development. Historically, the discovery of disease processes affecting individual stages of brain development has revealed critical roles that bioenergetics play in generating the nervous system. Bioenergetic-dependent neurodevelopmental disorders include neural tube closure defects, microcephaly, intellectual disability, autism spectrum disorders, epilepsy, mTORopathies, and oncogenic processes. Developmental timing and cell-type specificity of these changes determine the long-term effects of bioenergetic disease mechanisms on brain form and function. Here, we discuss key metabolic regulators of neural progenitor specification, neuronal differentiation (neurogenesis), and gliogenesis. In general, transitions between glycolysis and oxidative phosphorylation are regulated in early brain development and in oncogenesis, and reactive oxygen species (ROS) and mitochondrial maturity play key roles later in differentiation. We also discuss how bioenergetics interface with the developmental regulation of other key neural elements, including the cerebrospinal fluid brain environment. While questions remain about the interplay between bioenergetics and brain development, this review integrates the current state of known key intersections between these processes in health and disease.
Collapse
Affiliation(s)
- Arjun Rajan
- Developmental Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Ryann M Fame
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Saizonou MA, Kitazawa H, Kanahashi T, Yamada S, Takakuwa T. Epithelial development of the urinary collecting system in the human embryo. PLoS One 2024; 19:e0301778. [PMID: 38598450 PMCID: PMC11006188 DOI: 10.1371/journal.pone.0301778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/21/2024] [Indexed: 04/12/2024] Open
Abstract
The urinary collecting system (UCS) consists of organized ducts that collect urine from the nephrons and transport it to the ureter and bladder. Understanding the histogenesis of the UCS is critical. Thirty human embryos between the Carnegie stages (CS) 18 and 23 were selected from the Congenital Anomaly Research Center, Kyoto, Japan. Epithelia of the UCS, ureter, and bladder of each sample were randomly selected. Histological findings of the epithelia were analyzed according to the following criteria: type of epithelium, presence or absence of glycogen, percentage of migrated nuclei, percentage of cells in mitosis, and the surrounding mesenchyme. A thickened epithelium lining a narrow luminal cavity was observed in the pre-expanded pelvic specimens at CS18-CS23. At CS23, after pelvic expansion, the UCS showed a thin epithelium with a large luminal cavity mainly located on the early branches, whereas the epithelium covering the subsequent branches had medium thickness. Histological characteristics differed depending on the UCS part and sample stage. The degree of differentiation was evaluated, revealing that in CS18-CS23 pre-expanded pelvis specimens, the undifferentiated epithelium was found in the zeroth to third/fifth generation, whereas at CS23, after pelvic expansion, a differentiated epithelium covered the UCS zeroth to seventh generation. In a comparison of the urothelial epithelium between the UCS, ureter, and bladder, we found that urinary tract differentiation may be initiated in the bladder, followed by the ureter, UCS zeroth to seventh generations, and finally, UCS eighth to end generations. An understanding of the histogenesis of embryonic stage UCS can aid in the clinical management of congenital urinary tract defects and other diseases.
Collapse
Affiliation(s)
- Marie Ange Saizonou
- Human Health Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Haruka Kitazawa
- Human Health Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toru Kanahashi
- Human Health Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shigehito Yamada
- Human Health Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tetsuya Takakuwa
- Human Health Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
3
|
Kinoshita A, Shqirat M, Kageyama R, Ohtsuka T. Modification of gene expression and soluble factor secretion in the lateral ventricle choroid plexus: Analysis of the impacts on the neocortical development. Neurosci Res 2021; 177:38-51. [PMID: 34968558 DOI: 10.1016/j.neures.2021.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 01/03/2023]
Abstract
The choroid plexus (ChP) is the center of soluble factor secretion into the cerebrospinal fluid in the central nervous system. It is known that various signaling factors secreted from the ChP are involved in the regulation of brain development and homeostasis. Intriguingly, the size of the ChP was prominently expanded in the brains of primates, including humans, suggesting that the expansion of the ChP contributed to mammalian brain evolution, leading to the acquisition of higher intelligence and cognitive functions. To address this hypothesis, we established transgenic (Tg) systems using regulatory elements that direct expression of candidate genes in the ChP. Overexpression of sonic hedgehog (Shh) in the developing ChP led to the expansion of the ChP with greater arborization. Shh produced in the ChP caused an increase in neural stem cells (NSCs) in the neocortical region, leading to the expansion of ventricles, ventricular zone, neocortical surface area, and neocortical surface folding. These findings suggest that the activation of Shh signaling via its enhanced secretion from the developing ChP contributed to the evolution of the neocortex. Furthermore, we found that Shh produced in the ChP enhanced NSC proliferation in the postnatal Tg brain, demonstrating that our Tg system can be used to estimate the effects of candidate factors secreted from the ChP on various aspects of brain morphogenesis and functions.
Collapse
Affiliation(s)
- Akira Kinoshita
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan; Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Mohammed Shqirat
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan; Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan; Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan; Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan; Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, 606-8501, Japan
| | - Toshiyuki Ohtsuka
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan; Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan; Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
4
|
Takakuwa T, Shiraishi N, Terashima M, Yamanaka M, Okamoto I, Imai H, Ishizu K, Yamada S, Ishikawa A, Kanahashi T. Morphology and morphometry of the human early foetal brain: A three-dimensional analysis. J Anat 2021; 239:498-516. [PMID: 33754346 PMCID: PMC8273585 DOI: 10.1111/joa.13433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 11/29/2022] Open
Abstract
Morphometric analyses in the early foetal phase (9-13 postconceptional week) are critical for evaluating normal brain growth. In this study, we assessed sequential morphological and morphometric changes in the foetal brain during this period using high-resolution T1-weighted magnetic resonance imaging (MRI) scans from 21 samples preserved at Kyoto University. MRI sectional views (coronal, mid-sagittal, and horizontal sections) and 3D reconstructions of the whole brain revealed sequential changes in its external morphology and internal structures. The cerebrum's gross external view, lateral ventricle and choroid plexus, cerebral wall, basal ganglia and thalamus, and corpus callosum were assessed. The development of the cerebral cortex, white matter microstructure, and basal ganglia can be well-characterized using MRI scans. The insula became apparent and deeply impressed as brain growth progressed. A thick, densely packed cellular ventricular/subventricular zone and ganglionic eminence became apparent at high signal intensity. We detected the emergence of important landmarks which may be candidates in the subdivision processes during the early foetal period; the corpus callosum was first detected in the sample with crown-rump length (CRL) 62 mm. A primary sulcus on the medial part of the cortex (cingulate sulcus) was observed in the sample with CRL 114 mm. In the cerebellum, the hemispheres, posterolateral fissure, union of the cerebellar halves, and definition of the vermis were observed in the sample with CRL 43.5 mm, alongside the appearance of a primary fissure in the sample with CRL 56 mm and the prepyramidal fissure in the sample with CRL 75 mm. The volumetric, linear, and angle measurements revealed the comprehensive and regional development, growth, and differentiation of brain structures during the early foetal phase. The early foetal period was neither morphologically nor morphometrically uniform. The cerebral proportion (length/height) and the angle of cerebrum to the standard line at the lateral view of the cerebrum, which may reflect the growth and C-shape formation of the cerebrum, may be a candidate for subdividing the early foetal period. Future precise analyses must establish a staging system for the brain during the early foetal period. This study provides insights into brain structure, allowing for a correlation with functional maturation and facilitating the early detection of brain damage and abnormal development.
Collapse
Affiliation(s)
- Tetsuya Takakuwa
- Human Health ScienceGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Naoki Shiraishi
- Human Health ScienceGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Mei Terashima
- Human Health ScienceGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Miki Yamanaka
- Human Health ScienceGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Ikue Okamoto
- Human Health ScienceGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Hirohiko Imai
- Department of Systems ScienceGraduate School of InformaticsKyoto UniversityKyotoJapan
| | - Koichi Ishizu
- Human Health ScienceGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Shigehito Yamada
- Human Health ScienceGraduate School of MedicineKyoto UniversityKyotoJapan
- Congenital Anomaly Research CenterGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Aoi Ishikawa
- Human Health ScienceGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Toru Kanahashi
- Human Health ScienceGraduate School of MedicineKyoto UniversityKyotoJapan
| |
Collapse
|
5
|
Fame RM, Lehtinen MK. Emergence and Developmental Roles of the Cerebrospinal Fluid System. Dev Cell 2020; 52:261-275. [PMID: 32049038 DOI: 10.1016/j.devcel.2020.01.027] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/14/2020] [Accepted: 01/24/2020] [Indexed: 12/21/2022]
Abstract
We summarize recent work illuminating how cerebrospinal fluid (CSF) regulates brain function. More than a protective fluid cushion and sink for waste, the CSF is an integral CNS component with dynamic and diverse roles emerging in parallel with the developing CNS. This review examines the current understanding about early CSF and its maturation and roles during CNS development and discusses open questions in the field. We focus on developmental changes in the ventricular system and CSF sources (including neural progenitors and choroid plexus). We also discuss concepts related to the development of fluid dynamics including flow, perivascular transport, drainage, and barriers.
Collapse
Affiliation(s)
- Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Ohga A, Sakamoto R, Yamada S, Takakuwa T. Vesicular swelling in the cervical region with lymph sac formation in human embryos. Congenit Anom (Kyoto) 2020; 60:62-67. [PMID: 31102424 DOI: 10.1111/cga.12339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 04/11/2019] [Accepted: 05/02/2019] [Indexed: 01/24/2023]
Abstract
Vesicular swelling in the cervical region (VSC) is occasionally observed among human embryos around Carnegie stage (CS) 21. However, its mechanism and significance in fetal development are unclear. The present study aimed to analyze the relation of development of VSC with jugular lymph sac (JLS) formation. Serial histological sections that were digitalized from 14 embryos at CS20 and CS21 stored at the Kyoto Collection were used for the analysis. Subcutaneous edema and enlargement of the subarachnoid space were found to cause VSC. No obvious abnormalities in cranial regions that may be related to the VSC were detected on histological sections. Three-dimensional reconstructions revealed the following: (a) the JLS was located bilaterally at the levels between the first and fourth cervical vertebrae; (b) the JLS was pyramidal in shape; and (c) no severe deformity and/or malformation was found in all samples. The JLS was not connected to the subcutaneous tissue and subarachnoid space in all samples. The mean volume of the JLS increased nine-times from CS20 (0.02 mm3 in VSC [-] group) to CS21 (0.18 mm3 in VSC [-] group). The mean volume of the JLS was comparable between the VSC [-] and VSC (+) groups at both CS20 and CS21. A moderate correlation was observed between VSCd and the mean volume of the JLS in both groups at CS20 (R2 = 0.75) and CS21 (R2 = 0.56). In conclusion, the dynamics of the lymphatic system at the cervical region may contribute to VSC observed around CS21. © 2019 Japanese Teratology Society.
Collapse
Affiliation(s)
- Ayako Ohga
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Rino Sakamoto
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigehito Yamada
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Congenital Anomaly Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tetsuya Takakuwa
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Takakuwa T. 3D Analysis of Human Embryos and Fetuses Using Digitized Datasets From the Kyoto Collection. Anat Rec (Hoboken) 2018; 301:960-969. [DOI: 10.1002/ar.23784] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/16/2016] [Accepted: 12/12/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Tetsuya Takakuwa
- Human Health Science, Graduate School of Medicine; Kyoto University; Kyoto Japan
| |
Collapse
|
8
|
Kose K. Magnetic Resonance Microscopy of Chemically Fixed Human Embryos Performed in University of Tsukuba Since 1999 to 2015. Anat Rec (Hoboken) 2018; 301:987-997. [PMID: 29663733 DOI: 10.1002/ar.23787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/02/2017] [Accepted: 06/29/2017] [Indexed: 11/09/2022]
Abstract
Magnetic resonance (MR) microscopy of chemically fixed human embryos performed in University of Tsukuba since 1999 to 2015 was reviewed. More than 1,000 chemically fixed human embryos stored in the Congenital Anomaly Research Center of Kyoto University were used throughout the MR microscopy project, which was divided into three terms. In the first term (1999-2005), 3D MR images of 1,204 embryo specimens were acquired with 128 × 128 × 256 voxels by a super-parallel MR microscope using a 2.35 T horizontal-bore superconducting magnet. In the second term (2005-2006), 3D MR images of seven embryo specimens were acquired with 256 × 256 × 512 voxels by an MR microscope using a 9.4 T vertical wide-bore superconducting magnet. In the third term (2013-2015), 3D MR images of a Carnegie Stage (CS) 21 specimen were acquired with 512 × 512 × 1024 voxels by an MR microscope using a 4.7 T vertical wide-bore superconducting magnet and nuclear magnetic resonance parameters of a CS23 specimen were measured with 128 × 128 × 256-256 × 256 × 512 voxels by an MR microscope using a 9.4 T vertical narrow-bore superconducting magnet. Based on the results obtained in this project, the author has proposed the future MR microscopy project in which a number of embryo specimens will be imaged with 256 × 256 × 512-512 × 512 × 1024 voxels using a newly designed super-parallel MR microscope. Anat Rec, 301:987-997, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Katsumi Kose
- Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 3058573, Japan
| |
Collapse
|
9
|
Kanahashi T, Yamada S, Tanaka M, Hirose A, Uwabe C, Kose K, Yoneyama A, Takeda T, Takakuwa T. A Novel Strategy to Reveal the Latent Abnormalities in Human Embryonic Stages from a Large Embryo Collection. Anat Rec (Hoboken) 2015; 299:8-24. [DOI: 10.1002/ar.23281] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/14/2015] [Accepted: 09/14/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Tohoru Kanahashi
- Human Health Science, Graduate School of Medicine; Kyoto University; Kyoto 606-8507, 2606-8501 Japan
| | - Shigehito Yamada
- Human Health Science, Graduate School of Medicine; Kyoto University; Kyoto 606-8507, 2606-8501 Japan
- Congenital Anomaly Research Center, Graduate School of Medicine; Kyoto University; Kyoto 606-8507, 606-8501 Japan
| | - Mire Tanaka
- Human Health Science, Graduate School of Medicine; Kyoto University; Kyoto 606-8507, 2606-8501 Japan
| | - Ayumi Hirose
- Human Health Science, Graduate School of Medicine; Kyoto University; Kyoto 606-8507, 2606-8501 Japan
| | - Chigako Uwabe
- Congenital Anomaly Research Center, Graduate School of Medicine; Kyoto University; Kyoto 606-8507, 606-8501 Japan
| | - Katsumi Kose
- Institute of Applied Physics; University of Tsukuba; Ibaragi 305-8573 Japan
| | - Akio Yoneyama
- Allied Health Sciences; Kitasato University; Kanagawa 252-0373 Japan
| | - Tohoru Takeda
- Allied Health Sciences; Kitasato University; Kanagawa 252-0373 Japan
| | - Tetsuya Takakuwa
- Human Health Science, Graduate School of Medicine; Kyoto University; Kyoto 606-8507, 2606-8501 Japan
| |
Collapse
|
10
|
Enlargement of choroid plexus in complex regional pain syndrome. Sci Rep 2015; 5:14329. [PMID: 26388497 PMCID: PMC4585686 DOI: 10.1038/srep14329] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/20/2015] [Indexed: 01/05/2023] Open
Abstract
The choroid plexus, located in brain ventricles, has received surprisingly little attention in clinical neuroscience. In morphometric brain analysis, we serendipitously found a 21% increase in choroid plexus volume in 12 patients suffering from complex regional pain syndrome (CRPS) compared with age- and gender-matched healthy subjects. No enlargement was observed in a group of 8 patients suffering from chronic pain of other etiologies. Our findings suggest involvement of the choroid plexus in the pathogenesis of CRPS. Since the choroid plexus can mediate interaction between peripheral and brain inflammation, our findings pinpoint the choroid plexus as an important target for future research of central pain mechanisms.
Collapse
|
11
|
Shiraishi N, Katayama A, Nakashima T, Yamada S, Uwabe C, Kose K, Takakuwa T. Morphology and morphometry of the human embryonic brain: A three-dimensional analysis. Neuroimage 2015; 115:96-103. [DOI: 10.1016/j.neuroimage.2015.04.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/14/2015] [Accepted: 04/21/2015] [Indexed: 01/26/2023] Open
|
12
|
Taketani K, Yamada S, Uwabe C, Okada T, Togashi K, Takakuwa T. Morphological features and length measurements of fetal lateral ventricles at 16-25 weeks of gestation by magnetic resonance imaging. Congenit Anom (Kyoto) 2015; 55:99-102. [PMID: 25059317 DOI: 10.1111/cga.12076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/11/2014] [Indexed: 02/03/2023]
Abstract
Normal growth of the lateral ventricles (LVs) was characterized three-dimensionally using magnetic resonance imaging (MRI) data from 16 human fetuses at 16-25 weeks of gestation. The LV was differentiated into four primary regions, the anterior horn, central parts, posterior horn, and inferior horn, at 16 weeks of gestation. The LV changed shape mainly by elongation and narrowing, which corresponded to the external and internal growth of the surrounding cerebrum. Six length parameters measured in the LV correlated with biparietal diameter by simple regression analysis (R(2) range, 0.56-0.93), which may be valuable for establishing a standardized prenatal protocol to assess fetal well-being and development across intrauterine periods. No correlation was found between biparietal diameter and LV volume (R(2) = 0.13).
Collapse
Affiliation(s)
- Kaori Taketani
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|