1
|
Bone adaptation and osteoporosis prevention in hibernating mammals. Comp Biochem Physiol A Mol Integr Physiol 2023; 280:111411. [PMID: 36871815 DOI: 10.1016/j.cbpa.2023.111411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Hibernating bears and rodents have evolved mechanisms to prevent disuse osteoporosis during the prolonged physical inactivity that occurs during hibernation. Serum markers and histological indices of bone remodeling in bears indicate reduced bone turnover during hibernation, which is consistent with organismal energy conservation. Calcium homeostasis is maintained by balanced bone resorption and formation since hibernating bears do not eat, drink, urinate, or defecate. Reduced and balanced bone remodeling protect bear bone structure and strength during hibernation, unlike the disuse osteoporosis that occurs in humans and other animals during prolonged physical inactivity. Conversely, some hibernating rodents show varying degrees of bone loss such as osteocytic osteolysis, trabecular loss, and cortical thinning. However, no negative effects of hibernation on bone strength in rodents have been found. More than 5000 genes in bear bone tissue are differentially expressed during hibernation, highlighting the complexity of hibernation induced changes in bone. A complete picture of the mechanisms that regulate bone metabolism in hibernators still alludes us, but existing data suggest a role for endocrine and paracrine factors such as cocaine- and amphetamine-regulated transcript (CART) and endocannabinoid ligands like 2-arachidonoyl glycerol (2-AG) in decreasing bone remodeling during hibernation. Hibernating bears and rodents evolved the capacity to preserve bone strength during long periods of physical inactivity, which contributes to their survival and propagation by allowing physically activity (foraging, escaping predators, and mating) without risk of bone fracture following hibernation. Understanding the biological mechanisms regulating bone metabolism in hibernators may inform novel treatment strategies for osteoporosis in humans.
Collapse
|
2
|
GAO X, SHEN S, NIU Q, MIAO W, HAN Y, HAO Z, AN N, YANG Y, ZHANG Y, ZHANG H, STOREY KB, CHANG H. Differential bone metabolism and protein expression in mice fed a high-fat diet versus Daurian ground squirrels following natural pre-hibernation fattening. J Zhejiang Univ Sci B 2022; 23:1042-1056. [PMID: 36518056 PMCID: PMC9758712 DOI: 10.1631/jzus.b2100798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study compared the effects on bone metabolism and morphology of pathological obesity induced by excessive fat intake in a non-hibernator (mice) versus healthy obesity due to pre-hibernation fattening in a hibernator (ground squirrels). Kunming mice were fed a high-fat diet to provide a model of pathological obesity (OB group). Daurian ground squirrels fattened naturally in their pre-hibernation season (PRE group) were used as a healthy obesity model. Micro-computed tomography (micro-CT) and three-point bending tests were used to determine the microstructure and mechanical properties of bone. Western blots were used to analyze protein expression levels related to bone metabolism (Runt-related transcription factor 2 (RunX2), osteocalcin (OCN), alkaline phosphatase (ALP), osteoprotegerin (OPG), receptor activator of nuclear factor-κB ligand (RANKL), cathepsin K, matrix metallopeptidase 9 (MMP9), patched protein homolog 1 (Ptch1), phosphorylated β-catenin (P-β-catenin), and glycogen synthase kinase-3β (GSK-3β)). Compared with controls, there was no obvious bone loss in the OB mice, and the stiffness of the femur was increased significantly. Compared with summer active squirrels, bone formation was enhanced but the mechanical properties did not change in the PRE group squirrels. In OB mice, western blots showed significantly increased expression levels of all proteins except RunX2, OPG, and Ptch1. PRE ground squirrels showed significantly increased expression of most proteins except OCN and Ptch1, which decreased significantly, and P-β-catenin and OPG, which did not change. In conclusion, for non-hibernating mice, moderate obesity had a certain protective effect on bones, demonstrating two-way regulation, increasing both bone loss and bone formation. For pre-hibernating ground squirrels, the healthy obesity acquired before hibernation had a positive effect on the microstructure of bones, and also enhanced the expression levels of proteins related to bone formation, bone resorption, and Wnt signaling.
Collapse
Affiliation(s)
- Xuli GAO
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an710069, China,Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’an710069, China
| | - Shenyang SHEN
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’an710069, China
| | - Qiaohua NIU
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’an710069, China
| | - Weilan MIAO
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’an710069, China
| | - Yuting HAN
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’an710069, China
| | - Ziwei HAO
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’an710069, China
| | - Ning AN
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’an710069, China
| | - Yingyu YANG
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’an710069, China
| | - Yu ZHANG
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’an710069, China
| | - Han ZHANG
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’an710069, China
| | - Kenneth B. STOREY
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Hui CHANG
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an710069, China,Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’an710069, China,Hui CHANG,
| |
Collapse
|
3
|
Gao X, Wang S, Zhang J, Wang S, Bai F, Liang J, Wu J, Wang H, Gao Y, Chang H. Differential bone remodeling mechanism in hindlimb unloaded rats and hibernating Daurian ground squirrels: a comparison between artificial and natural disuse. J Comp Physiol B 2021; 191:793-814. [PMID: 34002279 DOI: 10.1007/s00360-021-01375-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/02/2021] [Accepted: 04/20/2021] [Indexed: 11/30/2022]
Abstract
To determine that differential bone remodeling mechanism (especially Wnt signaling) in hindlimb unloaded rats and hibernating Daurian ground squirrels, the bone microstructure, mechanical properties, and expression levels of bone remodeling related proteins and key proteins of Wnt/β-catenin signaling were analyzed in this study. The thickness of cortical and trabecular bone was decreased in femur of hindlimb unloaded rats, while it was maintained in femur of hibernating ground squirrels. Interestingly, the ultimate bending energy and ultimate normalized displacement were reduced and the bending rigidity was increased in tibia of hibernating ground squirrels. Besides, the protein level of Runx2 was decreased in femur and tibia of unloaded rats, while it was maintained in tibia and even increased in femur of hibernating ground squirrels. The protein levels of RANKL and MMP-9 were increased in femur and tibia in unloaded rats, while they were maintained in both femur and tibia of hibernating ground squirrels. The protein level of GSK-3β was increased in femur and tibia of unloaded rats, while it was maintained in both femur and tibia of hibernating ground squirrels. The phospho-β-catenin expression was increased in both femur and tibia of unloaded rats, while it was only decreased in femur, but maintained in tibia of hibernating ground squirrels. In conclusion, the femur and tibia in hindlimb unloaded rats showed obvious bone loss, while they mitigated disuse-induced bone loss in hibernating ground squirrels, involving differential protein expression of key molecules in bone remodeling. In comparison with hindlimb unloaded rats, promoting osteoblast differentiation through activating canonical GSK-3β/β-catenin signaling involving Runx2 might be an adaptation to natural disuse in femur of hibernating Daurian ground squirrels. However, there was no statistical change in the protein levels of bone formation related proteins, GSK-3β and phospho-β-catenin in tibia of hibernating Daurian ground squirrels.
Collapse
Affiliation(s)
- Xuli Gao
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, 710069, People's Republic of China.,Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Siqi Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Jie Zhang
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, 710069, People's Republic of China.,Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Shuyao Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Feiyan Bai
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Jing Liang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Jiawei Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Huiping Wang
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, 710069, People's Republic of China.,Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Yunfang Gao
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, 710069, People's Republic of China. .,Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China.
| | - Hui Chang
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, 710069, People's Republic of China. .,Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China.
| |
Collapse
|