1
|
Gesemann M, Neuhauss SCF. Evolution of visual guanylyl cyclases and their activating proteins with respect to clade and species-specific visual system adaptation. Front Mol Neurosci 2023; 16:1131093. [PMID: 37008786 PMCID: PMC10061024 DOI: 10.3389/fnmol.2023.1131093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
Membrane guanylyl cyclase receptors are important regulators of local cGMP production, critically influencing cell growth and differentiation as well as ion transport, blood pressure and calcium feedback of vertebrate phototransduction. Currently, seven different subtypes of membrane guanylyl cyclase receptors have been characterized. These receptors have tissue specific expression and are activated either by small extracellular ligands, changing CO2 concentrations or, in the case of visual guanylyl cyclases, intracellularly interacting Ca2+-dependent activating proteins. In this report, we focus on the visual guanylyl cyclase receptors (GCs) GC-E (gucy2d/e) and GC-F (gucy2f) and their activating proteins (GCAP1/2/3; guca1a/b/c). While gucy2d/e has been detected in all analyzed vertebrates, GC-F receptors are missing in several clades (reptiles, birds, and marsupials) and/or individual species. Interestingly, the absence of GC-F in highly visual sauropsida species with up to 4 different cone-opsins is compensated by an increased number of guanylyl cyclase activating proteins, whereas in nocturnal or visually impaired species with reduced spectral sensitivity it is consolidated by the parallel inactivation of these activators. In mammals, the presence of GC-E and GC-F is accompanied by the expression of one to three GCAPs, whereas in lizards and birds, up to five different GCAPs are regulating the activity of the single GC-E visual membrane receptor. In several nearly blind species, a single GC-E enzyme is often accompanied by a single variant of GCAP, suggesting that one cyclase and one activating protein are both sufficient and required for conferring the basic detection of light.
Collapse
|
2
|
Wang L, Sun L, Wan QH, Fang SG. Comparative Genomics Provides Insights into Adaptive Evolution in Tactile-Foraging Birds. Genes (Basel) 2022; 13:genes13040678. [PMID: 35456484 PMCID: PMC9028243 DOI: 10.3390/genes13040678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 11/28/2022] Open
Abstract
Tactile-foraging birds have evolved an enlarged principal sensory nucleus (PrV) but smaller brain regions related to the visual system, which reflects the difference in sensory dependence. The “trade-off” may exist between different senses in tactile foragers, as well as between corresponding sensory-processing areas in the brain. We explored the mechanism underlying the adaptive evolution of sensory systems in three tactile foragers (kiwi, mallard, and crested ibis). The results showed that olfaction-related genes in kiwi and mallard and hearing-related genes in crested ibis were expanded, indicating they may also have sensitive olfaction or hearing, respectively. However, some genes required for visual development were positively selected or had convergent amino acid substitutions in all three tactile branches, and it seems to show the possibility of visual degradation. In addition, we may provide a new visual-degradation candidate gene PDLIM1 who suffered dense convergent amino acid substitutions within the ZM domain. At last, two genes responsible for regulating the proliferation and differentiation of neuronal progenitor cells may play roles in determining the relative sizes of sensory areas in brain. This exploration offers insight into the relationship between specialized tactile-forging behavior and the evolution of sensory abilities and brain structures.
Collapse
|
3
|
Hüppi E, Werneburg I, Sánchez-Villagra MR. Evolution and development of the bird chondrocranium. Front Zool 2021; 18:21. [PMID: 33926502 PMCID: PMC8082637 DOI: 10.1186/s12983-021-00406-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 04/08/2021] [Indexed: 01/29/2023] Open
Abstract
Background Birds exhibit an enormous diversity in adult skull shape (disparity), while their embryonic chondrocrania are considered to be conserved across species. However, there may be chondrocranial features that are diagnostic for bird clades or for Aves as a whole. We synthesized and analyzed information on the sequence of chondrification of 23 elements in ten bird species and five outgroups. Moreover, we critically considered the developmental morphology of the chondrocrania of 21 bird species and examined whether the diversity in adult skull shape is reflected in the development of the embryonic skull, and whether there are group-specific developmental patterns. Results We found that chondrocranial morphology is largely uniform in its major features, with some variation in the presence or absence of fenestrae and other parts. In kiwis (Apteryx), the unique morphology of the bony skull in the orbito-nasal region is reflected in its chondrocranial anatomy. Finally, differences in morphology and chondrification sequence may distinguish between different Palaeognathae and Neognathae and between the Galloanserae and Neoaves. The sequence of chondrification is largely conserved in birds, but with some variation in most regions. The peri- and prechordal areas in the base of the chondrocranium are largely conserved. In contrast to the outgroups, chondrification in birds starts in the acrochordal cartilage and the basicranial fenestra is formed secondarily. Further differences concern the orbital region, including early chondrification of the pila antotica and the late formation of the planum supraseptale. Conclusion Synthesizing information on chondrocranial development confronts terminological issues and a lack of comparable methods used (e.g., different staining; whole-mounts versus histology). These issues were taken into consideration when assessing differences across species. The summary of works on avian chondrocranial development, covered more than a century, and a comparison of the chondrification sequence among birds could be conducted. Future studies could test the hypothesis that chondrocranial disparity in Aves, in terms of the shape and proportion of individual elements, could be as large as adult skull disparity, despite conserved developmental patterns and the richness of forms in other (dermal) portions of the skull. Supplementary Information The online version contains supplementary material available at 10.1186/s12983-021-00406-z.
Collapse
Affiliation(s)
- Evelyn Hüppi
- Universität Zürich, Paläontologisches Institut und Museum, Karl-Schmid-Straße 4, 8006, Zürich, Switzerland.
| | - Ingmar Werneburg
- Senckenberg Center for Human Evolution and Palaeoenvironment (HEP) an der Eberhard Karls Universität, Sigwartstraße 10, 72076, Tübingen, Germany.,Fachbereich Geowissenschaften der Eberhard-Karls-Universität Tübingen, Hölderlinstraße 12, 72074, Tübingen, Germany
| | - Marcelo R Sánchez-Villagra
- Universität Zürich, Paläontologisches Institut und Museum, Karl-Schmid-Straße 4, 8006, Zürich, Switzerland
| |
Collapse
|
4
|
Espíndola-Hernández P, Mueller JC, Carrete M, Boerno S, Kempenaers B. Genomic Evidence for Sensorial Adaptations to a Nocturnal Predatory Lifestyle in Owls. Genome Biol Evol 2020; 12:1895-1908. [PMID: 32770228 PMCID: PMC7566403 DOI: 10.1093/gbe/evaa166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2020] [Indexed: 12/17/2022] Open
Abstract
Owls (Strigiformes) evolved specific adaptations to their nocturnal predatory lifestyle, such as asymmetrical ears, a facial disk, and a feather structure allowing silent flight. Owls also share some traits with diurnal raptors and other nocturnal birds, such as cryptic plumage patterns, reversed sexual size dimorphism, and acute vision and hearing. The genetic basis of some of these adaptations to a nocturnal predatory lifestyle has been studied by candidate gene approaches but rarely with genome-wide scans. Here, we used a genome-wide comparative analysis to test for selection in the early history of the owls. We estimated the substitution rates in the coding regions of 20 bird genomes, including 11 owls of which five were newly sequenced. Then, we tested for functional overrepresentation across the genes that showed signals of selection. In the ancestral branch of the owls, we found traces of positive selection in the evolution of genes functionally related to visual perception, especially to phototransduction, and to chromosome packaging. Several genes that have been previously linked to acoustic perception, circadian rhythm, and feather structure also showed signals of an accelerated evolution in the origin of the owls. We discuss the functions of the genes under positive selection and their putative association with the adaptation to the nocturnal predatory lifestyle of the owls.
Collapse
Affiliation(s)
- Pamela Espíndola-Hernández
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Jakob C Mueller
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Martina Carrete
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Sevilla, Spain
| | - Stefan Boerno
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
5
|
Torres CR, Clarke JA. Nocturnal giants: evolution of the sensory ecology in elephant birds and other palaeognaths inferred from digital brain reconstructions. Proc Biol Sci 2018; 285:20181540. [PMID: 30381378 PMCID: PMC6235046 DOI: 10.1098/rspb.2018.1540] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/10/2018] [Indexed: 11/12/2022] Open
Abstract
The recently extinct Malagasy elephant birds (Palaeognathae, Aepyornithiformes) included the largest birds that ever lived. Elephant bird neuroanatomy is understudied but can shed light on the lifestyle of these enigmatic birds. Palaeoneurological studies can provide clues to the ecologies and behaviours of extinct birds because avian brain shape is correlated with neurological function. We digitally reconstruct endocasts of two elephant bird species, Aepyornis maximus and A. hildebrandti, and compare them with representatives of all major extant and recently extinct palaeognath lineages. Among palaeognaths, we find large olfactory bulbs in taxa generally occupying forested environments where visual cues used in foraging are likely to be limited. We detected variation in olfactory bulb size among elephant bird species, possibly indicating interspecific variation in habitat. Elephant birds exhibited extremely reduced optic lobes, a condition also observed in the nocturnal kiwi. Kiwi, the sister taxon of elephant birds, have effectively replaced their visual systems with hyperdeveloped olfactory, somatosensory and auditory systems useful for foraging. We interpret these results as evidence for nocturnality among elephant birds. Vision was likely deemphasized in the ancestor of elephant birds and kiwi. These results show a previously unreported trend towards decreased visual capacity apparently exclusive to flightless, nocturnal taxa endemic to predator-depauperate islands.
Collapse
Affiliation(s)
- Christopher R Torres
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, C0930, Austin, TX 78712, USA
| | - Julia A Clarke
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, C0930, Austin, TX 78712, USA
- Jackson School of Geosciences, University of Texas at Austin, 2305 Speedway, C1160, Austin, TX 78712, USA
| |
Collapse
|
6
|
Independent pseudogenization of CYP2J19 in penguins, owls and kiwis implicates gene in red carotenoid synthesis. Mol Phylogenet Evol 2018; 118:47-53. [DOI: 10.1016/j.ympev.2017.09.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 01/26/2023]
|
7
|
Moore BA, Paul-Murphy JR, Tennyson AJD, Murphy CJ. Blind free-living kiwi offer a unique window into the ecology and evolution of vertebrate vision. BMC Biol 2017; 15:85. [PMID: 28915882 PMCID: PMC5602912 DOI: 10.1186/s12915-017-0424-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The first report of multiple, blind, wild birds in good health suggests vision is not necessary for the survival of kiwi.
Collapse
Affiliation(s)
- Bret A Moore
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, 1 Garrod Drive, Davis, CA, 95695, USA
| | - Joanne R Paul-Murphy
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Alan J D Tennyson
- Museum of New Zealand Te Papa Tongarewa, P.O. Box 467, Wellington, New Zealand
| | - Christopher J Murphy
- From the Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA, 95616, USA. .,Department of Ophthalmology & Vision Science, School of Medicine, University of California, 2315 Stockton Blvd, Sacramento, CA, USA.
| |
Collapse
|
8
|
Le Duc D, Renaud G, Krishnan A, Almén MS, Huynen L, Prohaska SJ, Ongyerth M, Bitarello BD, Schiöth HB, Hofreiter M, Stadler PF, Prüfer K, Lambert D, Kelso J, Schöneberg T. Kiwi genome provides insights into evolution of a nocturnal lifestyle. Genome Biol 2015; 16:147. [PMID: 26201466 PMCID: PMC4511969 DOI: 10.1186/s13059-015-0711-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 07/01/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Kiwi, comprising five species from the genus Apteryx, are endangered, ground-dwelling bird species endemic to New Zealand. They are the smallest and only nocturnal representatives of the ratites. The timing of kiwi adaptation to a nocturnal niche and the genomic innovations, which shaped sensory systems and morphology to allow this adaptation, are not yet fully understood. RESULTS We sequenced and assembled the brown kiwi genome to 150-fold coverage and annotated the genome using kiwi transcript data and non-redundant protein information from multiple bird species. We identified evolutionary sequence changes that underlie adaptation to nocturnality and estimated the onset time of these adaptations. Several opsin genes involved in color vision are inactivated in the kiwi. We date this inactivation to the Oligocene epoch, likely after the arrival of the ancestor of modern kiwi in New Zealand. Genome comparisons between kiwi and representatives of ratites, Galloanserae, and Neoaves, including nocturnal and song birds, show diversification of kiwi's odorant receptors repertoire, which may reflect an increased reliance on olfaction rather than sight during foraging. Further, there is an enrichment of genes influencing mitochondrial function and energy expenditure among genes that are rapidly evolving specifically on the kiwi branch, which may also be linked to its nocturnal lifestyle. CONCLUSIONS The genomic changes in kiwi vision and olfaction are consistent with changes that are hypothesized to occur during adaptation to nocturnal lifestyle in mammals. The kiwi genome provides a valuable genomic resource for future genome-wide comparative analyses to other extinct and extant diurnal ratites.
Collapse
Affiliation(s)
- Diana Le Duc
- Institute of Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, Leipzig, 04103, Germany.
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany.
| | - Gabriel Renaud
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany.
| | - Arunkumar Krishnan
- Department of Neuroscience, Unit of Functional Pharmacology, Uppsala University, Box 593, Husargatan 3, Uppsala, 751 24, Sweden.
| | - Markus Sällman Almén
- Department of Neuroscience, Unit of Functional Pharmacology, Uppsala University, Box 593, Husargatan 3, Uppsala, 751 24, Sweden.
| | - Leon Huynen
- Griffith School of Environment and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Queensland, 4111, Australia.
| | - Sonja J Prohaska
- Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, 04103, Germany.
| | - Matthias Ongyerth
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany.
| | - Bárbara D Bitarello
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, SP, 05508-090, Brazil.
| | - Helgi B Schiöth
- Department of Neuroscience, Unit of Functional Pharmacology, Uppsala University, Box 593, Husargatan 3, Uppsala, 751 24, Sweden.
| | - Michael Hofreiter
- Adaptive Evolutionary Genomics, Institute for Biochemistry and Biology, University Potsdam, Potsdam, 14469, Germany.
| | - Peter F Stadler
- Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, 04103, Germany.
| | - Kay Prüfer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany.
| | - David Lambert
- Griffith School of Environment and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Queensland, 4111, Australia.
| | - Janet Kelso
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany.
| | - Torsten Schöneberg
- Institute of Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, Leipzig, 04103, Germany.
| |
Collapse
|
9
|
Corfield JR, Kolominsky J, Marin GJ, Craciun I, Mulvany-Robbins BE, Iwaniuk AN, Wylie DR. Zebrin II Expression in the Cerebellum of a Paleognathous Bird, the Chilean Tinamou (Nothoprocta perdicaria). BRAIN, BEHAVIOR AND EVOLUTION 2015; 85:94-106. [DOI: 10.1159/000380810] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/09/2015] [Indexed: 11/19/2022]
Abstract
Zebrin II (ZII) is a glycolytic enzyme expressed in cerebellar Purkinje cells. In both mammals and birds, ZII is expressed heterogeneously, such that there are sagittal stripes of Purkinje cells with a high ZII expression (ZII+) alternating with stripes of Purkinje cells with little or no expression (ZII-). To date, ZII expression studies are limited to neognathous birds: pigeons (Columbiformes), chickens (Galliformes), and hummingbirds (Trochilidae). These previous studies divided the avian cerebellum into 5 transverse regions based on the pattern of ZII expression. In the lingular region (lobule I) all Purkinje cells are ZII+. In the anterior region (lobules II-V) there are 4 pairs of ZII+/- stripes. In the central region (lobules VI-VIII) all Purkinje cells are ZII+. In the posterior region (lobules VIII-IX) there are 5-7 pairs of ZII+/- stripes. Finally, in the nodular region (lobule X) all Purkinje cells are ZII+. As the pattern of ZII stripes is quite similar in these disparate species, it appears that it is highly conserved. However, it has yet to be studied in paleognathous birds, which split from the neognaths over 100 million years ago. To better understand the evolution of cerebellar compartmentation in birds, we examined ZII immunoreactivity in a paleognath, the Chilean tinamou (Nothoprocta perdicaria). In the tinamou, Purkinje cells expressed ZII heterogeneously such that there were sagittal ZII+ and ZII- stripes of Purkinje cells, and this pattern of expression was largely similar to that observed in neognathous birds. For example, all Purkinje cells in the lingular (lobule I) and nodular (lobule X) regions were ZII+, and there were 4 pairs of ZII+/- stripes in the anterior region (lobules II-V). In contrast to neognaths, however, ZII was expressed in lobules VI-VII as a series of sagittal stripes in the tinamou. Also unlike in neognaths, stripes were absent in lobule IXab, and all Purkinje cells expressed ZII in the tinamou. The differences in ZII expression between the tinamou and neognaths could reflect behavior, but the general similarity of the expression patterns across all bird species suggests that ZII stripes evolved early in the avian phylogenetic tree.
Collapse
|