1
|
Bruner E, Eisová S. Vascular microforamina and endocranial surface: Normal variation and distribution in adult humans. Anat Rec (Hoboken) 2024; 307:3375-3383. [PMID: 38465854 DOI: 10.1002/ar.25426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024]
Abstract
The term craniovascular traits refers to the imprints left by arteries and veins on the skull bones. These features can be used in biological anthropology and archaeology to investigate the morphology of the vascular network in extinct species and past populations. Generally, the term refers to macrovascular features of the endocranial cavity, like those associated with the middle meningeal artery, venous sinuses, emissary foramina, and diploic channels. However, small vascular passages (here called microforamina or microchannels) have been occasionally described on the endocranial surface. The larger ones (generally with a diameter between 0.5 and 2.0 mm) can be detected through medical scanners on osteological collections. In this study, we describe and quantify the number and distribution of these microforamina in adult humans (N = 45) and, preliminarily, in a small sample of children (N = 7). Adults display more microchannels than juvenile skulls. A higher frequency in females is also observed, although this result is not statistically significant and might be associated with allometric cranial variations. The distribution of the microforamina is particularly concentrated on the top of the vault, in particular along the sagittal, metopic, and coronal sutures, matching the course of major venous sinuses and parasagittal bridging veins. Nonetheless, the density is lower in the region posterior to bregma. Beyond oxygenation, these vessels are likely involved in endocranial thermal regulation, infection, inflammation, and immune responses, and their distribution and prevalence can hence be of interest in human biology, evolutionary anthropology, and medicine.
Collapse
Affiliation(s)
- Emiliano Bruner
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
- Alzheimer's Centre Reina Sofia-CIEN Foundation-ISCIII, Madrid, Spain
| | - Stanislava Eisová
- Antropologické oddělení, Přírodovědecké muzeum, Národní Muzeum, Prague, Czech Republic
| |
Collapse
|
2
|
Hui J, Balzeau A. Investigating the relationship between cranial bone thickness and diploic channels: A first comparison between fossil Homo sapiens and Homo neanderthalensis. Anat Rec (Hoboken) 2024; 307:2036-2046. [PMID: 38059273 DOI: 10.1002/ar.25360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/13/2023] [Accepted: 10/31/2023] [Indexed: 12/08/2023]
Abstract
Diploic veins are part of the circulatory system of the head. They transport venous blood and cerebrospinal fluid and are housed in diploic channels (DCs). DCs are highly variable in terms of their position, extension, and size. These parameters were hypothesized to be related to the variations in cranial vault thickness (CVT). For the first time, we analyzed the spatial relationship between CVT and DCs in a sample of eight H. neanderthalensis and H. sapiens cranial fossils. Using micro-CT scanning data, we constructed color maps of the CVT and visually inspected whether the regional thickness variation was associated with the morphology and distribution of the DC branches. The results showed that when regional bone thickness was below a certain threshold, no DCs or scattered small DC branches were present. Larger DC branches appeared only when the thickness exceeded the threshold. However, once the threshold was reached, further increases in thickness no longer resulted in more or larger DCs. This study also found that our sample of H. neanderthalensis and H. sapiens have different distribution patterns in thin areas, which may affect how their DCs connect with different branches of the middle meningeal vessels. This preliminary study provides evidence for the discussion on the interaction between the cranium, brain, and blood vessels. Future research should include more hominin fossils to better document the variation within each species and possible evolutionary trends among hominin lineages.
Collapse
Affiliation(s)
- Jiaming Hui
- PaleoFED Team, UMR 7194 Histoire Naturelle de l'Homme Préhistorique, CNRS, Département Homme et Environnement, Muséum national d'Histoire naturelle, Paris, France
- Ecole Doctorale 227 Sciences de la nature et de l'Homme: évolution et écologie, Sorbonne Université, Paris, France
| | - Antoine Balzeau
- PaleoFED Team, UMR 7194 Histoire Naturelle de l'Homme Préhistorique, CNRS, Département Homme et Environnement, Muséum national d'Histoire naturelle, Paris, France
- Department of African Zoology, Royal Museum for Central Africa, Tervuren, Belgium
| |
Collapse
|
3
|
Eisová S, Menéndez LP, Velemínský P, Bruner E. Craniovascular variation in four late Holocene human samples from southern South America. Anat Rec (Hoboken) 2023; 306:143-161. [PMID: 35684986 DOI: 10.1002/ar.25017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/31/2022] [Accepted: 06/04/2022] [Indexed: 01/29/2023]
Abstract
Craniovascular traits in the endocranium (traces of middle meningeal vessels and dural venous sinuses, emissary foramina) provide evidence of vascular anatomy in osteological samples. We investigate the craniovascular variation in four South American samples and the effect of artificial cranial modifications (ACM). CT scans of human adult crania from four archeological samples from southern South America (including skulls with ACM) are used for the analyses. The craniovascular features in the four samples are described, skulls with and without ACM are compared, and additionally, South Americans are compared to a previously analyzed sample of Europeans. Of the four South American samples, the Southern Patagonian differs the most, showing the most distinct cranial dimensions, no ACM, and larger diameters of the emissary foramina. Unlike previous studies, we did not find any major differences in craniovascular features between modified and non-modified skulls, except that the skulls with ACM present somewhat smaller foramina. South Americans significantly differed from Europeans, especially in the anteroposterior dominance of the middle meningeal artery, in the pattern of sinus confluence, in the occurrence of enlarged occipito-marginal sinuses, and in foramina frequencies and diameters. Craniovascular morphology is not affected by the cranial size, even in skulls with ACM, indicating a minor or null influence of structural topological factors. Concerning the samples from distinct geographic and climatic environments, it must be evaluated whether the craniovascular morphogenesis might be partially influenced by specific functions possibly associated with thermoregulation, intracranial pressure, and the maintenance of intracranial homeostasis.
Collapse
Affiliation(s)
- Stanislava Eisová
- Antropologické oddělení, Přírodovědecké muzeum, Národní muzeum, Prague, Czech Republic.,Katedra antropologie a genetiky člověka, Přírodovědecká fakulta, Univerzita Karlova, Prague, Czech Republic
| | - Lumila Paula Menéndez
- Konrad Lorenz Institute for Evolution and Cognition Research, Klosterneuburg, Austria.,Department of Anthropology of the Americas, Universität Bonn, Bonn, Germany
| | - Petr Velemínský
- Antropologické oddělení, Přírodovědecké muzeum, Národní muzeum, Prague, Czech Republic
| | - Emiliano Bruner
- Programa de Paleobiología, Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| |
Collapse
|
4
|
Boyd DC, Cheek KG, Boyd CC. Fatal non-accidental pediatric cranial fracture risk and three-layered cranial architecture development. J Forensic Sci 2023; 68:46-58. [PMID: 36529468 PMCID: PMC10108079 DOI: 10.1111/1556-4029.15183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/31/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
This study examines the influence of three-layered cranial architecture development upon blunt force trauma (BFT) cranial outcomes associated with pediatric non-accidental injury (NAI). Macroscopic and microscopic metric and morphological comparisons of subadult crania ranging from perinatal to 17 years of age chronicle the ontogenetic development and spatial and temporal variability in the emergence of a mature cranial architecture. Cranial vault thickness increases with subadult age, accelerating in the first 2 years of life due to rapid brain growth during this period. Three-layer differentiation of the cranial tables and diploë initiates by 3-6 months but is not consistently observed until 18 months to 2 years; diploë formation is not well developed until after age 4 and does not manifest a mature appearance until after age 8. These results allow topographic documentation of cortical and diploic development and temporal and spatial variability across the growing cranium. The lateral cranial vault is identified as expressing delayed development and reduced expression of the three-layer architecture, a pattern that continues into adulthood. Comparison of fracture locations from known BFT pediatric cases with identified cranial fracture high-risk impact regions shows a concordance and suggests the presence of a higher fracture risk associated with non-accidental BFT in the lateral vault region in subadults below the age of 2. The absence or lesser development of a three-layered architecture in subadults leaves their cranial bones, particularly in the lateral vault, thin and vulnerable to the effects of BFT.
Collapse
Affiliation(s)
- Donna C Boyd
- Department of Anthropological Sciences, Radford University Forensic Science Institute, Radford, Virginia, USA.,Department of Basic Science, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Kimber G Cheek
- Department of Anthropology, University of Tennessee, Knoxville, Tennessee, USA
| | - C Clifford Boyd
- Department of Anthropological Sciences, Radford University Forensic Science Institute, Radford, Virginia, USA
| |
Collapse
|
5
|
Rowbotham SK, Mole CG, Tieppo D, Blaszkowska M, Cordner SM, Blau S. Average thickness of the bones of the human neurocranium: development of reference measurements to assist with blunt force trauma interpretations. Int J Legal Med 2023; 137:195-213. [PMID: 35486199 DOI: 10.1007/s00414-022-02824-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/31/2022] [Indexed: 01/10/2023]
Abstract
The accurate interpretation of a blunt force head injury relies on an understanding of the case circumstances (extrinsic variables) and anatomical details of the individual (intrinsic variables). Whilst it is often possible to account for many of these variables, the intrinsic variable of neurocranial thickness is difficult to account for as data for what constitutes 'normal' thickness is limited. The aim of this study was to investigate the effects of age, sex and ancestry on neurocranial thickness, and develop reference ranges for average neurocranial thickness in the context of those biological variables. Thickness (mm) was measured at 20 points across the frontal, left and right parietals, left and right temporals and occipital bones. Measurements were taken from post-mortem computed tomography scans of 604 individuals. Inferential statistics assessed how age, sex and ancestry affected thickness and descriptive statistics established thickness means. Mean thickness ranged from 2.11 mm (temporal squama) to 19.19 mm (petrous portion). Significant differences were noted in thickness of the frontal and temporal bones when age was considered, all bones when sex was considered and the, right parietal, left and right temporal and occipital bones when ancestry was considered. Furthermore, significant interactions in thickness were seen between age and sex in the frontal bone, ancestry and age in the temporal bone, ancestry and sex in the temporal bone, and age, sex and ancestry in the occipital bone. Given the assorted influence of the biological variables, reference measurement ranges for average thickness incorporated these variables. Such reference measurements allow forensic practitioners to identify when a neurocranial bone is of normal, or abnormal, thickness.
Collapse
Affiliation(s)
- Samantha K Rowbotham
- Victorian Institute of Forensic Medicine, 65 Kavanagh St, Southbank, VIC, 3006, Australia. .,Department of Forensic Medicine, School of Public Health and Preventative Medicine, Monash University, 65 Kavanagh St, Southbank, VIC, 3006, Australia.
| | - Calvin G Mole
- Division of Forensic Medicine and Toxicology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa
| | - Diana Tieppo
- Department of Forensic Medicine, School of Public Health and Preventative Medicine, Monash University, 65 Kavanagh St, Southbank, VIC, 3006, Australia
| | - Magda Blaszkowska
- Centre for Forensic Anthropology, Faculty of Arts, Business, Law and Education, University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009, Australia
| | - Stephen M Cordner
- Victorian Institute of Forensic Medicine, 65 Kavanagh St, Southbank, VIC, 3006, Australia.,Department of Forensic Medicine, School of Public Health and Preventative Medicine, Monash University, 65 Kavanagh St, Southbank, VIC, 3006, Australia
| | - Soren Blau
- Victorian Institute of Forensic Medicine, 65 Kavanagh St, Southbank, VIC, 3006, Australia.,Department of Forensic Medicine, School of Public Health and Preventative Medicine, Monash University, 65 Kavanagh St, Southbank, VIC, 3006, Australia
| |
Collapse
|
6
|
Mantecón R, Marco M, Muñoz-Sanchez A, Youssef G, Díaz-Álvarez J, Miguélez H. Additive Manufacturing and Mechanical Characterization of PLA-Based Skull Surrogates. Polymers (Basel) 2022; 15:polym15010058. [PMID: 36616407 PMCID: PMC9824150 DOI: 10.3390/polym15010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Several occupational and leisure activities involve a high risk of head impacts, resulting in varying degrees of injuries with chronic consequences that adversely affect life quality. The design and manufacturing of effective head protections rely on proper head simulators to mimic the behavior to impact loading. 3D-printed human skulls are reported herein to address the need for reproducible, cost-effective, anatomically-correct surrogates. To demonstrate the viability of the investigated approach, surrogate bone sections and skulls were mechanically tested under quasi-static loading conditions. The 3D-printed bone sections were flexural tested, elucidating the effect of printing orientations and the sample geometry on their mechanical behavior. The printing orientation minimally influenced the results due to the high infill percentage, while the sample geometry played a major role in the flexural properties because of the change in the section properties. The surrogate skulls were submitted to lateral compression and frontal penetration tests to assess the impact of the sectioning strategy on the overall mechanical performance. Results indicate that PLA-based surrogates reasonably reproduce the behavior of skulls. In addition, the sectioning strategy elucidated the effect of skull sutures, while streamlining the additive manufacturing process. The outcomes lay the foundation for future research seeking a complete surrogate head.
Collapse
Affiliation(s)
- Ramiro Mantecón
- Department of Mechanical Engineering, Universidad Carlos III de Madrid, 28911 Leganés, Spain
- Experimental Mechanics Laboratory, San Diego State University, San Diego, CA 92182, USA
- Correspondence:
| | - Miguel Marco
- Department of Mechanical Engineering, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - Ana Muñoz-Sanchez
- Department of Mechanical Engineering, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - George Youssef
- Experimental Mechanics Laboratory, San Diego State University, San Diego, CA 92182, USA
| | - José Díaz-Álvarez
- Department of Mechanical Engineering, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - Henar Miguélez
- Department of Mechanical Engineering, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| |
Collapse
|
7
|
Evaluating diploic vein blood flow using time-resolved whole-head computed tomography angiography and determining the positional relationship between typical craniotomy approaches and diploic veins in patients with meningioma. Acta Neurochir (Wien) 2022; 164:2999-3010. [PMID: 36006508 DOI: 10.1007/s00701-022-05349-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/18/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Diploic veins may act as collateral venous pathways in cases of meningioma with venous sinus invasion. Diploic vein blood flow should be preoperatively evaluated to consider preserving the veins. In this study, we evaluated the use of time-resolved whole-head computed tomography angiography (4D-CTA)-which is less patient-intensive than digital subtraction angiography (DSA)-for assessing diploic vein blood flow and the positional relationship between typical craniotomy approaches and diploic veins. METHODS We retrospectively examined 231 patients who underwent surgery for intracranial meningioma. We performed contrast-enhanced magnetic resonance imaging (MRI) to evaluate diploic vein pathways and compared the visualization rates of diploic vein blood flow assessed using 4D-CTA and DSA. Subsequently, we evaluated the rates of the diploic veins transected during craniotomy by comparing the pre- and postoperative contrast-enhanced MRI. RESULTS The diagnostic performance of 4D-CTA was assessed in 45 patients. Of the 320 diploic veins identified in these patients, blood flow in 70 (21.9%) diploic veins was identified by 4D-CTA and DSA, and both results were consistent. To assess the transection rates of the diploic veins, 150 patients were included. A trend towards a high transection rate of the diploic vein in the basal interhemispheric, frontotemporal, orbitozygomatic, combined transpetrosal, and convexity craniotomy approaches was observed. CONCLUSIONS In patients with meningiomas, both 4D-CTA and DSA are useful in evaluating diploic vein blood flow. In meningiomas with venous sinus invasion, determining the extent of craniotomy after understanding the pathways and blood flow of diploic veins is recommended.
Collapse
|
8
|
Eisová S, Velemínský P, Velemínská J, Bruner E. Diploic vein morphology in normal and craniosynostotic adult human skulls. J Morphol 2022; 283:1318-1336. [PMID: 36059180 DOI: 10.1002/jmor.21505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 11/06/2022]
Abstract
Diploic veins (DV) run within the cranial diploe, where they leave channels that can be studied in osteological samples. This study investigates overall DV variability in human adults and the effects of sex, age, cranial dimensions, and dysmorphogenesis associated with craniosynostosis (CS). The morphology of macroscopic diploic channels was analyzed in a set of the qualitative and quantitative variables in computed tomography-images of crania of anatomically normal and craniosynostotic adult individuals. Macroscopic diploic channels occur most frequently in the frontal and parietal bones, often with a bilaterally symmetrical pattern. DV-features (especially DV-pattern) are characterized by high individual diversity. On average, there are 5.4 ± 3.5 large macroscopic channels (with diameters >1 mm) per individual, with a mean diameter of 1.7 ± 0.4 mm. Age and sex have minor effects on DV, and cranial proportions significantly influence DV only in CS skulls. CS is associated with changes in the DV numbers, distributions, and diameters. Craniosynostotic skulls, especially brachycephalic skulls, generally present smaller DV diameters, and dolichocephalic skulls display increased number of frontal DV. CS, associated with altered cranial dimensions, suture imbalance, increased intracranial pressure, and with changes of the endocranial craniovascular system, significantly also affects the macroscopic morphology of DV in adults, in terms of both structural (topological redistribution) and functional factors. The research on craniovascular morphology and CS may be of interest in biological anthropology, paleopathology, medicine (e.g., surgical planning), but also in zoology and paleontology.
Collapse
Affiliation(s)
- Stanislava Eisová
- Antropologické oddělení, Přírodovědecké muzeum, Národní muzeum, Prague, Czech Republic.,Katedra antropologie a genetiky člověka, Přírodovědecká fakulta, Univerzita Karlova, Prague, Czech Republic
| | - Petr Velemínský
- Antropologické oddělení, Přírodovědecké muzeum, Národní muzeum, Prague, Czech Republic
| | - Jana Velemínská
- Katedra antropologie a genetiky člověka, Přírodovědecká fakulta, Univerzita Karlova, Prague, Czech Republic
| | - Emiliano Bruner
- Programa de Paleobiología, Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| |
Collapse
|
9
|
Eisová S, Naňka O, Velemínský P, Bruner E. Craniovascular traits and braincase morphology in craniosynostotic human skulls. J Anat 2021; 239:1050-1065. [PMID: 34240418 PMCID: PMC8546506 DOI: 10.1111/joa.13506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/28/2022] Open
Abstract
Middle meningeal vessels, dural venous sinuses, and emissary veins leave imprints and canals in the endocranium, and thus provide evidence of vascular patterns in osteological samples. This paper investigates whether craniovascular morphology undergoes changes in craniosynostotic human skulls, and if specific alterations may reflect structural and functional relationships in the cranium. The analyzed osteological sample consists of adult individuals with craniosynostoses generally associated with dolichocephalic or brachycephalic proportions, and a control sample of anatomically normal adult skulls. The pattern and dominance of the middle meningeal artery, the morphology of the confluence of the sinuses, and the size and number of the emissary foramina were evaluated. Craniovascular morphology was more diverse in craniosynostotic skulls than in anatomically normal skulls. The craniosynostotic skulls often displayed enlarged occipito-marginal sinuses and more numerous emissary foramina. The craniosynostotic skulls associated with more brachycephalic morphology often presented enlarged emissary foramina, while the craniosynostotic skulls associated with dolichocephalic effects frequently displayed more developed posterior branches of the middle meningeal artery. The course and morphology of the middle meningeal vessels, dural venous sinuses, and emissary veins in craniosynostotic skulls can be related to the redistribution of growth forces, higher intracranial pressure, venous hypertension, or thermal constraints. These functional and structural changes are of interest in both anthropology and medicine, involving epigenetic traits that concern the functional and ontogenetic balance between soft and hard tissues.
Collapse
Affiliation(s)
- Stanislava Eisová
- Katedra antropologie a genetiky člověkaPřírodovědecká fakultaUniverzita KarlovaPragueCzech Republic
- Antropologické odděleníPřírodovědecké muzeum, Národní muzeumPragueCzech Republic
| | - Ondřej Naňka
- Anatomický ústav1. lékařská fakultaUniverzita KarlovaPragueCzech Republic
| | - Petr Velemínský
- Antropologické odděleníPřírodovědecké muzeum, Národní muzeumPragueCzech Republic
| | - Emiliano Bruner
- Programa de PaleobiologíaCentro Nacional de Investigación sobre la Evolución HumanaBurgosSpain
| |
Collapse
|
10
|
Yamashiro K, Muto J, Wakako A, Murayama K, Kojima D, Omi T, Adachi K, Hasegawa M, Hirose Y. Diploic veins as collateral venous pathways in patients with dural venous sinus invasion by meningiomas. Acta Neurochir (Wien) 2021; 163:1687-1696. [PMID: 33629122 DOI: 10.1007/s00701-021-04777-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/17/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Although it is known that diploic veins frequently communicate with the dural venous sinuses, the role of diploic veins in patients with venous sinus invasion from meningiomas remains unknown. METHODS We retrospectively examined the medical records of 159 patients who underwent their first craniotomies for intracranial meningiomas. Contrast-enhanced magnetic resonance imaging was used to evaluate diploic vein routes, and digital subtraction angiography (DSA) was used to evaluate diploic vein blood flow. When high blood flow was visualized concurrently with the venous sinuses, the veins were classified as of the "early type." Diploic vein routes were classified into five routes. RESULTS DSA was performed in 110 patients, with 14 showing superior sagittal sinus (SSS) invasion (SSS group) and 23 showing non-SSS venous sinus invasion (non-SSS group). The proportion of early type diploic veins was significantly higher in the SSS group (27.1%) than in other patients (patients without venous sinus invasion, 2.1%; non-SSS, 4.3%) (p < 0.01). In patients not in the SSS group, diploic veins were sacrificed during craniotomy in 76 patients, including four patients with veins of the early type. No patients demonstrated new neurological deficits postoperatively. In the SSS group, diploic veins were sacrificed in all patients, and early type diploic veins were cut in five patients. Two of these five patients showed postoperative neurological deficits. CONCLUSIONS In the SSS group, diploic veins may function as collateral venous pathways, and attention is recommended for their interruption. In patients without SSS invasion, diploic veins, even of the early type, can be sacrificed.
Collapse
|
11
|
Rusheen A, Barath AS, Goyal A, Barnett JH, Gifford BT, Bennet K, Blaha CD, Goerss SJ, Oh Y, Lee KH. A compact stereotactic system for image-guided surgical intervention. J Neural Eng 2020; 17. [PMID: 33142275 DOI: 10.1088/1741-2552/abc743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/03/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Stereotactic technology enables fine navigation to small structures in the human body. While current stereotactic systems facilitate accurate targeting, they are mechanically cumbersome and limited in scope. Here, we hypothesized that a stereotactic system could be developed with a reduced footprint while maintaining broad targeting capabilities in order to improve versatility in frame placement location and surgical workflow. APPROACH We designed a stereotactic system around the center-of-arc principle, with mechanical properties that would enable a compact design and ample targeting and trajectory maneuverability. To examine the opportunity for a low-cost rapidly-deployable system we developed two fabrication variants, one using 3D-printing and the other using conventional machining. Mechanical and image-guided accuracies were tested in phantom studies with magnetic resonance imaging (MRI) and computed tomography. We assessed the system's surgical workflow and its ability to reliably and accurately implant electrodes in deep brain stimulation (DBS) surgery using human cadaveric head specimens. MAIN RESULTS We developed a small 7.7 x 5.4 cm2device platform that rigidly mounts to curvilinear bone and supports the attachment of surgical instrumentation. Attachment of two surgical instruments, an imaging localizer and a compact targeting device, demonstrated successful MRI-guided intervention in phantom studies with a vector error of 1.79 ± 0.41 mm. Evaluation of the 3D-printed system for DBS surgery confirmed ease of device platform attachment and instrument functionality, as well as demonstrated a surgical targeting accuracy of 1.83 ± 0.15 mm. In addition, we found the surgical time to be 78.3 ± 5.4 min for bilateral electrode implantation. SIGNIFICANCE We developed a light and compact stereotactic system whose accuracy is on par with those used clinically. This technology is suitable for clinical translation and its flexibility in positioning will seamlessly expand the capabilities for stereotaxy to treat a wide range of conditions, both within neurosurgery and beyond.
Collapse
Affiliation(s)
- Aaron Rusheen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, UNITED STATES
| | - Abhijeet S Barath
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, UNITED STATES
| | - Abhinav Goyal
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, UNITED STATES
| | | | - Benjamin T Gifford
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, UNITED STATES
| | - Kevin Bennet
- Division of Engineering, Mayo Clinic, Rochester, Minnesota, UNITED STATES
| | - Charles D Blaha
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, UNITED STATES
| | - Stephan J Goerss
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, UNITED STATES
| | - Yoonbae Oh
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, UNITED STATES
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, UNITED STATES
| |
Collapse
|
12
|
Rangel‐de Lázaro G, Neubauer S, Gunz P, Bruner E. Ontogenetic changes of diploic channels in modern humans. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 173:96-111. [DOI: 10.1002/ajpa.24085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/26/2020] [Accepted: 05/10/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Gizéh Rangel‐de Lázaro
- Department of Earth SciencesNatural History Museum London UK
- Institut Català de Paleoecologia Humana i Evolució Social Tarragona Spain
- Departament d'Història i Història de l'ArtUniversitat Rovira i Virgili Tarragona Spain
| | - Simon Neubauer
- Department of Human EvolutionMax Planck Institute for Evolutionary Anthropology Leipzig Germany
| | - Philipp Gunz
- Department of Human EvolutionMax Planck Institute for Evolutionary Anthropology Leipzig Germany
| | - Emiliano Bruner
- Centro Nacional de Investigación sobre la Evolución Humana Burgos Spain
| |
Collapse
|
13
|
Eisová S, Píšová H, Velemínský P, Bruner E. Normal craniovascular variation in two modern European adult populations. J Anat 2019; 235:765-782. [PMID: 31236921 PMCID: PMC6742892 DOI: 10.1111/joa.13019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2019] [Indexed: 01/06/2023] Open
Abstract
The vascular networks running into the meningeal layers, between the brain and braincase, leave imprints on the endocranial surface. These traces are visible in osteological specimens and skeletal collections, providing indirect evidence of vascular patterns in those cases in which bone remains are the only source of anatomical information, such as in forensic science, bioarchaeology and paleontology. The main vascular elements are associated with the middle meningeal artery, the venous sinuses of the dura mater, and the emissary veins. Most of these vascular systems have been hypothesized to be involved in endocranial thermal regulation. Although these traits deal with macroanatomical features, much information on their variation is still lacking. In this survey, we analyze a set of craniovascular imprints in two European dry skull samples with different neurocranial proportions: a brachycephalic Czech sample (n = 103) and a mesocephalic Italian sample (n = 152). We analyzed variation and distribution, correlation with cranial metrics, and sex differences in the dominance of the branches of the middle meningeal artery, the patterns of confluence of the sinuses, and the size of the emissary foramina. The descriptive statistics provide a reference to compare specimens and samples from different case studies. When compared with the Italian skulls, the Czech skulls display a greater dominance of the anterior branch of the middle meningeal artery and more asymmetric right-dominance of the confluence of the venous sinuses. There is no sex difference in the middle meningeal vessels, but males show a greater prevalence of the occipito-marginal draining system. Differences in the middle meningeal vessels or venous sinuses are apparently not influenced by cranial dimensions or proportions. The mastoid foramina are larger in larger and more brachycephalic skulls, which increases the emissary potential flow in the Czech sample and males, when compared with the Italian samples and females, respectively. The number of mastoid foramina increases in wider skulls. This anatomic information is necessary to develop further morphological and functional inferences on the relationships between neurocranial bones and vessels at the genetic, ontogenetic, and phylogenetic levels.
Collapse
Affiliation(s)
- Stanislava Eisová
- Department of Anthropology and Human GeneticsCharles UniversityPragueCzech Republic
- Department of AnthropologyNational MuseumPragueCzech Republic
| | - Hana Píšová
- Department of Anthropology and Human GeneticsCharles UniversityPragueCzech Republic
| | - Petr Velemínský
- Department of AnthropologyNational MuseumPragueCzech Republic
| | - Emiliano Bruner
- Centro Nacional de Investigación sobre la Evolución HumanaBurgosSpain
| |
Collapse
|
14
|
de Campos D, da Silveira CH, Jotz GP, Malysz T. Bony Tunnel Formation Associated with the Distal Segment of the Frontal Branch of the Middle Meningeal Artery. J Neurol Surg B Skull Base 2019; 80:480-483. [PMID: 31534889 DOI: 10.1055/s-0038-1676353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/27/2018] [Indexed: 10/27/2022] Open
Abstract
The knowledge of certain anatomical variations is fundamental and any surgeon who operates without that knowledge may encounter difficulty during surgery. In this context, there is the middle meningeal artery (MMA) which also engenders considerable clinical interest due to its location. The MMA is predominantly periosteal, irrigating the bone and dura mater. It enters the floor of the middle cranial fossa through the foramen spinosum, travels laterally through a middle fossa bony ridge, and curves anteriorly over the upper-greater wing of the sphenoid where it divides into parietal and frontal branches at a variable point. Occasionally, the distal segment of the frontal branch may pass through a bony tunnel of variable size. To the best of our knowledge, there is no evidence in the current literature on the incidence of this rare bony tunnel. Therefore, we decided to investigate the incidence of this bony tunnel in 85 dry skulls of adults (both genders) belonging to the didactic collection of the Human Anatomy Laboratory of the Universidade de Santa Cruz do Sul, Brazil. All the skulls were examined bilaterally for the presence or absence of the bony tunnel associated with the distal segment of the frontal branch of the MMA. Of the 85 skulls analyzed, the bony tunnel was present on the right side in 1.18% and on the left side in 5.88% ( p = 0 .045 ). Thus, in the studied sample, there was a significant tendency for this bony tunnel to be formed on the left side.
Collapse
Affiliation(s)
- Deivis de Campos
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil.,Departamento de Biologia e Farmácia, Universidade de Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil.,Programa de Pós-Graduação em Promoção da Saúde, Universidade de Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil
| | | | - Geraldo Pereira Jotz
- Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Tais Malysz
- Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
15
|
Tsutsumi S, Ono H, Ishii H, Yasumoto Y. Visualization of the supraorbital notch/foramen using magnetic resonance imaging. J Clin Neurosci 2019; 62:212-215. [DOI: 10.1016/j.jocn.2019.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/10/2018] [Accepted: 01/04/2019] [Indexed: 10/27/2022]
|
16
|
DEL OLMO LIANES IRENE, BRUNER EMILIANO, CAMBRA-MOO OSCAR, MOLINA MORENO MARÍA, GONZÁLEZ MARTÍN ARMANDO. Cranial vault thickness measurement and distribution: a study with a magnetic calliper. ANTHROPOL SCI 2019. [DOI: 10.1537/ase.190306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- IRENE DEL OLMO LIANES
- Laboratorio de Poblaciones del Pasado (LAPP), Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid
| | - EMILIANO BRUNER
- Programa de Paleobiología, Centro Nacional de Investigación sobre la Evolución Humana, Burgos
| | - OSCAR CAMBRA-MOO
- Laboratorio de Poblaciones del Pasado (LAPP), Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid
- Grupo de Investigación en Arqueología Antigua y Medieval, Universidad de Oviedo, Oviedo
| | - MARÍA MOLINA MORENO
- Laboratorio de Poblaciones del Pasado (LAPP), Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid
| | - ARMANDO GONZÁLEZ MARTÍN
- Laboratorio de Poblaciones del Pasado (LAPP), Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid
- Grupo de Investigación en Arqueología Antigua y Medieval, Universidad de Oviedo, Oviedo
| |
Collapse
|
17
|
Copes LE, Schutz H, Dlugsoz EM, Judex S, Garland T. Locomotor activity, growth hormones, and systemic robusticity: An investigation of cranial vault thickness in mouse lines bred for high endurance running. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 166:442-458. [DOI: 10.1002/ajpa.23446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 02/02/2018] [Accepted: 02/06/2018] [Indexed: 12/30/2022]
Affiliation(s)
- L. E. Copes
- Department of Medical Sciences, Frank H. Netter MD School of MedicineQuinnipiac UniversityHamden Connecticut06518
| | - H. Schutz
- Department of BiologyPacific Lutheran UniversityTacoma Washington, DC98447
| | - E. M. Dlugsoz
- Department of BiologyUniversity of CaliforniaRiverside, Riverside California92521
| | - S. Judex
- Department of Biomedical EngineeringStony Brook UniversityStony Brook New York11794
| | - T. Garland
- Department of BiologyUniversity of CaliforniaRiverside, Riverside California92521
| |
Collapse
|