1
|
Wang Z, Zhang J, Wang T, Liu Z, Zhang W, Sun Y, Wu X, Shao H, Du Z. The value of single biomarkers in the diagnosis of silicosis: A meta-analysis. iScience 2024; 27:109948. [PMID: 38799583 PMCID: PMC11126947 DOI: 10.1016/j.isci.2024.109948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/09/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
This study aims to establish a scientific foundation for early detection and diagnosis of silicosis by conducting meta-analysis on the role of single biomarkers in independent diagnosis. The combined sensitivity (Sen), specificity (Spe), positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic score, and diagnostic odds ratio (DOR) were 0.84 (95% confidence interval (CI): 0.77-0.90), 0.83 (95% CI: 0.78-0.88), 5.08 (95% CI: 3.92-6.59), 0.19 (95% CI: 0.13-0.27), 3.31 (95% CI: 2.88-3.74) and 27.29 (95% CI: 17.77-41.91), respectively. The area under the curve (AUC) was 0.90 (95% CI: 0.88-0.93). The Fagan plot shows a positive posterior probability of 82% and a negative posterior probability of 15%. This study establishes an academic basis for the swift identification, mitigation, and control of silicosis through scientific approaches. The assessed biomarkers offer precision and dependability in silicosis diagnosis, opening novel paths for early detection and intervention, thereby mitigating the disease burden associated with silicosis.
Collapse
Affiliation(s)
- Zhuofeng Wang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, Shandong Province, P.R. China
| | - Jiaqi Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Tian Wang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, Shandong Province, P.R. China
| | - Zuodong Liu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, Shandong Province, P.R. China
| | - Wanxin Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, Shandong Province, P.R. China
| | - Yuxin Sun
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, Shandong Province, P.R. China
| | - Xi Wu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, Shandong Province, P.R. China
| | - Hua Shao
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, Shandong Province, P.R. China
| | - Zhongjun Du
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, Shandong Province, P.R. China
| |
Collapse
|
2
|
Zhang J, Hu W, Liu K, Liu J, Zheng Y, Sun X, Mei L, Qian Z, Sun Q, Liu Q, Wu Z, Zhang H, Li Y, Sun D, Ye M. Integrated mRNA and microRNA profiling in lung tissue and blood from human silicosis. J Gene Med 2023:e3518. [PMID: 37403412 DOI: 10.1002/jgm.3518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND The overwhelming majority of subjects in the current silicosis mRNA and microRNA (miRNA) expression profile are of human blood, lung cells or a rat model, which puts limits on the understanding of silicosis pathogenesis and therapy. To address the limitations, our investigation was focused on differentially expressed mRNA and miRNA profiles in lung tissue from silicosis patients to explore potential biomarker for early detection of silicosis. METHODS A transcriptome study was conducted based on lung tissue from 15 silicosis patients and eight normal people, and blood samples from 404 silicosis patients and 177 normal people. Three early stage silicosis, five advanced silicosis and four normal lung tissues were randomly selected for microarray processing and analyze. The differentially expressed mRNAs were further used to conduct Gene Ontology and pathway analyses. Series test of cluster was performed to explore possible changes in differentially expressed mRNA and miRNA expression patterns during the process of silicosis. The blood samples and remaining lung tissues were used in a quantitative real-time PCR (RT-qPCR) (RT-qPCR). RESULTS In total, 1417 and 241 differentially expressed mRNAs and miRNAs were identified between lung tissue from silicosis patients and normal people (p < 0.05). However, there was no significant difference in most mRNA or miRNA expression between early stage and advanced stage silicosis lung tissues. RT-qPCR validation results in lung tissues showed expression of four mRNAs (HIF1A, SOCS3, GNAI3 and PTEN) and seven miRNAs was significantly down-regulated compared to those of control group. Nevertheless, PTEN and GNAI3 expression was significantly up-regulated (p < 0.001) in blood samples. The bisulfite sequencing PCR demonstrated that PTEN had significantly decreased the methylation rate in blood samples of silicosis patients. CONCLUSIONS PTEN might be a potential biomarker for silicosis as a result of low methylation in the blood.
Collapse
Affiliation(s)
- Jingbo Zhang
- Clinical Research Center of Occupational Diseases, The Affiliated Shanghai Pulmonary Hospital of Tongji University School of Medicine, Shanghai, China
| | - Weijiang Hu
- National Institute for Occupation Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kai Liu
- National Institute for Occupation Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jie Liu
- Department of Occupational Disease, Suzhou No. 5 People's Hospital, Suzhou, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China
| | - Xin Sun
- National Institute for Occupation Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liangying Mei
- Institute of Occupational Disease Prevention, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Zushu Qian
- Department of Public Administration, Huangshi Center for Disease Control and Prevention, Huangshi, China
| | - Qiangguo Sun
- Occupation Disease Prevention and Control Center Section, Huangshi Center for Disease Control and Prevention, Huangshi, China
| | - Qiang Liu
- Department of Enviromental Health, Suzhou Center for Disease Control and Prevention, Suzhou, China
| | - Zhijun Wu
- National Institute for Occupation Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hengdong Zhang
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Yanping Li
- Department of Respiratory Medicine, Honghe Prefecture Third People's Hospital, Honghe, China
| | - Daoyuan Sun
- Clinical Research Center of Occupational Diseases, The Affiliated Shanghai Pulmonary Hospital of Tongji University School of Medicine, Shanghai, China
| | - Meng Ye
- National Institute for Occupation Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
3
|
Hou L, Zhu Z, Jiang F, Zhao J, Jia Q, Jiang Q, Wang H, Xue W, Wang Y, Tian L. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles alleviated silica induced lung inflammation and fibrosis in mice via circPWWP2A/miR-223-3p/NLRP3 axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114537. [PMID: 36646008 DOI: 10.1016/j.ecoenv.2023.114537] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/28/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Silicosis is a progressive inflammatory disease with poorly defined mechanisms and limited therapeutic options. Recent studies found that microRNAs (miRNAs) and circular RNAs (circRNAs) were involved in the development of respiratory diseases; however, the function of non-coding RNAs in silicosis was still needed to be further explored. We found that miR-223-3p was significantly decreased in macrophages and lung tissues of mice after silica treatment, which were consistent with the results of GEO database microarray analysis. Notably, NLRP3 is a target gene downstream of miR-223-3p. And circular RNA PWWP2A (circPWWP2A) was significantly elevated after silica stimulation. To elucidate the role of these RNAs in silica-induced inflammation in macrophages and lung tissues, we investigated the upstream molecular mechanisms of circPWWP2A on the inflammatory response. The inhibitory effect of miR-223-3p on its target NLRP3 was suppressed by circPWWP2A, which led to lung fibrosis. Our study found that circPWWP2A could adsorb miR-223-3p to regulate NLRP3 after silica stimulation in pulmonary fibrosis. And our results revealed that the circPWWP2A-miR-223-3p-NLRP3 axis was potentially instrumental in managing silica-induced inflammation and fibrosis. Previous studies have demonstrated that human umbilical cord mesenchymal stem cell-derived extracellular vesicles (hucMSC-EVs) exhibit anti-inflammatory and anti-fibrotic effects in multiple organs. However, the potential effectiveness of hucMSC-EVs against silicosis or the underlying mechanisms of their biological outcomes remains unclear. Therefore, we used 3D culture technology to extract hucMSC-EVs and observed their effects in macrophages and lung tissues, respectively. According to the EVmiRNA database, miR-223-3p was abundant in MSC-EVs. In addition, hucMSC-EVs may modulate lung function, reduce the secretion of inflammatory factors (NLRP3, IL-1β, IL-18 and cleaved Caspase-1) and attenuate the deposition of fibrosis-related factors (Collagen Ⅰ, Collagen Ⅲ, fibronectin and α-SMA). In vitro results evinced that hucMSC-EVs reduced the inflammatory response of macrophages and restricted the activation and proliferation of fibroblasts. Moreover, our study showed that hucMSCs-EVs acted as a mediator to transfer miR-223-3p to suppress circPWWP2A, thereby alleviating pulmonary fibrosis through the NLRP3 signaling pathway. These data may provide potentially novel strategies for investigating the pathogenesis of silicosis and developing novel treatments for this disease.
Collapse
Affiliation(s)
- Lin Hou
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhonghui Zhu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Fuyang Jiang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jing Zhao
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Qiyue Jia
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Qiyue Jiang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Hongwei Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Wenming Xue
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yan Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Lin Tian
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
4
|
Yin H, Xie Y, Gu P, Li W, Zhang Y, Yao Y, Chen W, Ma J. The emerging role of epigenetic regulation in the progression of silicosis. Clin Epigenetics 2022; 14:169. [PMID: 36494831 PMCID: PMC9737765 DOI: 10.1186/s13148-022-01391-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Silicosis is one of the most severe occupational diseases worldwide and is characterized by silicon nodules and diffuse pulmonary fibrosis. However, specific treatments for silicosis are still lacking at present. Therefore, elucidating the pathogenesis of silicosis plays a significant guiding role for its treatment and prevention. The occurrence and development of silicosis are accompanied by many regulatory mechanisms, including epigenetic regulation. The main epigenetic regulatory mechanisms of silicosis include DNA methylation, non-coding RNA (ncRNA), and histone modifications. In recent years, the expression and regulation of genes related to silicosis have been explored at epigenetic level to reveal its pathogenesis further, and the identification of aberrant epigenetic markers provides new biomarkers for prediction and diagnosis of silicosis. Here, we summarize the studies on the role of epigenetic changes in the pathogenesis of silicosis to give some clues for finding specific therapeutic targets for silicosis.
Collapse
Affiliation(s)
- Haoyu Yin
- grid.33199.310000 0004 0368 7223Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China ,grid.33199.310000 0004 0368 7223Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Yujia Xie
- grid.33199.310000 0004 0368 7223Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China ,grid.33199.310000 0004 0368 7223Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Pei Gu
- grid.33199.310000 0004 0368 7223Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China ,grid.33199.310000 0004 0368 7223Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Wei Li
- grid.417303.20000 0000 9927 0537Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Yingdie Zhang
- grid.33199.310000 0004 0368 7223Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China ,grid.33199.310000 0004 0368 7223Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Yuxin Yao
- grid.33199.310000 0004 0368 7223Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China ,grid.33199.310000 0004 0368 7223Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Weihong Chen
- grid.33199.310000 0004 0368 7223Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China ,grid.33199.310000 0004 0368 7223Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Jixuan Ma
- grid.33199.310000 0004 0368 7223Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China ,grid.33199.310000 0004 0368 7223Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| |
Collapse
|
5
|
Cui J, Guan Q, Lv H, Fu K, Fu R, Feng Z, Chen F, Zhang G. Three-dimensional nanorod array for label-free surface-enhanced Raman spectroscopy analysis of microRNA pneumoconiosis biomarkers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120015. [PMID: 34098483 DOI: 10.1016/j.saa.2021.120015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/12/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Novel approaches are required to overcome the challenges associated with conventional microRNA (miRNA) detection methods and realize the early diagnosis of diseases. This work describes a novel label-free surface-enhanced Raman spectroscopy (SERS) method for the detection of the miRNA biomarkers for pneumoconiosis on a three-dimensional Au-coated ZnO nanorod array (Au-ZnO NRA). The Au-ZnO NRA substrate, which was fabricated via a modified seeding method combined with ion sputtering, provided a high enhancement factor and good spatial uniformity of the signal. With the Au-ZnO NRA, the SERS spectra of miRNAs were obtained in 30 s without labeling at room temperature. Density functional theory calculations were performed to understand the structural fingerprints of the miRNAs. Principal component analysis was carried out to identify the pneumoconiosis biomarkers based on their fingerprint SERS signals. Dual-logarithm linear relationships between the SERS intensity and the miRNA concentration were proposed for quantitative analysis. The label-free SERS method has limits of detection on the femtomolar level, which is much lower than the concentrations of the miRNA biomarkers for pneumoconiosis in lung fibroblasts.
Collapse
Affiliation(s)
- Jingcheng Cui
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China
| | - Qingxiang Guan
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China
| | - Han Lv
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China
| | - Kaifang Fu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China
| | - Rao Fu
- School of Information and Electrical Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China; Department of Electrical Engineering, SUNY at Buffalo, Buffalo 14228, NY, USA
| | - Zhenyu Feng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Feiyong Chen
- Research Institute of Resources and Environmental Innovation, Shandong Jianzhu University, Jinan 250101, China
| | - Guiqin Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China.
| |
Collapse
|
6
|
Huang HB, Huang JL, Xu XT, Huang KB, Lin YJ, Lin JB, Zhuang XB. Serum neuron-specific enolase: A promising biomarker of silicosis. World J Clin Cases 2021; 9:1016-1025. [PMID: 33644165 PMCID: PMC7896644 DOI: 10.12998/wjcc.v9.i5.1016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/12/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Silicosis is a type of chronic pulmonary fibrosis caused by long-term inhalation of silica dust particles. There has been no ideal biomarker for the diagnosis and differential diagnosis of silicosis until now. Studies have found that elevated neuron-specific enolase (NSE) concentration in the serum of silicosis patients is helpful for diagnosis and severity assessment of the disease. However, the number of cases in these studies was not enough to arouse attention.
AIM To investigate the clinical significance of serum NSE in the diagnosis and staging of silicosis.
METHODS From January 2017 to June 2019, 326 cases of silicosis confirmed in Quanzhou First Hospital Affiliated to Fujian Medical University were included in the silicosis group. A total of 328 healthy individuals or medical patients without silicosis were included in the control group. Serum NSE concentrations of all subjects were determined by electrochemical luminescence.
RESULTS There were no significant differences in sex, age, smoking index and complications between the silicosis and control groups. The mean serum NSE concentration was 26.57 ± 20.95 ng/mL in the silicosis group and 12.42 ± 2.68 ng/mL in the control group. The difference between the two groups was significant (U = 15187, P = 0.000). Among the 326 patients with silicosis, 103 had stage I silicosis, and the mean serum NSE concentration was 15.55 ± 6.23 ng/mL. The mean serum NSE concentration was 21.85 ± 12.05 ng/mL in 70 patients with stage II silicosis. The mean serum NSE concentration was 36.14 ± 25.72 ng/mL in 153 patients with stage III silicosis. Kruskal–Wallis H test suggested that the difference in serum NSE concentration in silicosis patients in the three groups was significant (H = 130.196, P = 0.000). Receiver operating characteristic curve analysis indicated that the area under the curve was 0.858 (95% confidence interval: 0.828-0.888; P = 0.000). When the NSE concentration was 15.82 ng/mL, the Jorden index was the largest, the sensitivity was 72%, and the specificity was 90%.
CONCLUSION Serum NSE concentration may be a promising biomarker for the diagnosis and assessment of severity of silicosis.
Collapse
Affiliation(s)
- Hong-Bo Huang
- Department of Pulmonary and Critical Care Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Jun-Ling Huang
- Department of Pulmonary and Critical Care Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Xiao-Ting Xu
- Department of Pulmonary and Critical Care Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Kun-Bo Huang
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Yi-Jian Lin
- Department of Pulmonary and Critical Care Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Jie-Bin Lin
- Department of Internal Medicine, Infectious Disease Hospital of Quanzhou, Quanzhou 362000, Fujian Province, China
| | - Xi-Bin Zhuang
- Department of Pulmonary and Critical Care Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, Fujian Province, China
| |
Collapse
|
7
|
Choudhari JK, Verma MK, Choubey J, Sahariah BP. Investigation of MicroRNA and transcription factor mediated regulatory network for silicosis using systems biology approach. Sci Rep 2021; 11:1265. [PMID: 33446673 PMCID: PMC7809153 DOI: 10.1038/s41598-020-77636-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 10/19/2020] [Indexed: 02/08/2023] Open
Abstract
Silicosis is a major health issue among workers exposed to crystalline silica. Genetic susceptibility has been implicated in silicosis. The present research demonstrates key regulatory targets and propagated network of gene/miRNA/transcription factor (TF) with interactions responsible for silicosis by integrating publicly available microarray data using a systems biology approach. Array quality is assessed with the Quality Metrics package of Bioconductor, limma package, and the network is constructed using Cytoscape. We observed and enlist 235 differentially expressed genes (DEGs) having up-regulation expression (85 nos) and down-regulation expression (150 nos.) in silicosis; and 24 TFs for the regulation of these DEGs entangled with thousands of miRNAs. Functional enrichment analysis of the DEGs enlighten that, the maximum number of DEGs are responsible for biological process viz, Rab proteins signal transduction (11 nos.) and Cellular Senescence (20 nos.), whereas IL-17 signaling pathway (16 nos.) and Signalling by Nuclear Receptors (14 nos.) etc. are Biological Pathway involving more DEGs. From the identified 1100 high target microRNA (miRNA)s involved in silicosis, 1055 miRNAs are found to relate with down-regulated genes and 847 miRNAs with up-regulated genes. The CDK19 gene (Up-regulated) is associated with 617 miRNAs whereas down-regulated gene ARID5B is regulated by as high as 747 high target miRNAs. In Prediction of Small-molecule signatures, maximum scoring small-molecule combinations for the DEGs have shown that CGP-60774 (with 20 combinations), alvocidib (with 15 combinations) and with AZD-7762 (24 combinations) with few other drugs having the high probability of success.
Collapse
Affiliation(s)
- J K Choudhari
- Chhattisgarh Swami Vivekanand Technical University, Bhilai, C.G, 491107, India
- Raipur Institute of Technology, Raipur, C.G, 492001, India
| | - M K Verma
- Chhattisgarh Swami Vivekanand Technical University, Bhilai, C.G, 491107, India
- National Institute of Technology Raipur, Raipur, C.G, 491020, India
| | - J Choubey
- Raipur Institute of Technology, Raipur, C.G, 492001, India
| | - B P Sahariah
- Chhattisgarh Swami Vivekanand Technical University, Bhilai, C.G, 491107, India.
| |
Collapse
|
8
|
Jiang L, Cui J, Zhang C, Xie J, Zhang S, Fu D, Duo W. Sigma-1 receptor is involved in diminished ovarian reserve possibly by influencing endoplasmic reticulum stress-mediated granulosa cells apoptosis. Aging (Albany NY) 2020; 12:9041-9065. [PMID: 32409627 PMCID: PMC7288944 DOI: 10.18632/aging.103166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/31/2020] [Indexed: 12/25/2022]
Abstract
Sigma non-opioid intracellular receptor 1 (sigma-1 receptor), a non-opioid transmembrane protein, is located on cellular mitochondrial membranes and endoplasmic reticulum. Current research has demonstrated that sigma-1 receptor is related to human degenerative diseases. This study is focused on the effects of sigma-1 receptor on the pathophysiological process of diminished ovarian reserve (DOR) and granulosa cells (GCs) apoptosis. Sigma-1 receptor concentration in follicular fluid (FF) and serum were negatively correlated with basal follicle-stimulating hormone (FSH) and positively correlated with anti-mullerian hormone (AMH), antral follicle count (AFC). Sigma-1 receptor reduction in GCs was accompanied by endoplasmic reticulum stress (ERS)-mediated apoptosis in women with DOR. Plasmid transfection was used to establish SIGMAR1-overexpressed and SIGMAR1-knockdown human granulosa-like tumor (KGN) cell and thapsigargin (TG) was used to induce ERS KGN cells. We found that KGN cells treated with endogenous sigma-1 receptor ligand dehydroepiandrosterone (DHEA) and sigma-1 receptor agonist PRE-084 showed similar biological effects to SIGMAR1-overexpressed KGN cells and opposite effects to SIGMAR1-knockdown KGN cells. DHEA may improve DOR patients' pregnancy outcomes by upregulating sigma-1 receptor and downregulating ERS-mediated apoptotic genes in GCs. Thus, sigma-1 receptor may be a potential ovarian reserve biomarker, and ligand-mediated sigma-1 receptor activation could be a future approach for DOR therapy.
Collapse
Affiliation(s)
- Lile Jiang
- Reproductive Medical Center, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jinquan Cui
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Cuilian Zhang
- Reproductive Medical Center, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Juanke Xie
- Reproductive Medical Center, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shaodi Zhang
- Reproductive Medical Center, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dongjun Fu
- School of Pharmaceutical Sciences and Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Duo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Sun L, Pan Y, Wang X, Gao G, Wu L, Piao C, Ruan J, Liu J. Screening for Potential Biomarkers in Peripheral Blood From Miners Exposed to Radon Radiation. Dose Response 2020; 18:1559325820904600. [PMID: 32165872 PMCID: PMC7050030 DOI: 10.1177/1559325820904600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/28/2019] [Accepted: 12/20/2019] [Indexed: 12/02/2022] Open
Abstract
In this cohort study of 144 miners, 72 miners worked underground (the study group) and 72 miners worked aboveground (the control group). Based on questionnaire data and of radon concentration measurements, the cumulative radon exposure dose was calculated for each miner using the parameters recommended in International Commission on Radiological Protection Publication 137. Hematological parameters such as lymphocyte count (LYM) and neutrophil count (NE) were assessed, cell cycle phases and regulatory proteins were detected by flow cytometry, and microRNA (miRNA) microarray screening and real-time polymerase chain reaction (PCR) were used to detect miRNAs in plasma. The interrelationships between various potential biomarkers were analyzed using bioinformatics and statistical methods. The mean cumulative exposure dose of underground miners and controls was 982 and 48 mSv, respectively. Hematological parameters (such as LYM and NE) were significantly lower in the underground group. Cyclin-dependent kinase (CDK)-2, CDK4, CDK6, CyclinA2, CyclinD1, and CyclinE1 were significantly higher in the underground group. MicroRNA microarray screening showed that 5 miRNAs were downregulated (fold-change >2) in the underground group. The real-time PCR detection results of miR-19a, miR-30e, miR-335, and miR-451a were consistent with the screening results. LYM, NE, CDK2, CDK4, CDK6, Cyclin A2, Cyclin D1, Cyclin E1, miR-19a, miR-30e, miR-335, and miR451a are potential biomarkers of radon radiation damage.
Collapse
Affiliation(s)
- Lu Sun
- Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China.,Liaoning Center for Disease Control and Prevention, Shenyang, China
| | - Yan Pan
- Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaochun Wang
- The Beijing Prevention and Treatment Hospital of Occupational Disease for the Chemical Industry, Beijing, China
| | - Gang Gao
- Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lina Wu
- Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chunnan Piao
- Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianlei Ruan
- Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianxiang Liu
- Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
10
|
Chu M, Wu S, Wang W, Mao L, Yu Y, Jiang L, Yuan W, Zhang M, Sang L, Huang Q, Tian T, Han L, Zhuang X, Zhang ZF, Wu J. miRNA sequencing reveals miRNA-4508 from peripheral blood lymphocytes as potential diagnostic biomarker for silica-related pulmonary fibrosis: A multistage study. Respirology 2019; 25:511-517. [PMID: 31663225 DOI: 10.1111/resp.13714] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/30/2019] [Accepted: 09/24/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVE This study aimed to identify miRNA as potential diagnostic biomarkers for silica-related pulmonary fibrosis (SPF). METHODS We first performed a comprehensive miRNA-seq screening in PBL of eight subjects exposed to silica dust (four individuals with SPF and four healthy controls). The promising miRNA were then evaluated in the first-stage validation using an independent GEO data set (GSE80555) of 6 subjects (3 individuals with SPF and 3 healthy controls), followed by a second-stage validation using 120 subjects exposed to silica dust (60 individuals with SPF and 60 healthy controls). RESULTS Thirty-five miRNA showed strong expression differences in miRNA-seq screening, while miRNA-4508 (P = 9.52 × 10-3 ) was retained as a candidate after the first-stage validation (GSE80555), which was further confirmed in the second-stage validation with similar and strong effect (P = 9.93 × 10-17 ). ROC analysis showed that miRNA-4508 could distinguish SPF cases from healthy controls with high AUC (0.886), with sensitivity of 81.7% and specificity of 86.7%. In addition, the miRNA-4508 upstream rs6576457 mutant A allele exhibited a strong association with susceptibility to SPF (OR = 1.64, 95% CI = 1.20-2.23, P = 0.002), while eQTL analysis revealed a potential association between different genotypes of rs6576457 and miRNA-4508 expression (P = 0.068) in 60 healthy subjects with silica dust exposure. CONCLUSION miRNA-4508 may be a potential diagnostic marker for SPF, and rs6576457, a functional variant of miRNA-4508, may affect SPF susceptibility. The detailed mechanism of action of this miRNA remains to be elucidated.
Collapse
Affiliation(s)
- Minjie Chu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, China.,Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| | - Shuangshuang Wu
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Wei Wang
- Department of Occupational Health, Center for Disease Control and Prevention of Wuxi, Wuxi, China
| | - Liping Mao
- Department of Oncology, the Sixth People's Hospital of Nantong, Nantong, China
| | - Yuhui Yu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, China
| | - Liying Jiang
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Weiyan Yuan
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Mingjiong Zhang
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Lingli Sang
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, China
| | - Qiqing Huang
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Tian Tian
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, China
| | - Lei Han
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Xun Zhuang
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, China
| | - Zuo-Feng Zhang
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| | - Jianqing Wu
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Integrated Analysis of lncRNA and mRNA Transcriptomes Reveals New Regulators of Ubiquitination and the Immune Response in Silica-Induced Pulmonary Fibrosis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6305065. [PMID: 30756084 PMCID: PMC6348882 DOI: 10.1155/2019/6305065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/19/2018] [Accepted: 12/26/2018] [Indexed: 12/13/2022]
Abstract
Objectives As an epigenetic player, long noncoding RNAs (LncRNAs) have been reported to participate in multiple biological processes; however, their biological functions in silica-induced pulmonary fibrosis (SIPF) occurrence and development remain incompletely understood. Methods Five case/control pairs were used to perform integrated transcriptomes analysis of lncRNA and mRNA. Prediction of lncRNA and mRNA functions was aided by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Additionally, we constructed a coexpression network of lncRNAs and mRNAs to identify targets of regulation. Results In total, 1069 differentially expressed mRNAs and 366 lncRNAs were identified with the changes more than 2 times (p<0.05), of which 351 downregulated mRNA and 31 downregulated lncRNA were <0.5 (p<0.05) and those of 718 upregulated mRNAs and 335 upregulated lncRNA were >2 (p<0.05). The levels of 10 lncRNAs were measured via qRT-PCR; the results were consistent with the microarray data. Four genes named of FEM1B, TRIM39, TRIM32, and KLHL15 were enriched significantly with ubiquitination and immune response. Cytokine-cytokine receptor interaction was the most significantly enriched KEGG pathway in both mRNAs and lncRNAs. The coexpression network revealed that a single lncRNA can interact with multiple mRNAs, and vice versa. Conclusions lncRNA and mRNA expression were aberrant in patients with SIPF compared to controls, indicating that differentially expressed lncRNAs and mRNAs may play critical roles in SIPF development. Our study affords new insights into the molecular mechanisms of SIPF and identifies potential biomarkers and targets for SIPF diagnosis and treatment.
Collapse
|
12
|
Huang R, Yu T, Li Y, Hu J. Upregulated has-miR-4516 as a potential biomarker for early diagnosis of dust-induced pulmonary fibrosis in patients with pneumoconiosis. Toxicol Res (Camb) 2018; 7:415-422. [PMID: 30090591 PMCID: PMC6060724 DOI: 10.1039/c8tx00031j] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 02/08/2018] [Indexed: 01/12/2023] Open
Abstract
Background: Pulmonary fibrosis (PF) is a representative pathological change in patients with pneumoconiosis; however, due to the absence of reliable and early biomarkers, microRNAs have recently emerged as potential candidates for identification. Objectives: The aim of our study was to discover the potential of PF-specific circulating microRNAs as early biomarkers among patients with pneumoconiosis. Methods: Four dust-exposed patients with PF and four matched healthy individuals (not exposed to dust) were recruited for the study. microRNA profiling was identified by micro-array and bioinformatics methods. Gene Ontology (GO) analysis was used to identify the potential biological or molecular processes modulated by these miRNAs. Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) analysis was used to identify the potentially involved signaling pathways. miRNA-mRNA-binding network analysis was employed to identify genes potentially targeted by the miRNAs. Results: 1079 miRNAs were discovered, of which 406 were up-regulated and 117 were down-regulated in PF patients. 32 miRNAs were up-regulated by >4-fold and 17 miRNAs were down-regulated by >0.5 fold. GO analysis identified the biological processes affected by anatomical structure development, hemophilic cell adhesion and cell-cell adhesion via plasma membrane proteins. Target prediction software showed that serum has-miR-4516 targeted genes encoding basonuclin2, inhibitors of growth family member 4, the potassium voltage-gated channel, and "sha-1-related subfamily member 1" proteins. qRT-PCR revealed that has-miR-4516 was a potential biomarker of PF progression in patients with pneumoconiosis. Conclusions: Our findings suggest that the level of serum miR-4516 may be a potential biomarker for early diagnosis of PF in patients with pneumoconiosis. This is a pilot work that paves the way for a further functional study of the underlying regulatory mechanisms.
Collapse
Affiliation(s)
- Ruixue Huang
- Department of occupational and environmental health , Xiangya school of public health , Central South University , 410078 , Changsha , Hunan Province , China . ; ;
| | - Ting Yu
- Department of occupational and environmental health , Xiangya school of public health , Central South University , 410078 , Changsha , Hunan Province , China . ; ;
| | - Ying Li
- Hunan Prevention and Treatment Center For Occupational Diseases , Changsha , China .
| | - Jianan Hu
- Department of occupational and environmental health , Xiangya school of public health , Central South University , 410078 , Changsha , Hunan Province , China . ; ;
| |
Collapse
|
13
|
MicroRNA-146a suppresses rheumatoid arthritis fibroblast-like synoviocytes proliferation and inflammatory responses by inhibiting the TLR4/NF-kB signaling. Oncotarget 2018; 9:23944-23959. [PMID: 29844864 PMCID: PMC5963611 DOI: 10.18632/oncotarget.24050] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 11/16/2017] [Indexed: 11/25/2022] Open
Abstract
This study investigated whether microRNA-146a (miR-146a) mediating TLR4/NF-κB pathway affected proliferation and inflammatory responses of rheumatoid arthritis fibroblast-like synoviocytes from 12 RA patients (RA-FLSs). FLSs in the logarithmic growth phase were assigned into the control, miR-146a mimic miR-146a inhibitor, Tak-242 (treated with TLR4/NF-κB pathway inhibitor) and mimic + lipopolysaccharide (LPS) groups. Cell proliferation and apoptosis were detected using CCK-8 assay and flow cytometry. The expression of miR-146a, TLR4/NF-κB pathway-related proteins and cytokines were determined by RT-qPCR, western blotting and ELISA, and the release of NO by Greiss reaction. RA rat models were constructed and the primary cells were classified into the control, negative control (NC), miR-146a mimic, miR-146a inhibitor, Tak-242, mimic + LPS, and TLR4 groups. Immunohistochemistry was used to detect the expression of proliferating cell nuclear antigen (PCNA) and intercellular adhesion molecular-1 (ICAM-1). The results showed that miR-146a levels were lower in RA-FLSs than control fibroblasts. miR-146a mimic and Tak-242 decreased RA-FLS proliferation and increased RA-FLS apoptosis, while miR-146a inhibitor had an opposite trend. miR-146a mimic and Tak-242 also decreased expression of TLR4, NF-κB, IL-1β, IL-6, IL-8, IL-17, COX-2, MMP-3, Seprase, and iNOS, as well as reduced NO level in RA-FLSs while miR-146a inhibitor and TLR4 increased them. TLR4 and NF-κB levels and the positive rates of PCNA and ICAM-1 expressions were lower in RA-FLSs from RA rats given miR-146a mimic from control or miR-146a inhibitor-treated rats. These results suggest that miR-146a inhibits the proliferation and inflammatory response of RA-FLSs by down-regulating TLR4/NF-κB pathway.
Collapse
|