1
|
Zhang L, Leng XX, Qi J, Wang N, Han JX, Tao ZH, Zhuang ZY, Ren Y, Xie YL, Jiang SS, Li JL, Chen H, Zhou CB, Cui Y, Chen X, Wang Z, Zhang ZZ, Hong J, Chen HY, Jiang W, Chen YX, Zhao X, Yu J, Fang JY. The adhesin RadD enhances Fusobacterium nucleatum tumour colonization and colorectal carcinogenesis. Nat Microbiol 2024; 9:2292-2307. [PMID: 39169124 DOI: 10.1038/s41564-024-01784-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
Fusobacterium nucleatum can bind to host cells and potentiate intestinal tumorigenesis. Here we used a genome-wide screen to identify an adhesin, RadD, which facilitates the attachment of F. nucleatum to colorectal cancer (CRC) cells in vitro. RadD directly binds to CD147, a receptor overexpressed on CRC cell surfaces, which initiated a PI3K-AKT-NF-κB-MMP9 cascade, subsequently enhancing tumorigenesis in mice. Clinical specimen analysis showed that elevated radD gene levels in CRC tissues correlated positively with activated oncogenic signalling and poor patient outcomes. Finally, blockade of the interaction between RadD and CD147 in mice effectively impaired F. nucleatum attachment and attenuated F. nucleatum-induced oncogenic response. Together, our study provides insights into an oncogenic mechanism driven by F. nucleatum RadD and suggests that the RadD-CD147 interaction could be a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Lu Zhang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Xu Leng
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ni Wang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ji-Xuan Han
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-Hang Tao
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zi-Yan Zhuang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yimeng Ren
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Le Xie
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shan-Shan Jiang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jia-Lu Li
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huimin Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng-Bei Zhou
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Cui
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyu Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zi-Zhen Zhang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Hong
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao-Yan Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weihong Jiang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ying-Xuan Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Dhanda AS, Guttman JA. Localization of host endocytic and actin-associated proteins during Shigella flexneri intracellular motility and intercellular spreading. Anat Rec (Hoboken) 2022; 306:1088-1110. [PMID: 35582740 DOI: 10.1002/ar.24955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 11/10/2022]
Abstract
Shigella flexneri (S. flexneri), the causative agent of bacillary dysentery, uses an effector-mediated strategy to hijack host cells and cause disease. To propagate and spread within human tissues, S. flexneri bacteria commandeer the host actin cytoskeleton to generate slender actin-rich comet tails to move intracellularly, and later, plasma membrane actin-based protrusions to move directly between adjacent host cells. To facilitate intercellular bacterial spreading, large micron-sized endocytic-like membrane invaginations form at the periphery of neighboring host cells that come into contact with S. flexneri-containing membrane protrusions. While S. flexneri comet tails and membrane protrusions consist primarily of host actin cytoskeletal proteins, S. flexneri membrane invaginations remain poorly understood with only clathrin and the clathrin adapter epsin-1 localized to the structures. Tangentially, we recently reported that Listeria monocytogenes, another actin-hijacking pathogen, exploits an assortment of caveolar and actin-bundling proteins at their micron-sized membrane invaginations formed during their cell-to-cell movement. Thus, to further characterize the S. flexneri disease process, we set out to catalog the distribution of a variety of actin-associated and caveolar proteins during S. flexneri actin-based motility and cell-to-cell spreading. Here we show that actin-associated proteins found at L. monocytogenes comet tails and membrane protrusions mimic those present at S. flexneri comet tails with the exception of α-actinins 1 and 4, which were shed from S. flexneri membrane protrusions. We also demonstrate that all known host endocytic components found at L. monocytogenes membrane invaginations are also present at those formed during S. flexneri infections.
Collapse
Affiliation(s)
- Aaron Singh Dhanda
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Julian Andrew Guttman
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
3
|
Chen Y, Shen W, Wang B, Zhao X, Su L, Kong M, Li H, Zhang S, Li J. Occurrence and fate of antibiotics, antimicrobial resistance determinants and potential human pathogens in a wastewater treatment plant and their effects on receiving waters in Nanjing, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111371. [PMID: 32979719 DOI: 10.1016/j.ecoenv.2020.111371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 05/23/2023]
Abstract
Antibiotics, antimicrobial resistance determinants and human pathogens are new types of environmental pollutants that pose a great threat to human health. Wastewater treatment plants (WWTPs) are important sources of novel pollutants; however, few studies have investigated their impact on surrounding natural water. Therefore, this study used a WWTP as the entry point to explore WWTP removal efficiency of antibiotics, antimicrobial resistance determinants and human pathogens and further analyze the impact of WWTP effluent on receiving waters. The investigated WWTP had a good removal effect on fluoroquinolones, macrolides, lincomycin, sulfanilamide, tetracycline and chloramphenicol antibiotics in wastewater, and the concentration of antibiotics in the WWTP's effluent was reduced by >80% relative to the influent. In addition to cmlA, the effect of the WWTP on antimicrobial resistance determinants removal was poor, although the effluent from the WWTP had no effect on the abundance of antimicrobial resistance determinants in the receiving water. However, with the dilution of receiving water, the abundance of antimicrobial resistance determinants gradually decreased. The WWTP could reduce the abundance of bacteria by 1000 times from influent water to effluent water. The major bacteria in the influent and effluent were Bacteroidetes and Proteobacteria. After effluent is discharged into receiving water, Cyanobacteria proliferate in large quantities, which can affect the microbial structure in the environment.The abundance of Acinetobacter, which was the predominant potential human pathogen in local wastewater, decreased dramatically after wastewater treatment. We also conducted an ecological risk assessment of the antibiotics identified and found that the ecological risk AZM and CLR posed to aquatic organisms was high. Overall, we identified the efficiency of WWTP control of antibiotics, antimicrobial resistance determinants and potential human pathogens and the impact of WWTP effluent on receiving water and provided data to support the control of the investigated pollutants.
Collapse
Affiliation(s)
- Yu Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 5500254, China; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Weitao Shen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China; Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Bo Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Xin Zhao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Lianghu Su
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Ming Kong
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Hui Li
- Inner Mongolia Baogang Group Environmental Engineering Research Institute Limited Company, Baotou, 014010, China
| | - Shenghu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Jiang Li
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 5500254, China.
| |
Collapse
|
4
|
Dhanda AS, Yang D, Guttman JA. Localization of alpha-actinin-4 during infections by actin remodeling bacteria. Anat Rec (Hoboken) 2020; 304:1400-1419. [PMID: 33099893 DOI: 10.1002/ar.24548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/13/2020] [Accepted: 09/12/2020] [Indexed: 11/12/2022]
Abstract
Bacterial pathogens cause disease by subverting the structure and function of their target host cells. Several foodborne agents such as Listeria monocytogenes (L. monocytogenes), Shigella flexneri (S. flexneri), Salmonella enterica serovar Typhimurium (S. Typhimurium) and enteropathogenic Escherichia coli (EPEC) manipulate the host actin cytoskeleton to cause diarrheal (and systemic) infections. During infections, these invasive and adherent pathogens hijack the actin filaments of their host cells and rearrange them into discrete actin-rich structures that promote bacterial adhesion (via pedestals), invasion (via membrane ruffles and endocytic cups), intracellular motility (via comet/rocket tails) and/or intercellular dissemination (via membrane protrusions and invaginations). We have previously shown that actin-rich structures generated by L. monocytogenes contain the host actin cross-linker α-actinin-4. Here we set out to examine α-actinin-4 during other key steps of the L. monocytogenes infectious cycle as well as characterize the subcellular distribution of α-actinin-4 during infections with other model actin-hijacking bacterial pathogens (S. flexneri, S. Typhimurium and EPEC). Although α-actinin-4 is absent at sites of initial L. monocytogenes invasion, we show that it is a new component of the membrane invaginations formed during secondary infections of neighboring host cells. Importantly, we reveal that α-actinin-4 also localizes to the major actin-rich structures generated during cell culture infections with S. flexneri (comet/rocket tails and membrane protrusions), S. Typhimurium (membrane ruffles) and EPEC (pedestals). Taken together, these findings suggest that α-actinin-4 is a host factor that is exploited by an assortment of actin-hijacking bacterial pathogens.
Collapse
Affiliation(s)
- Aaron S Dhanda
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Diana Yang
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Julian A Guttman
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|