1
|
Sena MVDA, Marinho TDS, Montefeltro FC, Langer MC, Fachini TS, Nava WR, Pinheiro AEP, de Araújo EV, Aubier P, de Andrade RCLP, Sayão JM, de Oliveira GR, Cubo J. Osteohistological characterization of notosuchian osteoderms: Evidence for an overlying thick leathery layer of skin. J Morphol 2023; 284:e21536. [PMID: 36394285 PMCID: PMC10107732 DOI: 10.1002/jmor.21536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/12/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022]
Abstract
Osteoderms are mineralized structures embedded in the dermis, known for nonavian archosaurs, squamates, xenarthrans, and amphibians. Herein, we compared the osteoderm histology of Brazilian Notosuchia of Cretaceous age using three neosuchians for comparative purposes. Microanatomical analyses showed that most of them present a diploe structure similar to those of other pseudosuchians, lizards, and turtles. This structure contains two cortices (the external cortex composed of an outer and an inner layers, and the basal cortex) and a core in-between them. Notosuchian osteoderms show high bone compactness (>0.85) with varying degrees of cancellous bone in the core. The neosuchian Guarinisuchus shows the lowest bone compactness with a well-developed cancellous layer. From an ontogenetic perspective, most tissues are formed through periosteal ossification, although the mineralized tissues observed in baurusuchid LPRP/USP 0634 suggest a late metaplastic development. Histology suggests that the ossification center of notosuchian osteoderm is located at the keel. Interestingly, we identified Sharpey's fibers running perpendicularly to the outer layer of the external cortex in Armadillosuchus arrudai, Itasuchus jesuinoi, and Baurusuchidae (LPRP/USP 0642). This feature indicates a tight attachment within the dermis, and it is evidence for the presence of an overlying thick leathery layer of skin over these osteoderms. These data allow a better understanding of the osteohistological structure of crocodylomorph dermal bones, and highlight their structural diversity. We suggest that the vascular canals present in some sampled osteoderms connecting the inner layer of the external cortex and the core with the external surface may increase osteoderm surface and the capacity of heat transfer in terrestrial notosuchians.
Collapse
Affiliation(s)
- Mariana Valéria de Araújo Sena
- Centre de Recherche en Paléontologie Paris (CR2P, UMR 7207), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, Paris, France.,Centro de Ciências Biológicas e da Saúde, Laboratório de Paleontologia da URCA, Universidade Regional do Cariri, Rua Carolino Sucupira-Pimenta, Crato, Ceará, Brazil
| | - Thiago da Silva Marinho
- Centro de Pesquisas Paleontológicas "Llewellyn Ivor Price", Complexo Cultural e Científico Peirópolis, Pró-Reitoria de Extensão Universitária, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil.,Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Felipe Chinaglia Montefeltro
- Departamento de Biologia e Zootecnia, Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista, Ilha Solteira, São Paulo, Brazil
| | - Max Cardoso Langer
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Laboratório de Paleontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Thiago Schineider Fachini
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Laboratório de Paleontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - William Roberto Nava
- Museu de Paleontologia de Marília, Prefeitura Municipal de Marília, Marília, São Paulo, Brazil
| | | | - Esaú Victor de Araújo
- Museu Nacional do Rio de Janeiro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paul Aubier
- Centre de Recherche en Paléontologie Paris (CR2P, UMR 7207), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, Paris, France
| | - Rafael César Lima Pedroso de Andrade
- Centro de Ciências Biológicas e da Saúde, Laboratório de Paleontologia da URCA, Universidade Regional do Cariri, Rua Carolino Sucupira-Pimenta, Crato, Ceará, Brazil
| | - Juliana Manso Sayão
- Museu Nacional do Rio de Janeiro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Ribeiro de Oliveira
- Laboratório de Paleontologia e Sistemática (LAPASI), Departamento de Biologia, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | - Jorge Cubo
- Centre de Recherche en Paléontologie Paris (CR2P, UMR 7207), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, Paris, France
| |
Collapse
|
2
|
Broeckhoven C, du Plessis A. Osteoderms as calcium reservoirs: Insights from the lizard Ouroborus cataphractus. J Anat 2022; 241:635-640. [PMID: 35502528 PMCID: PMC9358765 DOI: 10.1111/joa.13683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 11/27/2022] Open
Abstract
The functional significance of osteoderms-bony elements embedded in the dermis-remains a topic of much debate. Although many hypotheses have been put forward in the past, the idea that osteoderms can serve as calcium reservoirs has received little experimental attention thus far. In this study, we use micro-computed tomography to investigate inter- and intrasexual variation in osteoderm density in the viviparous lizard Ouroborus cataphractus and conduct histochemical analyses to unravel the potential mechanism involved in mineral resorption from the osteoderms. Our results show that females have denser, more compact osteoderms than males of similar body sizes, regardless of the season during which they were collected and their reproductive state. Furthermore, a histochemical study demonstrates the presence of mononucleated TRAP-positive cells in the vascular canals of the osteoderms. Based on the findings of this study, we suggest that the mineral storage hypothesis merits further attention as a candidate explanation for osteoderm evolution.
Collapse
Affiliation(s)
- Chris Broeckhoven
- Laboratory of Functional MorphologyUniversity of AntwerpWilrijkBelgium
| | - Anton du Plessis
- Object Research SystemsMontrealCanada
- Research group 3D InnovationStellenbosch UniversityStellenboschSouth Africa
| |
Collapse
|
3
|
Maidment SCR, Strachan SJ, Ouarhache D, Scheyer TM, Brown EE, Fernandez V, Johanson Z, Raven TJ, Barrett PM. Bizarre dermal armour suggests the first African ankylosaur. Nat Ecol Evol 2021; 5:1576-1581. [PMID: 34556830 DOI: 10.1038/s41559-021-01553-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/09/2021] [Indexed: 11/09/2022]
Abstract
Ankylosauria is a diverse clade of armoured dinosaurs whose members were important constituents of many Cretaceous faunas. Phylogenetic analyses imply that the clade diverged from its sister taxon, Stegosauria, during the late Early Jurassic, but the fossil records of both clades are sparse until the Late Jurassic (~150 million years ago). Moreover, Ankylosauria is almost entirely restricted to former Laurasian continents, with only a single valid Gondwanan taxon. Spicomellus afer gen. et sp. nov. appears to represent the earliest-known ankylosaur and the first to be named from Africa, from the Middle Jurassic (Bathonian-Callovian) of Morocco, filling an important gap in dinosaur evolution. The specimen consists of a rib with spiked dermal armour fused to its dorsal surface, an unprecedented morphology among extinct and extant vertebrates. The specimen reveals an unrealized morphological diversity of armoured dinosaurs during their early evolution, and implies the presence of an important but undiscovered Gondwanan fossil record.
Collapse
Affiliation(s)
- Susannah C R Maidment
- Department of Earth Sciences, Natural History Museum, London, UK. .,School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK.
| | - Sarah J Strachan
- Department of Earth Sciences, University College London, London, UK
| | - Driss Ouarhache
- GERA Laboratory, Faculty of Sciences Dhar El Mahraz, SMBA University, Fez, Morocco
| | - Torsten M Scheyer
- Palaeontological Institute and Museum, University of Zurich, Zurich, Switzerland
| | - Emily E Brown
- Department of Earth Sciences, Natural History Museum, London, UK.,School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | | | - Zerina Johanson
- Department of Earth Sciences, Natural History Museum, London, UK
| | - Thomas J Raven
- Department of Earth Sciences, Natural History Museum, London, UK.,School of Environment and Technology, University of Brighton, Brighton, UK
| | - Paul M Barrett
- Department of Earth Sciences, Natural History Museum, London, UK.,Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
4
|
Williams C, Kirby A, Marghoub A, Kéver L, Ostashevskaya-Gohstand S, Bertazzo S, Moazen M, Abzhanov A, Herrel A, Evans SE, Vickaryous M. A review of the osteoderms of lizards (Reptilia: Squamata). Biol Rev Camb Philos Soc 2021; 97:1-19. [PMID: 34397141 PMCID: PMC9292694 DOI: 10.1111/brv.12788] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022]
Abstract
Osteoderms are mineralised structures consisting mainly of calcium phosphate and collagen. They form directly within the skin, with or without physical contact with the skeleton. Osteoderms, in some form, may be primitive for tetrapods as a whole, and are found in representatives of most major living lineages including turtles, crocodilians, lizards, armadillos, and some frogs, as well as extinct taxa ranging from early tetrapods to dinosaurs. However, their distribution in time and space raises questions about their evolution and homology in individual groups. Among lizards and their relatives, osteoderms may be completely absent; present only on the head or dorsum; or present all over the body in one of several arrangements, including non-overlapping mineralised clusters, a continuous covering of overlapping plates, or as spicular mineralisations that thicken with age. This diversity makes lizards an excellent focal group in which to study osteoderm structure, function, development and evolution. In the past, the focus of researchers was primarily on the histological structure and/or the gross anatomy of individual osteoderms in a limited sample of taxa. Those studies demonstrated that lizard osteoderms are sometimes two-layered structures, with a vitreous, avascular layer just below the epidermis and a deeper internal layer with abundant collagen within the deep dermis. However, there is considerable variation on this model, in terms of the arrangement of collagen fibres, presence of extra tissues, and/or a cancellous bone core bordered by cortices. Moreover, there is a lack of consensus on the contribution, if any, of osteoblasts in osteoderm development, despite research describing patterns of resorption and replacement that would suggest both osteoclast and osteoblast involvement. Key to this is information on development, but our understanding of the genetic and skeletogenic processes involved in osteoderm development and patterning remains minimal. The most common proposition for the presence of osteoderms is that they provide a protective armour. However, the large morphological and distributional diversity in lizard osteoderms raises the possibility that they may have other roles such as biomechanical reinforcement in response to ecological or functional constraints. If lizard osteoderms are primarily for defence, whether against predators or conspecifics, then this 'bony armour' might be predicted to have different structural and/or mechanical properties compared to other hard tissues (generally intended for support and locomotion). The cellular and biomineralisation mechanisms by which osteoderms are formed could also be different from those of other hard tissues, as reflected in their material composition and nanostructure. Material properties, especially the combination of malleability and resistance to impact, are of interest to the biomimetics and bioinspired material communities in the development of protective clothing and body armour. Currently, the literature on osteoderms is patchy and is distributed across a wide range of journals. Herein we present a synthesis of current knowledge on lizard osteoderm evolution and distribution, micro- and macrostructure, development, and function, with a view to stimulating further work.
Collapse
Affiliation(s)
- Catherine Williams
- Department of Biomedical Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.,Department of Biology, Aarhus University, Ny Munkegade 114-116, Aarhus C, DK-8000, Denmark
| | - Alexander Kirby
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, U.K.,Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, U.K
| | - Arsalan Marghoub
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, U.K
| | - Loïc Kéver
- Département Adaptations du Vivant, UMR 7179 MECADEV C.N.R.S/M.N.H.N., Bâtiment d'Anatomie Comparée, 55 rue Buffon, Paris, 75005, France
| | - Sonya Ostashevskaya-Gohstand
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Silwood Park Campus, Berkshire, SL5 7PY, U.K
| | - Sergio Bertazzo
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, U.K
| | - Mehran Moazen
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, U.K
| | - Arkhat Abzhanov
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Silwood Park Campus, Berkshire, SL5 7PY, U.K
| | - Anthony Herrel
- Département Adaptations du Vivant, UMR 7179 MECADEV C.N.R.S/M.N.H.N., Bâtiment d'Anatomie Comparée, 55 rue Buffon, Paris, 75005, France
| | - Susan E Evans
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, U.K
| | - Matt Vickaryous
- Department of Biomedical Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
5
|
Prenatal hypoxia affects scaling of blood pressure and arterial wall mechanics in the common snapping turtle, Chelydra serpentina. Comp Biochem Physiol A Mol Integr Physiol 2021; 260:111023. [PMID: 34224856 DOI: 10.1016/j.cbpa.2021.111023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 11/24/2022]
Abstract
In reptiles, exposure to hypoxia during embryonic development affects several cardiovascular parameters. These modifications may impose different mechanical stress to the arterial system, and we speculated that the arterial wall of major outflow vessels would be modified accordingly. Since non-crocodilian reptiles possess a partially divided ventricle, ensuing similar systemic and pulmonary systolic pressures, we investigated how morphological and mechanical properties of segments from the left aortic arch (LAo) and the proximal and distal segments of the left pulmonary artery (LPAp and LPAd, respectively) change as body mass (Mb) increases. Eggs from common snapping turtles, Chelydra serpentina, were incubated under normoxia (21% O2; N21) or hypoxia (10% O2; H10), hatched and maintained in normoxia thereafter. Turtles (0.11-6.85 kg) were cannulated to measure arterial pressures, and an injection of adrenaline was used to increase pressures. Portions of the LAo, LPAp and LPAd were fixed under physiological hydrostatic pressures for histology and mechanical assessment. Arterial pressures increased with Mb for N21 but not for H10. Although mechanical and functional characteristics from the LPAp and LPAd were similar between N21 and H10, wall thickness from LAo did not change with Mb in the H10 group, thus wall stress increased in larger turtles. This indicates that larger H10 turtles probably experience an elevated probability of arterial wall rupture without concomitant changes in the cardiovascular system to prevent it. Finally, collagen content of the LPAp and LAo was smaller than in LPAd, suggesting a more distensible arterial wall could attenuate higher pressures from larger turtles.
Collapse
|
6
|
Filogonio R, Dubansky BD, Dubansky BH, Wang T, Elsey RM, Leite CAC, Crossley DA. Arterial wall thickening normalizes arterial wall tension with growth in American alligators, Alligator mississippiensis. J Comp Physiol B 2021; 191:553-562. [PMID: 33629153 DOI: 10.1007/s00360-021-01353-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 01/21/2023]
Abstract
Arterial wall tension increases with luminal radius and arterial pressure. Hence, as body mass (Mb) increases, associated increases in radius induces larger tension. Thus, it could be predicted that high tension would increase the potential for rupture of the arterial wall. Studies on mammals have focused on systemic arteries and have shown that arterial wall thickness increases with Mb and normalizes tension. Reptiles are good models to study scaling because some species exhibit large body size range associated with growth, thus, allowing for ontogenetic comparisons. We used post hatch American alligators, Alligator mississippiensis, ranging from 0.12 to 6.80 kg (~ 60-fold) to investigate how both the right aortic arch (RAo) and the left pulmonary artery (LPA) change with Mb. We tested two possibilities: (i) wall thickness increases with Mb and normalizes wall tension, such that stress (stress = tension/thickness) remains unchanged; (ii) collagen content scales with Mb and increases arterial strength. We measured heart rate and systolic and mean pressures from both systemic and pulmonary circulations in anesthetized animals. Once stabilized alligators were injected with adrenaline to induce a physiologically relevant increase in pressure. Heart rate decreased and systemic pressures increased with Mb; pulmonary pressures remained unchanged. Both the RAo and LPA were fixed under physiological hydrostatic pressures and displayed larger radius, wall tension and thickness as Mb increased, thus, stress was independent from Mb; relative collagen content was unchanged. We conclude that increased wall thickness normalizes tension and reduces the chances of arterial walls rupturing in large alligators.
Collapse
Affiliation(s)
- Renato Filogonio
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil.
| | - Benjamin D Dubansky
- Department of Biological Sciences, Developmental Integrative Biology Cluster, University of North Texas, Denton, TX, 76203-5220, USA
| | - Brooke H Dubansky
- Department of Medical Laboratory Sciences and Public Health, Tarleton State University, Fort Worth, TX, USA
| | - Tobias Wang
- Section for Zoophysiology, Department of Biosciences, Aarhus University, 8000, Aarhus C, Denmark
| | - Ruth M Elsey
- Louisiana Department of Wildlife and Fisheries, Rockefeller Wildlife Refuge, Grand Chenier, LA, 70643, USA
| | - Cléo A C Leite
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Dane A Crossley
- Department of Biological Sciences, Developmental Integrative Biology Cluster, University of North Texas, Denton, TX, 76203-5220, USA
| |
Collapse
|
7
|
Kazezian Z, Bull AMJ. A review of the biomarkers and in vivo models for the diagnosis and treatment of heterotopic ossification following blast and trauma-induced injuries. Bone 2021; 143:115765. [PMID: 33285256 DOI: 10.1016/j.bone.2020.115765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/29/2020] [Accepted: 11/18/2020] [Indexed: 12/29/2022]
Abstract
Heterotopic ossification (HO) is the process of de novo bone formation in non-osseous tissues. HO can occur following trauma and burns and over 60% of military personnel with blast-associated amputations develop HO. This rate is far higher than in other trauma-induced HO development. This suggests that the blast effect itself is a major contributing factor, but the pathway triggering HO following blast injury specifically is not yet fully identified. Also, because of the difficulty of studying the disease using clinical data, the only sources remain the relevant in vivo models. The aim of this paper is first to review the key biomarkers and signalling pathways identified in trauma and blast induced HO in order to summarize the molecular mechanisms underlying HO development, and second to review the blast injury in vivo models developed. The literature derived from trauma-induced HO suggests that inflammatory cytokines play a key role directing different progenitor cells to transform into an osteogenic class contributing to the development of the disease. This highlights the importance of identifying the downstream biomarkers under specific signalling pathways which might trigger similar stimuli in blast to those of trauma induced formation of ectopic bone in the tissues surrounding the site of the injury. The lack of information in the literature regarding the exact biomarkers leading to blast associated HO is hampering the design of specific therapeutics. The majority of existing blast injury in vivo models do not fully replicate the combat scenario in terms of blast, fracture and amputation; these three usually happen in one insult. Hence, this paper highlights the need to replicate the full effect of the blast in preclinical models to better understand the mechanism of blast induced HO development and to enable the design of a specific therapeutic to supress the formation of ectopic bone.
Collapse
Affiliation(s)
- Zepur Kazezian
- Centre for Blast Injury Studies, Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom.
| | - Anthony M J Bull
- Centre for Blast Injury Studies, Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| |
Collapse
|
8
|
Bone of contention. Nat Ecol Evol 2020; 4:1447-1448. [DOI: 10.1038/s41559-020-01300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Kirby A, Vickaryous M, Boyde A, Olivo A, Moazen M, Bertazzo S, Evans S. A comparative histological study of the osteoderms in the lizards Heloderma suspectum (Squamata: Helodermatidae) and Varanus komodoensis (Squamata: Varanidae). J Anat 2020; 236:1035-1043. [PMID: 31986227 PMCID: PMC7219622 DOI: 10.1111/joa.13156] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/03/2019] [Accepted: 01/06/2020] [Indexed: 12/23/2022] Open
Abstract
We describe the histological appearance of the osteoderms (ODs) of Heloderma suspectum and Varanus komodoensis using multiple staining and microscopy techniques to yield information about their morphology and development. Histological analysis showed that the ODs of H. suspectum are composed of three main tissue types, a superficial layer, herein identified as osteodermine, capping a base composed of Sharpey-fibre bone and lamellar bone rich in secondary osteons (Haversian bone tissue). In contrast, ODs in V. komodoensis are composed of a core of woven bone surrounded by parallel-fibred bone without a capping tissue. Thus, in these two species, ODs differ both in terms of their structural composition and in details of their skeletogenesis. The histology of the mineralised tissues observed in these two reptile taxa provides insights into the mechanism of formation of lizard ODs and presents a direct comparison of the histological properties between the ODs of the two species. These data allow greater understanding of the comparative histological appearance of the dermal bones of lizards and highlight their structural diversity.
Collapse
Affiliation(s)
- Alexander Kirby
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | | | - Alan Boyde
- Dental Physical Sciences, Barts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Alessandro Olivo
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Mehran Moazen
- Department of Mechanical EngineeringUniversity College LondonLondonUK
| | - Sergio Bertazzo
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Susan Evans
- Department of Cell and Developmental BiologyUniversity College LondonLondonUK
| |
Collapse
|
10
|
Nasoori A. Formation, structure, and function of extra-skeletal bones in mammals. Biol Rev Camb Philos Soc 2020; 95:986-1019. [PMID: 32338826 DOI: 10.1111/brv.12597] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 03/07/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022]
Abstract
This review describes the formation, structure, and function of bony compartments in antlers, horns, ossicones, osteoderm and the os penis/os clitoris (collectively referred to herein as AHOOO structures) in extant mammals. AHOOOs are extra-skeletal bones that originate from subcutaneous (dermal) tissues in a wide variety of mammals, and this review elaborates on the co-development of the bone and skin in these structures. During foetal stages, primordial cells for the bony compartments arise in subcutaneous tissues. The epithelial-mesenchymal transition is assumed to play a key role in the differentiation of bone, cartilage, skin and other tissues in AHOOO structures. AHOOO ossification takes place after skeletal bone formation, and may depend on sexual maturity. Skin keratinization occurs in tandem with ossification and may be under the control of androgens. Both endochondral and intramembranous ossification participate in bony compartment formation. There is variation in gradients of density in different AHOOO structures. These gradients, which vary according to function and species, primarily reduce mechanical stress. Anchorage of AHOOOs to their surrounding tissues fortifies these structures and is accomplished by bone-bone fusion and Sharpey fibres. The presence of the integument is essential for the protection and function of the bony compartments. Three major functions can be attributed to AHOOOs: mechanical, visual, and thermoregulatory. This review provides the first extensive comparative description of the skeletal and integumentary systems of AHOOOs in a variety of mammals.
Collapse
Affiliation(s)
- Alireza Nasoori
- School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| |
Collapse
|
11
|
Underlying Ossification Phenotype in a Murine Model of Metastatic Synovial Sarcoma. Int J Mol Sci 2020; 21:ijms21072636. [PMID: 32290096 PMCID: PMC7177647 DOI: 10.3390/ijms21072636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/28/2020] [Accepted: 04/06/2020] [Indexed: 12/30/2022] Open
Abstract
Synovial sarcoma, an uncommon cancer, typically affects young adults. Survival rates range from 36% to 76%, decreasing significantly when metastases are present. Synovial sarcomas form in soft tissues, often near bones, with about 10% demonstrating ossification in the tumor. The literature is inconclusive on whether the presence of ossification portends a worse prognosis. To this end, we analyzed our genetic mouse models of synovial sarcoma to determine the extent of ossification in the tumors and its relationship with morbidity. We noted higher ossification within our metastatic mouse model of synovial sarcoma. Not only did we observe ossification within the tumors at a frequency of 7%, but an even higher frequency, 72%, of bone reactivity was detected by radiography. An enrichment of bone development genes was associated with primary tumors, even in the absence of an ossification phenotype. In spite of the ossification being intricately linked with the metastatic model, the presence of ossification was not associated with a faster or worse morbidity in the mice. Our conclusion is that both metastasis and ossification are dependent on time, but that they are independent of one another.
Collapse
|
12
|
Clarac F, Scheyer TM, Desojo JB, Cerda IA, Sanchez S. The evolution of dermal shield vascularization in Testudinata and Pseudosuchia: phylogenetic constraints versus ecophysiological adaptations. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190132. [PMID: 31928197 PMCID: PMC7017437 DOI: 10.1098/rstb.2019.0132] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2019] [Indexed: 01/18/2023] Open
Abstract
Studies on living turtles have demonstrated that shells are involved in the resistance to hypoxia during apnea via bone acidosis buffering; a process which is complemented with cutaneous respiration, transpharyngeal and cloacal gas exchanges in the soft-shell turtles. Bone acidosis buffering during apnea has also been identified in crocodylian osteoderms, which are also known to employ heat transfer when basking. Although diverse, many of these functions rely on one common trait: the vascularization of the dermal shield. Here, we test whether the above ecophysiological functions played an adaptive role in the evolutionary transitions between land and aquatic environments in both Pseudosuchia and Testudinata. To do so, we measured the bone porosity as a proxy for vascular density in a set of dermal plates before performing phylogenetic comparative analyses. For both lineages, the dermal plate porosity obviously varies depending on the animal lifestyle, but these variations prove to be highly driven by phylogenetic relationships. We argue that the complexity of multi-functional roles of the post-cranial dermal skeleton in both Pseudosuchia and Testudinata probably is the reason for a lack of obvious physiological signal, and we discuss the role of the dermal shield vascularization in the evolution of these groups. This article is part of the theme issue 'Vertebrate palaeophysiology'.
Collapse
Affiliation(s)
- François Clarac
- Department of Organismal Biology, Subdepartment of Evolution and Development, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden
| | - Torsten M. Scheyer
- Paleontological Institute and Museum, University of Zurich, Karl Schmid-Strasse 4, 8006 Zurich, Switzerland
| | - Julia B. Desojo
- CONICET, División Paleontología Vertebrados, Museo de La Plata, Paseo del Bosque s/n°, B1900FWA La Plata, Argentina
| | - Ignacio A. Cerda
- CONICET, Argentina y Instituto de Investigacion en Paleobiología y Geología, Universidad Nacional de Río Negro, Museo Carlos Ameghino, Belgrano 1700, Paraje Pichi Ruca (predio Marabunta), 8300 Cipolletti, Río Negro, Argentina
| | - Sophie Sanchez
- Department of Organismal Biology, Subdepartment of Evolution and Development, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS-40220, 38043 Grenoble Cedex, France
| |
Collapse
|
13
|
Bailleul AM, O’Connor J, Schweitzer MH. Dinosaur paleohistology: review, trends and new avenues of investigation. PeerJ 2019; 7:e7764. [PMID: 31579624 PMCID: PMC6768056 DOI: 10.7717/peerj.7764] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022] Open
Abstract
In the mid-19th century, the discovery that bone microstructure in fossils could be preserved with fidelity provided a new avenue for understanding the evolution, function, and physiology of long extinct organisms. This resulted in the establishment of paleohistology as a subdiscipline of vertebrate paleontology, which has contributed greatly to our current understanding of dinosaurs as living organisms. Dinosaurs are part of a larger group of reptiles, the Archosauria, of which there are only two surviving lineages, crocodilians and birds. The goal of this review is to document progress in the field of archosaur paleohistology, focusing in particular on the Dinosauria. We briefly review the "growth age" of dinosaur histology, which has encompassed new and varied directions since its emergence in the 1950s, resulting in a shift in the scientific perception of non-avian dinosaurs from "sluggish" reptiles to fast-growing animals with relatively high metabolic rates. However, fundamental changes in growth occurred within the sister clade Aves, and we discuss this major evolutionary transition as elucidated by histology. We then review recent innovations in the field, demonstrating how paleohistology has changed and expanded to address a diversity of non-growth related questions. For example, dinosaur skull histology has elucidated the formation of curious cranial tissues (e.g., "metaplastic" tissues), and helped to clarify the evolution and function of oral adaptations, such as the dental batteries of duck-billed dinosaurs. Lastly, we discuss the development of novel techniques with which to investigate not only the skeletal tissues of dinosaurs, but also less-studied soft-tissues, through molecular paleontology and paleohistochemistry-recently developed branches of paleohistology-and the future potential of these methods to further explore fossilized tissues. We suggest that the combination of histological and molecular methods holds great potential for examining the preserved tissues of dinosaurs, basal birds, and their extant relatives. This review demonstrates the importance of traditional bone paleohistology, but also highlights the need for innovation and new analytical directions to improve and broaden the utility of paleohistology, in the pursuit of more diverse, highly specific, and sensitive methods with which to further investigate important paleontological questions.
Collapse
Affiliation(s)
- Alida M. Bailleul
- Key Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Beijing, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| | - Jingmai O’Connor
- Key Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Beijing, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| | - Mary H. Schweitzer
- Department of Biology, North Carolina State University, Raleigh, NC, USA
- North Carolina Museum of Natural Science, Raleigh, NC, USA
- Department of Geology, Lund University, Lund, Sweden
- Museum of the Rockies, Montana State University, Bozeman, MT, USA
| |
Collapse
|
14
|
Meyers C, Lisiecki J, Miller S, Levin A, Fayad L, Ding C, Sono T, McCarthy E, Levi B, James AW. Heterotopic Ossification: A Comprehensive Review. JBMR Plus 2019; 3:e10172. [PMID: 31044187 PMCID: PMC6478587 DOI: 10.1002/jbm4.10172] [Citation(s) in RCA: 284] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/31/2018] [Accepted: 01/13/2019] [Indexed: 12/17/2022] Open
Abstract
Heterotopic ossification (HO) is a diverse pathologic process, defined as the formation of extraskeletal bone in muscle and soft tissues. HO can be conceptualized as a tissue repair process gone awry and is a common complication of trauma and surgery. This comprehensive review seeks to synthesize the clinical, pathoetiologic, and basic biologic features of HO, including nongenetic and genetic forms. First, the clinical features, radiographic appearance, histopathologic diagnosis, and current methods of treatment are discussed. Next, current concepts regarding the mechanistic bases for HO are discussed, including the putative cell types responsible for HO formation, the inflammatory milieu and other prerequisite “niche” factors for HO initiation and propagation, and currently available animal models for the study of HO of this common and potentially devastating condition. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Carolyn Meyers
- Department of Pathology Johns Hopkins University Baltimore MD USA
| | | | - Sarah Miller
- Department of Pathology Johns Hopkins University Baltimore MD USA
| | - Adam Levin
- Department of Orthopaedic Surgery Johns Hopkins University Baltimore MD USA
| | - Laura Fayad
- Department of Radiology Johns Hopkins University Baltimore MD USA
| | - Catherine Ding
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center Los Angeles CA USA
| | - Takashi Sono
- Department of Pathology Johns Hopkins University Baltimore MD USA
| | - Edward McCarthy
- Department of Pathology Johns Hopkins University Baltimore MD USA
| | - Benjamin Levi
- Department of Surgery University of Michigan Ann Arbor MI USA
| | - Aaron W James
- Department of Pathology Johns Hopkins University Baltimore MD USA.,UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center Los Angeles CA USA
| |
Collapse
|
15
|
The crocodylian skull and osteoderms: A functional exaptation to ectothermy? ZOOLOGY 2018; 132:31-40. [PMID: 30736927 DOI: 10.1016/j.zool.2018.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 12/08/2018] [Accepted: 12/11/2018] [Indexed: 10/27/2022]
Abstract
The crocodylians are ectothermic semi-aquatic vertebrates which are assessed to have evolved from endothermic terrestrial forms during the Mesozoic. Such a physiological transition should have involved modifications in their cardio-vascular system allowing to increase the heat transfers with the surrounding environment by growing a peripheral vascularization which would be mainly located in the dermal skeleton: the dermatocranium and the osteoderms. In order to assess the implication of these anatomical regions in thermal exchanges, we have recorded the temperature above a set of representative skin areas in order to draw comparisons between the skull, the osteoderms, and the rest of the body parts which present either none or residual dermal ossification. We computed the data after the specimens were successively laid in different stereotyped environmental conditions which involved significant variations in the environmental temperature. Our results show that the osteoderms collect the external heat during the basking periods as they become significantly warmer than the surrounding skin; they further release the heat into the core of the organism as they turn out to be colder than the surrounding skin after a significant cooling period. In disregard of the environmental temperature variations, the skull table (which encloses the braincase) remains warmer than the rest of the cranial regions and shows less temperature variations than the osteoderms; a result which has lead us to think that the braincase temperature is monitored and controlled by a thermoregulatory system. Therefore, as hypothesized by previous authors regarding the ectothermic diapsids, we assume that the crocodylian skull possesses shunting blood pathways which tend to maintain both the braincase and the main sensory organs at the nearest to the optimal physiological temperature depending on the external temperature variations. Concerning the skin vascularization, the study of an albino Alligator mississippiensis specimen permitted to observe the repartition of the superficial blood vessels by transparency through the skin. We thus testify that the skin which covers either the skull or the osteoderms is more vascularized than the skin which does not present any subjacent dermal ossification. We consequently deduce that the significant contrast in the thermal behavior between the dermal skeleton and the rest of the body is indeed correlated with a difference in the relative degree of skin vascularization. This last assessment confirms that the development of the dermal skeleton should have played a functional role in the crocodylian transition from endothermy to ectothermy through the set-up of a peripheral vessel network.
Collapse
|
16
|
Gross JB, Powers AK. A Natural Animal Model System of Craniofacial Anomalies: The Blind Mexican Cavefish. Anat Rec (Hoboken) 2018; 303:24-29. [PMID: 30365238 DOI: 10.1002/ar.23998] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/26/2018] [Accepted: 04/19/2018] [Indexed: 12/27/2022]
Abstract
Natural model systems evolving under extreme environmental pressures provide the opportunity to advance our knowledge of how the craniofacial complex evolves in nature. Unlike traditional models, natural systems are less inbred, and, therefore, better model the complex variation of the human population. Owing to the nature of certain craniofacial aberrations in blind Mexican cavefish, we suggest that this organism can provide new insights to a variety of craniofacial changes. Diverse cranial features have evolved in natural cave-dwelling Astyanax fish, which have thrived in the unforgiving darkness and nutrient-poor environment of the cave for countless generations. While the genetic and environmental underpinnings of various cranial anomalies have been investigated for decades, a comprehensive characterization of their molecular and developmental origins remains incomplete. Cavefish provide numerous advantages given the availability of genomic resources, developmental and molecular tools, and the presence of a normative surface-dwelling "ancestral" surrogate for comparative studies. By leveraging the frequency of abnormal and asymmetric cranial features in cavefish, we anticipate advances in our knowledge of the etiologies of irregular cranial features. Extreme adaptations in cavefish are expected to offer new insights into the complex and multifactorial nature of craniofacial disorders and facial asymmetry. Anat Rec, 2018. © 2018 American Association for Anatomy.
Collapse
Affiliation(s)
- Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, 312 Clifton Court, Rieveschl Hall Room 711B, Cincinnati, Ohio
| | - Amanda K Powers
- Department of Biological Sciences, University of Cincinnati, 312 Clifton Court, Rieveschl Hall Room 711B, Cincinnati, Ohio
| |
Collapse
|
17
|
Dubansky BH, Close M. A review of alligator and snake skin morphology and histotechnical preparations. J Histotechnol 2018. [DOI: 10.1080/01478885.2018.1517856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Brooke H. Dubansky
- Department of Medical Laboratory Sciences & Public Health, Tarleton State University, Fort Worth, TX, USA
| | - Matthew Close
- Department of Biological Sciences, Radford University, Radford, VA, USA
| |
Collapse
|