1
|
White Z, Sun Z, Sauge E, Cox D, Donen G, Pechkovsky D, Straub V, Francis GA, Bernatchez P. Limb-girdle muscular dystrophy type 2B causes HDL-C abnormalities in patients and statin-resistant muscle wasting in dysferlin-deficient mice. Skelet Muscle 2022; 12:25. [PMID: 36447272 PMCID: PMC9706908 DOI: 10.1186/s13395-022-00308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
Limb-girdle muscular dystrophy (MD) type 2B (LGMD2B) and Duchenne MD (DMD) are caused by mutations to the Dysferlin and Dystrophin genes, respectively. We have recently demonstrated in typically mild dysferlin- and dystrophin-deficient mouse models that increased plasma cholesterol levels severely exacerbate muscle wasting, and that DMD patients display primary dyslipidemia characterized by elevated plasma cholesterol and triglycerides. Herein, we investigate lipoprotein abnormalities in LGMD2B and if statin therapy protects dysferlin-deficient mice (Dysf) from muscle damage. Herein, lipoproteins and liver enzymes from LGMD2B patients and dysferlin-null (Dysf) mice were analyzed. Simvastatin, which exhibits anti-muscle wasting effects in mouse models of DMD and corrects aberrant expression of key markers of lipid metabolism and endogenous cholesterol synthesis, was tested in Dysf mice. Muscle damage and fibrosis were assessed by immunohistochemistry and cholesterol signalling pathways via Western blot. LGMD2B patients show reduced serum high-density lipoprotein cholesterol (HDL-C) levels compared to healthy controls and exhibit a greater prevalence of abnormal total cholesterol (CHOL)/HDL-C ratios despite an absence of liver dysfunction. While Dysf mice presented with reduced CHOL and associated HDL-C and LDL-C-associated fractions, simvastatin treatment did not prevent muscle wasting in quadriceps and triceps muscle groups or correct aberrant low-density lipoprotein receptor (LDLR) and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) protein expression. LGMD2B patients present with reduced serum concentrations of HDL-C, a major metabolic comorbidity, and as a result, statin therapy is unlikely to prevent muscle wasting in this population. We propose that like DMD, LGMD2B should be considered as a new type of genetic dyslipidemia.
Collapse
Affiliation(s)
- Zoe White
- grid.17091.3e0000 0001 2288 9830Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia (UBC), 217-2176 Health Sciences Mall, Vancouver, BC V6T 1Z3 Canada ,grid.416553.00000 0000 8589 2327UBC Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, Canada
| | - Zeren Sun
- grid.17091.3e0000 0001 2288 9830Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia (UBC), 217-2176 Health Sciences Mall, Vancouver, BC V6T 1Z3 Canada ,grid.416553.00000 0000 8589 2327UBC Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, Canada
| | - Elodie Sauge
- grid.17091.3e0000 0001 2288 9830Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia (UBC), 217-2176 Health Sciences Mall, Vancouver, BC V6T 1Z3 Canada ,grid.416553.00000 0000 8589 2327UBC Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, Canada
| | - Dan Cox
- grid.1006.70000 0001 0462 7212Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Graham Donen
- grid.17091.3e0000 0001 2288 9830Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia (UBC), 217-2176 Health Sciences Mall, Vancouver, BC V6T 1Z3 Canada ,grid.416553.00000 0000 8589 2327UBC Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, Canada
| | - Dmitri Pechkovsky
- grid.17091.3e0000 0001 2288 9830Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia (UBC), 217-2176 Health Sciences Mall, Vancouver, BC V6T 1Z3 Canada ,grid.416553.00000 0000 8589 2327UBC Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, Canada
| | - Volker Straub
- grid.1006.70000 0001 0462 7212Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Gordon A. Francis
- grid.416553.00000 0000 8589 2327UBC Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, Canada ,grid.17091.3e0000 0001 2288 9830Department of Medicine, UBC, Vancouver, Canada
| | - Pascal Bernatchez
- grid.17091.3e0000 0001 2288 9830Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia (UBC), 217-2176 Health Sciences Mall, Vancouver, BC V6T 1Z3 Canada ,grid.416553.00000 0000 8589 2327UBC Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, Canada
| |
Collapse
|
2
|
Schultz TI, Raucci FJ, Salloum FN. Cardiovascular Disease in Duchenne Muscular Dystrophy. JACC Basic Transl Sci 2022; 7:608-625. [PMID: 35818510 PMCID: PMC9270569 DOI: 10.1016/j.jacbts.2021.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/11/2022]
Abstract
Cardiomyopathy is the leading cause of death in patients with DMD. DMD has no cure, and there is no current consensus for treatment of DMD cardiomyopathy. This review discusses therapeutic strategies to potentially reduce or prevent cardiac dysfunction in DMD patients. Additional studies are needed to firmly establish optimal treatment modalities for DMD cardiomyopathy.
Duchenne muscular dystrophy (DMD) is a devastating disease affecting approximately 1 in every 3,500 male births worldwide. Multiple mutations in the dystrophin gene have been implicated as underlying causes of DMD. However, there remains no cure for patients with DMD, and cardiomyopathy has become the most common cause of death in the affected population. Extensive research is under way investigating molecular mechanisms that highlight potential therapeutic targets for the development of pharmacotherapy for DMD cardiomyopathy. In this paper, the authors perform a literature review reporting on recent ongoing efforts to identify novel therapeutic strategies to reduce, prevent, or reverse progression of cardiac dysfunction in DMD.
Collapse
|
3
|
Mucha O, Podkalicka P, Kaziród K, Samborowska E, Dulak J, Łoboda A. Simvastatin does not alleviate muscle pathology in a mouse model of Duchenne muscular dystrophy. Skelet Muscle 2021; 11:21. [PMID: 34479633 PMCID: PMC8414747 DOI: 10.1186/s13395-021-00276-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is an incurable disease, caused by the mutations in the DMD gene, encoding dystrophin, an actin-binding cytoskeletal protein. Lack of functional dystrophin results in muscle weakness, degeneration, and as an outcome cardiac and respiratory failure. As there is still no cure for affected individuals, the pharmacological compounds with the potential to treat or at least attenuate the symptoms of the disease are under constant evaluation. The pleiotropic agents, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, known as statins, have been suggested to exert beneficial effects in the mouse model of DMD. On the other hand, they were also reported to induce skeletal-muscle myopathy. Therefore, we decided to verify the hypothesis that simvastatin may be considered a potential therapeutic agent in DMD. Methods Several methods including functional assessment of muscle function via grip strength measurement, treadmill test, and single-muscle force estimation, enzymatic assays, histological analysis of muscle damage, gene expression evaluation, and immunofluorescence staining were conducted to study simvastatin-related alterations in the mdx mouse model of DMD. Results In our study, simvastatin treatment of mdx mice did not result in improved running performance, grip strength, or specific force of the single muscle. Creatine kinase and lactate dehydrogenase activity, markers of muscle injury, were also unaffected by simvastatin delivery in mdx mice. Furthermore, no significant changes in inflammation, fibrosis, and angiogenesis were noted. Despite the decreased percentage of centrally nucleated myofibers in gastrocnemius muscle after simvastatin delivery, no changes were noticed in other regeneration-related parameters. Of note, even an increased rate of necrosis was found in simvastatin-treated mdx mice. Conclusion In conclusion, our study revealed that simvastatin does not ameliorate DMD pathology. Supplementary Information The online version contains supplementary material available at 10.1186/s13395-021-00276-3.
Collapse
Affiliation(s)
- Olga Mucha
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Paulina Podkalicka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Katarzyna Kaziród
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Emilia Samborowska
- Mass Spectrometry Lab, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
4
|
Effects of high rosuvastatin doses on hepatocyte mitochondria of hypercholesterolemic mice. Sci Rep 2021; 11:15809. [PMID: 34349148 PMCID: PMC8338935 DOI: 10.1038/s41598-021-95140-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022] Open
Abstract
Statins are the cornerstone of therapy for individuals with hyperlipidemia. The aim of this study was to analyze the undesirable effects of mild, moderate and high doses of rosuvastatin in CD-1 male mice who received a cholesterol-rich diet, focusing on the morphological and functional changes on hepatocyte mitochondria. In a mouse model we studied the combined administration of a cholesterol-rich diet along with mild and moderate doses of rosuvastatin (1, 2.5 or 5 mg/kg/day) during several days. After the animals were sacrificed, liver mitochondria were isolated for microscopic studies and to analyze the respiratory function. The respiratory control (state-3/state-4) was evaluated in mice who received high doses of rosuvastatin. Rosuvastatin doses higher than 20 mg/kg/day induced premature death in mice with a hypercholesterolemic diet, but not in mice with a cholesterol-free diet. Doses from 2.5 to 5 mg/kg/day also induced morphological and functional alterations in mitochondria but these hypercholesterolemic animals survived longer. Giving 1 mg/kg/day, which is close to the maximal therapeutic dose for humans, did not affect mitochondrial architecture or respiratory function after two months of treatment. We analyzed the effect of rosuvastatin on hepatic tissue because it is where statins are mainly accumulated and it is the main site of endogenous cholesterol synthesis. Our results contribute to understand the side effects of rosuvastatin in hypercholesterolemic mice, effects that could also affect humans who are intolerant to statins.
Collapse
|
5
|
Intrafamilial phenotypic heterogeneity related to a new DMD splice site variant. Neuromuscul Disord 2021; 31:788-797. [PMID: 34312044 DOI: 10.1016/j.nmd.2021.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 11/20/2022]
Abstract
Dystrophinopathies are a group of X-linked neuromuscular disorders that result from pathogenic variants in the DMD gene. Their pathophysiological substrate is the defective expression of dystrophin in many tissues. While patients from the same pedigree usually present similar dystrophin expression and clinical course, the extent of cardiac and skeletal muscle involvement may not correlate in the same individual. We identified a new splice site variant c.2803+5G>C (NM_004006) ClinVar VCV000803902, located in intron 22 of DMD in a Brazilian family that present a broad phenotypic and histological heterogeneity. One of the subjects had a typical Duchenne muscular dystrophy (DMD) phenotype, whereas the others had Becker muscular dystrophy (BMD). Cardiac involvement was remarkable in some of the BMD patients, but not in the DMD patient. Western blot analysis of skeletal muscle revealed much lower levels of calsequestrin in the most severely affected patient compared to his brother, whose phenotype is BMD, highlighting the potential role of proteins involved in skeletal muscle calcium homeostasis in differential degrees of dystrophinopathies.
Collapse
|