1
|
Green NM, Talbot D, Tootle TL. Nuclear actin is a critical regulator of Drosophila female germline stem cell maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609996. [PMID: 39253513 PMCID: PMC11383290 DOI: 10.1101/2024.08.27.609996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Nuclear actin has been implicated in regulating cell fate, differentiation, and cellular reprogramming. However, its roles in development and tissue homeostasis remain largely unknown. Here we uncover the role of nuclear actin in regulating stemness using Drosophila ovarian germline stem cells (GSCs) as a model. We find that the localization and structure of nuclear actin is dynamic in the early germ cells. Nuclear actin recognized by anti-actin C4 is found in both the nucleoplasm and nucleolus of GSCs. The polymeric nucleoplasmic C4 pool is lost after the 2-cell stage, whereas the monomeric nucleolar pool persists to the 8-cell stage, suggesting that polymeric nuclear actin may contribute to stemness. To test this idea, we overexpressed nuclear targeted actin constructs to alter nuclear actin polymerization states in the GSCs and early germ cells. Increasing monomeric nuclear actin, but not polymerizable nuclear actin, causes GSC loss that ultimately results in germline loss. This GSC loss is rescued by simultaneous overexpression of monomeric and polymerizable nuclear actin. Together these data reveal that GSC maintenance requires polymeric nuclear actin. This polymeric nuclear actin likely plays numerous roles in the GSCs, as increasing monomeric nuclear actin disrupts nuclear architecture causing nucleolar hypertrophy, distortion of the nuclear lamina, and heterochromatin reorganization; all factors critical for GSC maintenance and function. These data provide the first evidence that nuclear actin, and in particular, its ability to polymerize, are critical for stem cell function and tissue homeostasis in vivo.
Collapse
Affiliation(s)
- Nicole M. Green
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, 51 Newton Rd, 1-500 BSB, Iowa City, IA 52242
- Current affiliation: Biology, Cornell College, 600 First Street SW, Mount Vernon, IA 52314
| | - Danielle Talbot
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, 51 Newton Rd, 1-500 BSB, Iowa City, IA 52242
- Current affiliation: Biology, University of Iowa, 129 E. Jefferson St, 246 BB, Iowa City, IA 52242
| | - Tina L. Tootle
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, 51 Newton Rd, 1-500 BSB, Iowa City, IA 52242
- Current affiliation: Biology, University of Iowa, 129 E. Jefferson St, 246 BB, Iowa City, IA 52242
| |
Collapse
|
2
|
Talbot DE, Vormezeele BJ, Kimble GC, Wineland DM, Kelpsch DJ, Giedt MS, Tootle TL. Prostaglandins limit nuclear actin to control nucleolar function during oogenesis. Front Cell Dev Biol 2023; 11:1072456. [PMID: 36875757 PMCID: PMC9981675 DOI: 10.3389/fcell.2023.1072456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Prostaglandins (PGs), locally acting lipid signals, regulate female reproduction, including oocyte development. However, the cellular mechanisms of PG action remain largely unknown. One cellular target of PG signaling is the nucleolus. Indeed, across organisms, loss of PGs results in misshapen nucleoli, and changes in nucleolar morphology are indicative of altered nucleolar function. A key role of the nucleolus is to transcribe ribosomal RNA (rRNA) to drive ribosomal biogenesis. Here we take advantage of the robust, in vivo system of Drosophila oogenesis to define the roles and downstream mechanisms whereby PGs regulate the nucleolus. We find that the altered nucleolar morphology due to PG loss is not due to reduced rRNA transcription. Instead, loss of PGs results in increased rRNA transcription and overall protein translation. PGs modulate these nucleolar functions by tightly regulating nuclear actin, which is enriched in the nucleolus. Specifically, we find that loss of PGs results in both increased nucleolar actin and changes in its form. Increasing nuclear actin, by either genetic loss of PG signaling or overexpression of nuclear targeted actin (NLS-actin), results in a round nucleolar morphology. Further, loss of PGs, overexpression of NLS-actin or loss of Exportin 6, all manipulations that increase nuclear actin levels, results in increased RNAPI-dependent transcription. Together these data reveal PGs carefully balance the level and forms of nuclear actin to control the level of nucleolar activity required for producing fertilization competent oocytes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tina L. Tootle
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| |
Collapse
|
3
|
Abstract
In this chapter, we highlight examples of the diverse array of developmental, cellular, and biochemical insights that can be gained by using Drosophila melanogaster oogenesis as a model tissue. We begin with an overview of ovary development and adult oogenesis. Then we summarize how the adult Drosophila ovary continues to advance our understanding of stem cells, cell cycle, cell migration, cytoplasmic streaming, nurse cell dumping, and cell death. We also review emerging areas of study, including the roles of lipid droplets, ribosomes, and nuclear actin in egg development. Finally, we conclude by discussing the growing conservation of processes and signaling pathways that regulate oogenesis and female reproduction from flies to humans.
Collapse
|
4
|
Duan T, Rodriguez-Tirado F, Geyer PK. Immunohistochemical Analysis of Nuclear Lamina Structures in the Drosophila Ovary Using CRISPR-Tagged Genes. Methods Mol Biol 2023; 2626:109-134. [PMID: 36715902 DOI: 10.1007/978-1-0716-2970-3_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Drosophila ovary represents an outstanding model for investigating tissue homeostasis. Females continuously produce oocytes throughout their lifetime. However, as females age, fecundity declines, in part, due to changes in ovarian niche function and germline stem cell (GSC) homeostasis. Understanding the dynamics of GSC maintenance will provide needed insights into how coordinated tissue homeostasis is lost during aging. Critical regulators of GSC maintenance are proteins that reside in the nuclear lamina (NL), including the NL proteins emerin and Barrier-to-Autointegration Factor (BAF). Continued investigation of how emerin, BAF, and other NL proteins contribute to GSC function depends upon the availability of antibodies for NL proteins, a limiting resource. In this chapter, we discuss strategies for using clustered regularly interspaced short palindromic repeats (CRISPR) genomic editing to produce endogenously tagged NL genes to circumvent this obstacle, using the generation of the gfp-baf allele as an example. We describe strategies for validation of tagged alleles. Finally, we outline methods for immunohistochemical analysis of resulting tagged-NL proteins.
Collapse
Affiliation(s)
- Tingting Duan
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Felipe Rodriguez-Tirado
- Department of Biochemistry and Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Pamela K Geyer
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
5
|
Cobb AM, De Silva SA, Hayward R, Sek K, Ulferts S, Grosse R, Shanahan CM. Filamentous nuclear actin regulation of PML NBs during the DNA damage response is deregulated by prelamin A. Cell Death Dis 2022; 13:1042. [PMID: 36522328 PMCID: PMC9755150 DOI: 10.1038/s41419-022-05491-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/16/2022]
Abstract
Nuclear actin participates in a continuously expanding list of core processes within eukaryotic nuclei, including the maintenance of genomic integrity. In response to DNA damage, nuclear actin polymerises into filaments that are involved in the repair of damaged DNA through incompletely defined mechanisms. We present data to show that the formation of nuclear F-actin in response to genotoxic stress acts as a scaffold for PML NBs and that these filamentous networks are essential for PML NB fission and recruitment of microbodies to DNA lesions. Further to this, we demonstrate that the accumulation of the toxic lamin A precursor prelamin A induces mislocalisation of nuclear actin to the nuclear envelope and prevents the establishment of nucleoplasmic F-actin networks in response to stress. Consequently, PML NB dynamics and recruitment to DNA lesions is ablated, resulting in impaired DNA damage repair. Inhibition of nuclear export of formin mDia2 restores nuclear F-actin formation by augmenting polymerisation of nuclear actin in response to stress and rescues PML NB localisation to sites of DNA repair, leading to reduced levels of DNA damage.
Collapse
Affiliation(s)
- Andrew M. Cobb
- grid.13097.3c0000 0001 2322 6764BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King’s College London, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU United Kingdom
| | - Shanelle A. De Silva
- grid.13097.3c0000 0001 2322 6764BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King’s College London, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU United Kingdom
| | - Robert Hayward
- grid.13097.3c0000 0001 2322 6764BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King’s College London, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU United Kingdom
| | - Karolina Sek
- grid.13097.3c0000 0001 2322 6764BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King’s College London, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU United Kingdom
| | - Svenja Ulferts
- grid.5963.9Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Robert Grosse
- grid.5963.9Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Catherine M. Shanahan
- grid.13097.3c0000 0001 2322 6764BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King’s College London, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU United Kingdom
| |
Collapse
|
6
|
Mishra S, Levy DL. Nuclear F-actin and Lamin A antagonistically modulate nuclear shape. J Cell Sci 2022; 135:275607. [PMID: 35665815 PMCID: PMC9377710 DOI: 10.1242/jcs.259692] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/28/2022] [Indexed: 12/25/2022] Open
Abstract
Nuclear shape influences cell migration, gene expression and cell cycle progression, and is altered in disease states like laminopathies and cancer. What factors and forces determine nuclear shape? We find that nuclei assembled in Xenopus egg extracts in the presence of dynamic F-actin exhibit a striking bilobed nuclear morphology with distinct membrane compositions in the two lobes and accumulation of F-actin at the inner nuclear envelope. The addition of Lamin A (encoded by lmna), which is absent from Xenopus eggs, results in rounder nuclei, suggesting that opposing nuclear F-actin and Lamin A forces contribute to the regulation of nuclear shape. Nuclear F-actin also promotes altered nuclear shape in Lamin A-knockdown HeLa cells and, in both systems, abnormal nuclear shape is driven by formins and not Arp2/3 or myosin. Although the underlying mechanisms might differ in Xenopus and HeLa cells, we propose that nuclear F-actin filaments nucleated by formins impart outward forces that lead to altered nuclear morphology unless Lamin A is present. Targeting nuclear actin dynamics might represent a novel approach to rescuing disease-associated defects in nuclear shape.
Collapse
Affiliation(s)
- Sampada Mishra
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Daniel L. Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA,Author for correspondence ()
| |
Collapse
|
7
|
Blatt P, Wong-Deyrup SW, McCarthy A, Breznak S, Hurton MD, Upadhyay M, Bennink B, Camacho J, Lee MT, Rangan P. RNA degradation is required for the germ-cell to maternal transition in Drosophila. Curr Biol 2021; 31:2984-2994.e7. [PMID: 33989522 PMCID: PMC8319052 DOI: 10.1016/j.cub.2021.04.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 03/26/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
In sexually reproducing animals, the oocyte contributes a large supply of RNAs that are essential to launch development upon fertilization. The mechanisms that regulate the composition of the maternal RNA contribution during oogenesis are unclear. Here, we show that a subset of RNAs expressed during the early stages of oogenesis is subjected to regulated degradation during oocyte specification. Failure to remove these RNAs results in oocyte dysfunction and death. We identify the RNA-degrading Super Killer complex and No-Go Decay factor Pelota as key regulators of oogenesis via targeted degradation of specific RNAs expressed in undifferentiated germ cells. These regulators target RNAs enriched for cytidine sequences that are bound by the polypyrimidine tract binding protein Half pint. Thus, RNA degradation helps orchestrate a germ cell-to-maternal transition that gives rise to the maternal contribution to the zygote.
Collapse
Affiliation(s)
- Patrick Blatt
- University at Albany, Department of Biological Sciences, RNA Institute; 1400 Washington Avenue, LSRB 2033D, Albany, NY 12222
| | - Siu Wah Wong-Deyrup
- University at Albany, Department of Biological Sciences, RNA Institute; 1400 Washington Avenue, LSRB 2033D, Albany, NY 12222
| | - Alicia McCarthy
- University at Albany, Department of Biological Sciences, RNA Institute; 1400 Washington Avenue, LSRB 2033D, Albany, NY 12222; 10x Genomics, Inc., 6230 Stoneridge Mall Road, Pleasanton, CA, 94588
| | - Shane Breznak
- University at Albany, Department of Biological Sciences, RNA Institute; 1400 Washington Avenue, LSRB 2033D, Albany, NY 12222
| | - Matthew D Hurton
- University of Pittsburgh, Department of Biological Sciences; 4249 Fifth Avenue, Pittsburgh, PA 15260
| | - Maitreyi Upadhyay
- University at Albany, Department of Biological Sciences, RNA Institute; 1400 Washington Avenue, LSRB 2033D, Albany, NY 12222; Department of Stem Cell and Regenerative Biology, Sherman Fairchild 100, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138
| | - Benjamin Bennink
- University at Albany, Department of Biological Sciences, RNA Institute; 1400 Washington Avenue, LSRB 2033D, Albany, NY 12222
| | - Justin Camacho
- University at Albany, Department of Biological Sciences, RNA Institute; 1400 Washington Avenue, LSRB 2033D, Albany, NY 12222
| | - Miler T Lee
- University of Pittsburgh, Department of Biological Sciences; 4249 Fifth Avenue, Pittsburgh, PA 15260.
| | - Prashanth Rangan
- University at Albany, Department of Biological Sciences, RNA Institute; 1400 Washington Avenue, LSRB 2033D, Albany, NY 12222.
| |
Collapse
|
8
|
Palacios V, Kimble GC, Tootle TL, Buszczak M. Importin-9 regulates chromosome segregation and packaging in Drosophila germ cells. J Cell Sci 2021; 134:237786. [PMID: 33632744 DOI: 10.1242/jcs.258391] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/10/2021] [Indexed: 12/29/2022] Open
Abstract
Germ cells undergo distinct nuclear processes as they differentiate into gametes. Although these events must be coordinated to ensure proper maturation, the stage-specific transport of proteins in and out of germ cell nuclei remains incompletely understood. Our efforts to genetically characterize Drosophila genes that exhibit enriched expression in germ cells led to the finding that loss of the highly conserved Importin β/karyopherin family member Importin-9 (Ipo9, herein referring to Ranbp9) results in female and male sterility. Immunofluorescence and fluorescent in situ hybridization revealed that Ipo9KO mutants display chromosome condensation and segregation defects during meiosis. In addition, Ipo9KO mutant males form abnormally structured sperm and fail to properly exchange histones for protamines. Ipo9 physically interacts with proteasome proteins, and Ipo9 mutant males exhibit disruption of the nuclear localization of several proteasome components. Thus, Ipo9 coordinates the nuclear import of functionally related factors necessary for the completion of gametogenesis. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Victor Palacios
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Garrett C Kimble
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Tina L Tootle
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
9
|
New Insights into Cellular Functions of Nuclear Actin. BIOLOGY 2021; 10:biology10040304. [PMID: 33916969 PMCID: PMC8067577 DOI: 10.3390/biology10040304] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary It is well known that actin forms a cytoplasmic network of microfilaments, the part of the cytoskeleton, in the cytoplasm of eukaryotic cells. The presence of nuclear actin was elusive for a very long time. Now, there is a very strong evidence that actin plays many important roles in the nucleus. Here, we discuss the recently discovered functions of the nuclear actin pool. Actin does not have nuclear localization signal (NLS), so its import to the nucleus is facilitated by the NLS-containing proteins. Nuclear actin plays a role in the maintenance of the nuclear structure and the nuclear envelope breakdown. It is also involved in chromatin remodeling, and chromatin and nucleosome movement necessary for DNA recombination, repair, and the initiation of transcription. It also binds RNA polymerases, promoting transcription. Because of the multifaceted role of nuclear actin, the future challenge will be to further define its functions in various cellular processes and diseases. Abstract Actin is one of the most abundant proteins in eukaryotic cells. There are different pools of nuclear actin often undetectable by conventional staining and commercial antibodies used to identify cytoplasmic actin. With the development of more sophisticated imaging and analytical techniques, it became clear that nuclear actin plays a crucial role in shaping the chromatin, genomic, and epigenetic landscape, transcriptional regulation, and DNA repair. This multifaceted role of nuclear actin is not only important for the function of the individual cell but also for the establishment of cell fate, and tissue and organ differentiation during development. Moreover, the changes in the nuclear, chromatin, and genomic architecture are preamble to various diseases. Here, we discuss some of the newly described functions of nuclear actin.
Collapse
|
10
|
Kloc M, Uosef A, Villagran M, Zdanowski R, Kubiak JZ, Wosik J, Ghobrial RM. RhoA- and Actin-Dependent Functions of Macrophages from the Rodent Cardiac Transplantation Model Perspective -Timing Is the Essence. BIOLOGY 2021; 10:biology10020070. [PMID: 33498417 PMCID: PMC7909416 DOI: 10.3390/biology10020070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary The functions of animal and human cells depend on the actin cytoskeleton and its regulating protein called the RhoA. The actin cytoskeleton and RhoA also regulate the response of the immune cells such as macrophages to the microbial invasion and/or the presence of a non-self, such as a transplanted organ. The immune response against transplant occurs in several steps. The early step occurring within days post-transplantation is called the acute rejection and the late step, occurring months to years post-transplantation, is called the chronic rejection. In clinical transplantation, acute rejection is easily manageable by the anti-rejection drugs. However, there is no cure for chronic rejection, which is caused by the macrophages entering the transplant and promoting blockage of its blood vessels and destruction of tissue. We discuss here how the inhibition of the RhoA and actin cytoskeleton polymerization in the macrophages, either by genetic interference or pharmacologically, prevents macrophage entry into the transplanted organ and prevents chronic rejection, and also how it affects the anti-microbial function of the macrophages. We also focus on the importance of timing of the macrophage functions in chronic rejection and how the circadian rhythm may affect the anti-chronic rejection and anti-microbial therapies. Abstract The small GTPase RhoA, and its down-stream effector ROCK kinase, and the interacting Rac1 and mTORC2 pathways, are the principal regulators of the actin cytoskeleton and actin-related functions in all eukaryotic cells, including the immune cells. As such, they also regulate the phenotypes and functions of macrophages in the immune response and beyond. Here, we review the results of our and other’s studies on the role of the actin and RhoA pathway in shaping the macrophage functions in general and macrophage immune response during the development of chronic (long term) rejection of allografts in the rodent cardiac transplantation model. We focus on the importance of timing of the macrophage functions in chronic rejection and how the circadian rhythm may affect the anti-chronic rejection therapies.
Collapse
Affiliation(s)
- Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX 77030, USA; (A.U.); (R.M.G.)
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
- M.D. Anderson Cancer Center, Department of Genetics, The University of Texas, Houston, TX 77030, USA
- Correspondence:
| | - Ahmed Uosef
- The Houston Methodist Research Institute, Houston, TX 77030, USA; (A.U.); (R.M.G.)
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
| | - Martha Villagran
- Electrical and Computer Engineering Department, University of Houston, Houston, TX 77204, USA; (M.V.); (J.W.)
- Texas Center for Superconductivity, University of Houston, Houston, TX 77204, USA
| | - Robert Zdanowski
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine (WIM), 04-141 Warsaw, Poland;
| | - Jacek Z. Kubiak
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), 01-163 Warsaw, Poland;
- Cell Cycle Group, CNRS, Faculty of Medicine, Institute of Genetics and Development of Rennes, University of Rennes, UMR, 6290 Rennes, France
| | - Jarek Wosik
- Electrical and Computer Engineering Department, University of Houston, Houston, TX 77204, USA; (M.V.); (J.W.)
- Texas Center for Superconductivity, University of Houston, Houston, TX 77204, USA
| | - Rafik M. Ghobrial
- The Houston Methodist Research Institute, Houston, TX 77030, USA; (A.U.); (R.M.G.)
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
11
|
Peng AYT, Kolhe JA, Behrens LD, Freeman BC. Genome organization: Tag it, move it, place it. Curr Opin Cell Biol 2020; 68:90-97. [PMID: 33166737 DOI: 10.1016/j.ceb.2020.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/28/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022]
Abstract
Chromosomes are selectively organized within the nuclei of interphase cells reflecting the current fate of each cell and are reorganized in response to various physiological cues to maintain homeostasis. Although substantial progress is being made to establish the various patterns of genome architecture, less is understood on how chromosome folding/positioning is achieved. Here, we discuss recent insights into the cellular mechanisms dictating chromatin movements including the use of epigenetic modifications and allosterically regulated transcription factors, as well as a nucleoskeleton system comprised of actin, myosin, and actin-binding proteins. Together, these nuclear factors help coordinate the positioning of both general and cell-specific genomic architectural features.
Collapse
Affiliation(s)
- Audrey Yi Tyan Peng
- University of Illinois, Urbana-Champaign, Department of Cell and Developmental Biology, Urbana, IL, 61801, USA
| | - Janhavi A Kolhe
- University of Illinois, Urbana-Champaign, Department of Cell and Developmental Biology, Urbana, IL, 61801, USA
| | - Lindsey D Behrens
- University of Illinois, Urbana-Champaign, Department of Cell and Developmental Biology, Urbana, IL, 61801, USA
| | - Brian C Freeman
- University of Illinois, Urbana-Champaign, Department of Cell and Developmental Biology, Urbana, IL, 61801, USA.
| |
Collapse
|
12
|
Duan T, Green N, Tootle TL, Geyer PK. Nuclear architecture as an intrinsic regulator of Drosophila female germline stem cell maintenance. CURRENT OPINION IN INSECT SCIENCE 2020; 37:30-38. [PMID: 32087561 PMCID: PMC7089816 DOI: 10.1016/j.cois.2019.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 05/08/2023]
Abstract
Homeostasis of Drosophila germline stem cells (GSC) depends upon the integration of intrinsic and extrinsic signals. This review highlights emerging data that support nuclear architecture as an intrinsic regulator of GSC maintenance and germ cell differentiation. Here, we focus on the nuclear lamina (NL) and the nucleolus, two compartments that undergo alterations in composition upon germ cell differentiation. Loss of NL or nucleolar components leads to GSC loss, resulting from activation of GSC quality control checkpoint pathways. We suggest that the NL and nucleolus integrate signals needed for the switch between GSC maintenance and germ cell differentiation, and propose regulation of nuclear actin pools as one mechanism that connects these compartments.
Collapse
Affiliation(s)
- Tingting Duan
- Departments of Biochemistry, University of Iowa, College of Medicine, Iowa City, IA 52242, USA
| | - Nicole Green
- Anatomy and Cell Biology, University of Iowa, College of Medicine, Iowa City, IA 52242, USA
| | - Tina L Tootle
- Anatomy and Cell Biology, University of Iowa, College of Medicine, Iowa City, IA 52242, USA
| | - Pamela K Geyer
- Departments of Biochemistry, University of Iowa, College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
13
|
Dialynas G, Delabaere L, Chiolo I. Arp2/3 and Unc45 maintain heterochromatin stability in Drosophila polytene chromosomes. Exp Biol Med (Maywood) 2019; 244:1362-1371. [PMID: 31364400 PMCID: PMC6880141 DOI: 10.1177/1535370219862282] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/18/2019] [Indexed: 12/31/2022] Open
Abstract
Repairing DNA double-strand breaks is particularly challenging in pericentromeric heterochromatin, where the abundance of repeated sequences exacerbates the risk of ectopic recombination. In Drosophila Kc cells, accurate homologous recombination repair of heterochromatic double-strand breaks relies on the relocalization of repair sites to the nuclear periphery before Rad51 recruitment and strand invasion. This movement is driven by Arp2/3-dependent nuclear actin filaments and myosins’ ability to walk along them. Conserved mechanisms enable the relocalization of heterochromatic repair sites in mouse cells, and defects in these pathways lead to massive ectopic recombination in heterochromatin and chromosome rearrangements. In Drosophila polytene chromosomes, extensive DNA movement is blocked by a stiff structure of chromosome bundles. Repair pathways in this context are poorly characterized, and whether heterochromatic double-strand breaks relocalize in these cells is unknown. Here, we show that damage in heterochromatin results in relaxation of the heterochromatic chromocenter, consistent with a dynamic response. Arp2/3, the Arp2/3 activator Scar, and the myosin activator Unc45, are required for heterochromatin stability in polytene cells, suggesting that relocalization enables heterochromatin repair also in this tissue. Together, these studies reveal critical roles for actin polymerization and myosin motors in heterochromatin repair and genome stability across different organisms and tissue types.
Collapse
Affiliation(s)
- George Dialynas
- Department of Molecular and Computational Biology,
University
of Southern California, Los Angeles
90089, USA
| | - Laetitia Delabaere
- Department of Molecular and Computational Biology,
University
of Southern California, Los Angeles
90089, USA
| | - Irene Chiolo
- Department of Molecular and Computational Biology,
University
of Southern California, Los Angeles
90089, USA
| |
Collapse
|
14
|
Abdellatif MEA, Hipp L, Plessner M, Walther P, Knöll B. Indirect visualization of endogenous nuclear actin by correlative light and electron microscopy (CLEM) using an actin-directed chromobody. Histochem Cell Biol 2019; 152:133-143. [PMID: 31154480 PMCID: PMC6675784 DOI: 10.1007/s00418-019-01795-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
Actin fulfills important cytoplasmic but also nuclear functions in eukaryotic cells. In the nucleus, actin modulates gene expression and chromatin remodeling. Monomeric (G-actin) and polymerized actin (F-actin) have been analyzed by fluorescence microscopy in the nucleus; however, the resolution at the ultrastructural level has not been investigated in great detail. We provide a first documentation of nuclear actin in mouse fibroblasts by electron microscopy (EM). For this, we employed correlative light and electron microscopy on the same section using actin-directed nanobodies recognizing endogenous monomeric and polymeric actin proteins (so-called nuclear Actin-chromobody-GFP; nAC-GFP). Indeed, using this strategy, we could identify actin proteins present in the nucleus. Here, immunogold-labeled actin proteins were spread throughout the entire nucleoplasm. Of note, nuclear actin was complementarily localized to DAPI-positive areas, the latter marking preferentially transcriptionally inactive heterochromatin. Since actin aggregates in rod structures upon cell stress including neurodegeneration, we analyzed nuclear actin at the ultrastructural level after DMSO or UV-mediated cell damage. In those cells the ratio between cytoplasmic and nuclear gold-labeled actin proteins was altered compared to untreated control cells. In summary, this EM analysis (i) confirmed the presence of endogenous nuclear actin at ultrastructural resolution, (ii) revealed the actin abundance in less chromatin-dense regions potentially reflecting more transcriptionally active euchromatin rather than transcriptionally inactive heterochromatin and (iii) showed an altered abundance of actin-associated gold particles upon cell stress.
Collapse
Affiliation(s)
- Mohamed E A Abdellatif
- Central Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Lisa Hipp
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Matthias Plessner
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Bernd Knöll
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
15
|
Kelpsch DJ, Tootle TL. Nuclear Actin: From Discovery to Function. Anat Rec (Hoboken) 2018; 301:1999-2013. [PMID: 30312531 PMCID: PMC6289869 DOI: 10.1002/ar.23959] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/20/2018] [Accepted: 05/14/2018] [Indexed: 01/02/2023]
Abstract
While actin was discovered in the nucleus over 50 years ago, research lagged for decades due to strong skepticism. The revitalization of research into nuclear actin occurred after it was found that cellular stresses induce the nuclear localization and alter the structure of actin. These studies provided the first hints that actin has a nuclear function. Subsequently, it was established that the nuclear import and export of actin is highly regulated. While the structures of nuclear actin remain unclear, it can function as monomers, polymers, and even rods. Furthermore, even within a given structure, distinct pools of nuclear actin that can be differentially labeled have been identified. Numerous mechanistic studies have uncovered an array of functions for nuclear actin. It regulates the activity of RNA polymerases, as well as specific transcription factors. Actin also modulates the activity of several chromatin remodeling complexes and histone deacetylases, to ultimately impinge on transcriptional programing and DNA damage repair. Further, nuclear actin mediates chromatin movement and organization. It has roles in meiosis and mitosis, and these functions may be functionally conserved from ancient bacterial actin homologs. The structure and integrity of the nuclear envelope and sub-nuclear compartments are also regulated by nuclear actin. Furthermore, nuclear actin contributes to human diseases like cancer, neurodegeneration, and myopathies. Here, we explore the early discovery of actin in the nucleus and discuss the forms and functions of nuclear actin in both normal and disease contexts. Anat Rec, 301:1999-2013, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Daniel J. Kelpsch
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, 51 Newton Rd, 1-500 BSB, Iowa City, IA 52242
| | - Tina L. Tootle
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, 51 Newton Rd, 1-500 BSB, Iowa City, IA 52242
| |
Collapse
|
16
|
Vogl AW, Guttman JA. An Introduction to Actin and Actin-Rich Structures. Anat Rec (Hoboken) 2018; 301:1986-1990. [PMID: 30312025 DOI: 10.1002/ar.23960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 01/01/2023]
Abstract
The actin cytoskeleton has long been recognized as a crucial sub-cellular filament system that is responsible for governing fundamental events ranging from cell division and muscle contraction to whole cell motility and the maintenance of tissue integrity. Consequently, it is not surprising that this network is the focus of over 100,000 different manuscripts. Alterations in the actin cytoskeleton lead to an assortment of diseases and serve as a target for a variety of pathogens. Here we have brought together a collection of primary research articles and reviews that underscore the broad influence this filament system has on organisms. Anat Rec, 301:1986-1990, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- A Wayne Vogl
- Life Sciences Centre, Vancouver, British Columbia, Canada
| | - Julian A Guttman
- Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|