1
|
Graïc JM, Grandis A, Sacchini S, Tagliavia C, Salamanca G, Cozzi B, Bombardi C. Distribution of calcium-binding proteins immunoreactivity in the bottlenose dolphin entorhinal cortex. Front Neuroanat 2024; 18:1321025. [PMID: 38379680 PMCID: PMC10875065 DOI: 10.3389/fnana.2024.1321025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/19/2024] [Indexed: 02/22/2024] Open
Abstract
Introduction The entorhinal cortex has been shown to be involved in high-level cognitive functions in terrestrial mammals. It can be divided into two main areas: the lateral entorhinal area (LEA) and the medial entorhinal area (MEA). Understanding of its structural organization in cetaceans is particularly important given the extensive evidence for their cognitive abilities. The present study describes the cytoarchitectural and immunohistochemical properties of the entorhinal cortex of the bottlenose dolphin (Tursiops truncatus, Montagu, 1821), perhaps the most studied cetacean species and a paradigm for dolphins and other small cetaceans. Methods Four bottlenose dolphins' entorhinal cortices were processed. To obtain a precise overview of the organization of the entorhinal cortex we used thionin staining to study its laminar and regional organization, and immunoperoxidase technique to investigate the immunohistochemical distribution of three most commonly used calcium-binding proteins (CBPs), calbindin D-28k (CB), calretinin (CR) and parvalbumin (PV). Entorhinal cortex layers thickness were measured, morphological and morphometric analysis for each layer were conducted and statistically compared. Results Six layers in both the LEA and MEA were identified. The main difference between the LEA and the MEA is observed in layers II and III: the neurons in layer II of the LEA were denser and larger than the neurons in layer II of MEA. In addition, a relatively cell-free zone between layers II and III in LEA, but not in MEA, was observed. The immunohistochemical distribution of the three CBPs, CB, CR and PV were distinct in each layer. The immunostaining pattern of CR, on one side, and CB/PV, on the other side, appeared to be distributed in a complementary manner. PV and CB immunostaining was particularly evident in layers II and III, whereas CR immunoreactive neurons were distributed throughout all layers, especially in layers V and VI. Immunoreactivity was expressed by neurons belonging to different morphological classes: All CBPs were expressed in non-pyramidal neurons, but CB and CR were also found in pyramidal neurons. Discussion The morphological characteristics of pyramidal and non-pyramidal neurons in the dolphin entorhinal cortex are similar to those described in the entorhinal cortex of other species, including primates and rodents. Interestingly, in primates, rodents, and dolphins, most of the CBP-containing neurons are found in the superficial layers, but the large CR-ir neurons are also abundant in the deep layers. Layers II and III of the entorhinal cortex contain neurons that give rise to the perforant pathway, which conveys most of the cortical information to the hippocampal formation. From the hippocampal formation, reciprocal projections are directed back to the deep layer of the entorhinal cortex, which distributes the information to the neocortex and subcortical area. Our data reveal that in the dolphin entorhinal cortex, the three major CBPs label morphologically heterogeneous groups of neurons that may be involved in the information flow between entorhinal input and output pathways.
Collapse
Affiliation(s)
- Jean-Marie Graïc
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Annamaria Grandis
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Simona Sacchini
- Department of Morphology, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Claudio Tagliavia
- Department of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Giulia Salamanca
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Bruno Cozzi
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Cristiano Bombardi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Pombal MA, Megías M, Lozano D, López JM. Neuromeric Distribution of Nicotinamide Adenine Dinucleotide Phosphate-Diaphorase Activity in the Adult Lamprey Brain. Front Neuroanat 2022; 16:826087. [PMID: 35197830 PMCID: PMC8859838 DOI: 10.3389/fnana.2022.826087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
This study reports for the first time the distribution and morphological characterization of nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d; a reliable marker of nitric oxide synthase activity) positive elements in the central nervous system of the adult river lamprey (Lampetra fluviatilis) on the framework of the neuromeric model and compares their cytoarchitectonic organization with that of gnathostomes. Both NADPH-d exhibiting cells and fibers were observed in all major divisions of the lamprey brain as well as in the spinal cord. In the secondary prosencephalon, NADPH-d positive cells were observed in the mitral cell layer of the olfactory bulb, evaginated pallium, amygdala, dorsal striatum, septum, lateral preoptic nucleus, caudal paraventricular area, posterior entopeduncular nucleus, nucleus of the stria medullaris, hypothalamic periventricular organ and mamillary region sensu lato. In the lamprey diencephalon, NADPH-d labeled cells were observed in several nuclei of the prethalamus, epithalamus, pretectum, and the basal plate. Especially remarkable was the staining observed in the right habenula and several pretectal nuclei. NADPH-d positive cells were also observed in the following mesencephalic areas: optic tectum (two populations), torus semicircularis, nucleus M5 of Schöber, and a ventral tegmental periventricular nucleus. Five different cell populations were observed in the isthmic region, whereas the large sensory dorsal cells, some cells located in the interpeduncular nucleus, the motor nuclei of most cranial nerves, the solitary tract nucleus, some cells of the reticular nuclei, and small cerebrospinal fluid-contacting (CSF-c) cells were the most evident stained cells of the rhombencephalon proper. Finally, several NADPH-d positive cells were observed in the rostral part of the spinal cord, including the large sensory dorsal cells, numerous CSF-c cells, and some dorsal and lateral interneurons. NADPH-d positive fibers were observed in the olfactory pathways (primary olfactory fibers and stria medullaris), the fasciculus retroflexus, and the dorsal column tract. Our results on the distribution of NADPH-d positive elements in the brain of the adult lamprey L. fluviatilis are significantly different from those previously reported in larval lampreys and demonstrated that these animals possess a complex nitrergic system readily comparable to those of other vertebrates, although important specific differences also exist.
Collapse
Affiliation(s)
- Manuel A. Pombal
- Neurolam Group, Facultade de Bioloxía-IBIV, Departamento de Bioloxía Funcional e Ciencias da Saúde, Universidade de Vigo, Vigo, Spain
- *Correspondence: Manuel A. Pombal,
| | - Manuel Megías
- Neurolam Group, Facultade de Bioloxía-IBIV, Departamento de Bioloxía Funcional e Ciencias da Saúde, Universidade de Vigo, Vigo, Spain
| | - Daniel Lozano
- Department of Cellular Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Jesús M. López
- Department of Cellular Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
3
|
Torrillas de la Cal A, Paniagua-Torija B, Arevalo-Martin A, Faulkes CG, Jiménez AJ, Ferrer I, Molina-Holgado E, Garcia-Ovejero D. The Structure of the Spinal Cord Ependymal Region in Adult Humans Is a Distinctive Trait among Mammals. Cells 2021; 10:2235. [PMID: 34571884 PMCID: PMC8469235 DOI: 10.3390/cells10092235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
In species that regenerate the injured spinal cord, the ependymal region is a source of new cells and a prominent coordinator of regeneration. In mammals, cells at the ependymal region proliferate in normal conditions and react after injury, but in humans, the central canal is lost in the majority of individuals from early childhood. It is replaced by a structure that does not proliferate after damage and is formed by large accumulations of ependymal cells, strong astrogliosis and perivascular pseudo-rosettes. We inform here of two additional mammals that lose the central canal during their lifetime: the Naked Mole-Rat (NMR, Heterocephalus glaber) and the mutant hyh (hydrocephalus with hop gait) mice. The morphological study of their spinal cords shows that the tissue substituting the central canal is not similar to that found in humans. In both NMR and hyh mice, the central canal is replaced by tissue reminiscent of normal lamina X and may include small groups of ependymal cells in the midline, partially resembling specific domains of the former canal. However, no features of the adult human ependymal remnant are found, suggesting that this structure is a specific human trait. In order to shed some more light on the mechanism of human central canal closure, we provide new data suggesting that canal patency is lost by delamination of the ependymal epithelium, in a process that includes apical polarity loss and the expression of signaling mediators involved in epithelial to mesenchymal transitions.
Collapse
Affiliation(s)
- Alejandro Torrillas de la Cal
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, 45071 Toledo, Spain; (A.T.d.l.C.); (B.P.-T.); (A.A.-M.); (E.M.-H.)
| | - Beatriz Paniagua-Torija
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, 45071 Toledo, Spain; (A.T.d.l.C.); (B.P.-T.); (A.A.-M.); (E.M.-H.)
| | - Angel Arevalo-Martin
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, 45071 Toledo, Spain; (A.T.d.l.C.); (B.P.-T.); (A.A.-M.); (E.M.-H.)
| | - Christopher Guy Faulkes
- School of Biological & Chemical Sciences, Queen Mary University of London, London E1 4NS, UK;
| | - Antonio Jesús Jiménez
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus de Teatinos, 29071 Malaga, Spain;
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain
| | - Isidre Ferrer
- Institut de Neuropatologia, Servei d’Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, 08908 L’Hospitalet de Llobregat, Spain;
| | - Eduardo Molina-Holgado
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, 45071 Toledo, Spain; (A.T.d.l.C.); (B.P.-T.); (A.A.-M.); (E.M.-H.)
| | - Daniel Garcia-Ovejero
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, 45071 Toledo, Spain; (A.T.d.l.C.); (B.P.-T.); (A.A.-M.); (E.M.-H.)
| |
Collapse
|
4
|
Rowlands CE, McLellan WA, Rommel SA, Costidis AM, Yopak KE, Koopman HN, Glandon HL, Ann Pabst D. Comparative morphology of the spinal cord and associated vasculature in shallow versus deep diving cetaceans. J Morphol 2021; 282:1415-1431. [PMID: 34228354 DOI: 10.1002/jmor.21395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 12/19/2022]
Abstract
The cetacean vertebral canal houses the spinal cord and arterial supply to and venous drainage from the entire central nervous system (CNS). Thus, unlike terrestrial mammals, the cetacean spinal cord lies within a highly vascularized space. We compared spinal cord size and vascular volumes within the vertebral canal across a sample of shallow and deep diving odontocetes. We predicted that the (a) spinal cord, a metabolically expensive tissue, would be relatively small, while (b) volumes of vascular structures would be relatively large, in deep versus shallow divers. Our sample included the shallow diving Tursiops truncatus (n = 2) and Delphinus delphis (n = 3), and deep diving Kogia breviceps (n = 2), Mesoplodon europaeus (n = 2), and Ziphius cavirostris (n = 1). Whole, frozen vertebral columns were cross-sectioned at each intervertebral disc, scaled photographs of vertebral canal contents acquired, and cross-sectional areas of structures digitally measured. Areas were multiplied by vertebral body lengths and summed to calculated volumes of neural and vascular structures. Allometric analyses revealed that the spinal cord scaled with negative allometry (b = 0.51 ± 0.13) with total body mass (TBM), and at a rate significantly lower than that of terrestrial mammals. As predicted, the spinal cord represented a smaller percentage of the total vertebral canal volume in the deep divers relative to shallow divers studied, as low as 2.8% in Z. cavirostris. Vascular volume scaled with positive allometry (b = 1.2 ± 0.22) with TBM and represented up to 96.1% (Z. cavirostris) of the total vertebral canal volume. The extreme deep diving beaked whales possessed 22-35 times more vascular volume than spinal cord volume within the vertebral canal, compared with the 6-10 ratio in the shallow diving delphinids. These data offer new insights into morphological specializations of neural and vascular structures that may contribute to differential diving capabilities across odontocete cetaceans.
Collapse
Affiliation(s)
- Carrie E Rowlands
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - William A McLellan
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Sentiel A Rommel
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Alexander M Costidis
- Virginia Aquarium Stranding Response Program, Virginia Aquarium and Marine Science Center, Virginia Beach, Virginia, USA
| | - Kara E Yopak
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Heather N Koopman
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Hillary L Glandon
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - D Ann Pabst
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| |
Collapse
|
5
|
Grandis A, Gardini A, Tagliavia C, Salamanca G, Graïc JM, De Silva M, Bombardi C. Anatomical organization of the lateral cervical nucleus in Artiodactyls. Vet Res Commun 2021; 45:87-99. [PMID: 33866493 PMCID: PMC8373732 DOI: 10.1007/s11259-021-09788-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/05/2021] [Indexed: 12/02/2022]
Abstract
The presence of the lateral cervical nucleus (LCN) in different mammals, including humans, has been established in a number of anatomical research works. The LCN receives its afferent inputs from the spinocervical tract, and conveys this somatosensory information to the various brain areas, especially the thalamus. In the present study, the organization of the calf and pig LCN was examined through the use of thionine staining and immunohistochemical methods combined with morphometrical analyses. Specifically, the localization of calbindin-D28k (CB-D28k) and neuronal nitric oxide synthase (nNOS) in the LCN was investigated using the immunoperoxidase method. Calf and pig LCN appear as a clearly defined column of gray matter located in the three cranial segments of the cervical spinal cord. Thionine staining shows that polygonal neurons represent the main cell type in both species. The calf and pig LCN contained CB-D28k-immunoreactive (IR) neurons of varying sizes. Large neurons are probably involved in the generation of the cervicothalamic pathway. Small CB-D28k-IR neurons, on the other hand, could act as local interneurons. The immunoreactivity for nNOS was found to be mainly located in thin neuronal processes that could represent the terminal axonal portion of nNOS-IR found in laminae III e IV. This evidence suggests that nitric oxide (NO) could modulate the synaptic activity of the glutamatergic spinocervical tracts. These findings suggest that the LCN of Artiodactyls might play an important role in the transmission of somatosensory information from the spinal cord to the higher centers of the brain.
Collapse
Affiliation(s)
- Annamaria Grandis
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, BO, Italy
| | - Anna Gardini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, BO, Italy
| | - Claudio Tagliavia
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, BO, Italy
| | - Giulia Salamanca
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, BO, Italy
| | - Jean-Marie Graïc
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, PD, Italy
| | - Margherita De Silva
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, BO, Italy
| | - Cristiano Bombardi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, BO, Italy.
| |
Collapse
|
6
|
López JM, Morona R, González A. Pattern of nitrergic cells and fibers organization in the central nervous system of the Australian lungfish, Neoceratodus forsteri (Sarcopterygii: Dipnoi). J Comp Neurol 2019; 527:1771-1800. [PMID: 30689201 DOI: 10.1002/cne.24645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 12/18/2022]
Abstract
The Australian lungfish Neoceratodus forsteri is the only extant species of the order Ceratodontiformes, which retained most of the primitive features of ancient lobe finned-fishes. Lungfishes are the closest living relatives of land vertebrates and their study is important for deducing the neural traits that were conserved, modified, or lost with the transition from fishes to land vertebrates. We have investigated the nitrergic system with neural nitric oxide synthase (NOS) immunohistochemistry and NADPH-diaphorase (NADPH-d) histochemistry, which yielded almost identical results except for the primary olfactory projections and the terminal and preoptic nerve fibers labeled only for NADPH-d. Combined immunohistochemistry was used for simultaneous detection of NOS with catecholaminergic, cholinergic, and serotonergic structures, aiming to establish accurately the localization of the nitrergic elements and to assess possible interactions between these neurotransmitter systems. The results demonstrated abundant nitrergic cells in the basal ganglia, amygdaloid complex, preoptic area, basal hypothalamus, mesencephalic tectum and tegmentum, laterodorsal tegmental nucleus, reticular formation, spinal cord, and retina. In addition, low numbers of nitrergic cells were observed in the olfactory bulb, all pallial divisions, lateral septum, suprachiasmatic nucleus, prethalamic and thalamic areas, posterior tubercle, pretectum, torus semicircularis, cerebellar nucleus, interpeduncular nucleus, the medial octavolateral nucleus, nucleus of the solitary tract, and the dorsal column nucleus. Colocalization of NOS and tyrosine hydroxylase was observed in numerous cells of the ventral tegmental area/substantia nigra complex. Comparison with other vertebrates, using a neuromeric analysis, reveals that the nitrergic system of Neoceratodus shares many neuroanatomical features with tetrapods and particularly with amphibians.
Collapse
Affiliation(s)
- Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
7
|
López JM, Lozano D, Morona R, González A. Organization of the nitrergic neuronal system in the primitive bony fishes Polypterus senegalus and Erpetoichthys calabaricus (Actinopterygii: Cladistia). J Comp Neurol 2015; 524:1770-804. [PMID: 26517971 DOI: 10.1002/cne.23922] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 01/22/2023]
Abstract
Cladistians are a group of basal actinopterygian fishes that constitute a good model for studying primitive brain features, most likely present in the ancestral bony fishes. The analysis of the nitrergic neurons (with the enzyme nitric oxide synthase; NOS) has helped in understanding important aspects of brain organization in all vertebrates studied. We investigated the nitrergic system of two cladistian species by means of specific antibodies against NOS and NADPH-diaphorase (NADPH-d) histochemistry, which, with the exception of the primary olfactory and terminal nerve fibers, labeled only for NADPH-d, yielded identical results. Double immunohistochemistry was conducted for simultaneous detection of NOS with tyrosine hydroxylase, choline acetyltransferase, calbindin, calretinin, and serotonin, to establish accurately the localization of the nitrergic neurons and fibers and to assess possible interactions between these neuroactive substances. The pattern of distribution in both species showed only subtle differences in the density of labeled cells. Distinct groups of NOS-immunoreactive cells were observed in pallial and subpallial areas, paraventricular region, tuberal and retromammillary hypothalamic areas, posterior tubercle, prethalamic and thalamic areas, optic tectum, torus semicircularis, mesencephalic tegmentum, interpeduncular nucleus, superior and middle reticular nuclei, magnocellular vestibular nucleus, solitary tract nucleus, nucleus medianus magnocellularis, the spinal cord and amacrine cells in the retina. Large neurons in cranial nerve sensory ganglia were also labeled. The comparison of these results with those from other vertebrates, using a neuromeric analysis, reveals a conserved pattern of organization of the nitrergic system from this primitive fish group to amniotes, including mammals.
Collapse
Affiliation(s)
- Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Daniel Lozano
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| |
Collapse
|
8
|
Mahmoud MA, Fahmy GH, Moftah MZ, Sabry I. Distribution of nitric oxide-producing cells along spinal cord in urodeles. Front Cell Neurosci 2014; 8:299. [PMID: 25309330 PMCID: PMC4174862 DOI: 10.3389/fncel.2014.00299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 09/05/2014] [Indexed: 11/24/2022] Open
Abstract
Nitric oxide is a unique neurotransmitter, which participates in many physiological and pathological processes in the organism. There are little data about the neuronal nitric oxide synthase immunoreactivity in the spinal cord of amphibians. In this respect, the present study aims to investigate the distribution of nitric oxide producing cells in the spinal cord of urodele and to find out the possibility of a functional locomotory role to this neurotransmitter. The results of the present study demonstrate a specific pattern of NADPH-d labeling in the selected amphibian model throughout the spinal cord length as NADPH-d-producing cells and fibers were present in almost all segments of the spinal cord of the salamander investigated. However, their number, cytological characteristics and labeling intensity varied significantly. It was noticed that the NO-producing cells (NO-PC) were accumulated in the ventral side of certain segments in the spinal cord corresponding to the brachial and sacral plexuses. In addition, the number of NO-PC was found to be increased also at the beginning of the tail and this could be due to the fact that salamanders are tetrapods having bimodal locomotion, namely swimming and walking.
Collapse
Affiliation(s)
- Mayada A Mahmoud
- Faculty of Medicine, Institut de Neurosciences des Systèmes, Unités Mixtes de Recherche Institut National de la Santé et de la Recherche Médicale 1106, Aix-Marseille University Marseille, France
| | - Gehan H Fahmy
- Zoology Department, Faculty of Science, Alexandria University Alexandria, Egypt
| | - Marie Z Moftah
- Zoology Department, Faculty of Science, Alexandria University Alexandria, Egypt
| | - Ismail Sabry
- Zoology Department, Faculty of Science, Alexandria University Alexandria, Egypt
| |
Collapse
|