1
|
Rawson JRG, Deakin WJ, Stubbs TL, Smith TJ, Rayfield EJ, Donoghue PCJ. Widespread convergence towards functional optimization in the lower jaws of crocodile-line archosaurs. Proc Biol Sci 2024; 291:20240720. [PMID: 39163982 PMCID: PMC11335402 DOI: 10.1098/rspb.2024.0720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 06/29/2024] [Accepted: 07/18/2024] [Indexed: 08/22/2024] Open
Abstract
Extant crocodilian jaws are subject to functional demands induced by feeding and hydrodynamics. However, the morphological and ecological diversity of extinct crocodile-line archosaurs is far greater than that of living crocodilians, featuring repeated convergence towards disparate ecologies including armoured herbivores, terrestrial macropredators and fully marine forms. Crocodile-line archosaurs, therefore, present a fascinating case study for morphological and functional divergence and convergence within a clade across a wide range of ecological scenarios. Here, we build performance landscapes of two-dimensional theoretical jaw shapes to investigate the influence of strength, speed and hydrodynamics in the morphological evolution of crocodile-line archosaur jaws, and test whether ecologically convergent lineages evolved similarly optimal jaw function. Most of the 243 sampled jaw morphologies occupy optimized regions of theoretical morphospace for either rotational efficiency, resistance to Von Mises stress, hydrodynamic efficiency or a trade-off between multiple functions, though some seemingly viable shapes remain unrealized. Jaw speed is optimized only in a narrow region of morphospace whereas many shapes possess optimal jaw strength, which may act as a minimum boundary rather than a strong driver for most taxa. This study highlights the usefulness of theoretical morphology in assessing functional optimality, and for investigating form-function relationships in diverse clades.
Collapse
Affiliation(s)
| | | | | | - Thomas J. Smith
- School of Earth Sciences, University of Bristol, Bristol, UK
| | | | | |
Collapse
|
2
|
Meade LE, Pittman M, Balanoff A, Lautenschlager S. Cranial functional specialisation for strength precedes morphological evolution in Oviraptorosauria. Commun Biol 2024; 7:436. [PMID: 38600295 PMCID: PMC11006937 DOI: 10.1038/s42003-024-06137-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
Oviraptorosaurians were a theropod dinosaur group that reached high diversity in the Late Cretaceous. Within oviraptorosaurians, the later diverging oviraptorids evolved distinctive crania which were extensively pneumatised, short and tall, and had a robust toothless beak, interpreted as providing a powerful bite for their herbivorous to omnivorous diet. The present study explores the ability of oviraptorid crania to resist large mechanical stresses compared with other theropods and where this adaptation originated within oviraptorosaurians. Digital 3D cranial models were constructed for the earliest diverging oviraptorosaurian, Incisivosaurus gauthieri, and three oviraptorids, Citipati osmolskae, Conchoraptor gracilis, and Khaan mckennai. Finite element analyses indicate oviraptorosaurian crania were stronger than those of other herbivorous theropods (Erlikosaurus and Ornithomimus) and were more comparable to the large, carnivorous Allosaurus. The cranial biomechanics of Incisivosaurus align with oviraptorids, indicating an early establishment of distinctive strengthened cranial biomechanics in Oviraptorosauria, even before the highly modified oviraptorid cranial morphology. Bite modelling, using estimated muscle forces, suggests oviraptorid crania may have functioned closer to structural safety limits. Low mechanical stresses around the beaks of oviraptorids suggest a convergently evolved, functionally distinct rhamphotheca, serving as a cropping/feeding tool rather than for stress reduction, when compared with other herbivorous theropods.
Collapse
Affiliation(s)
- Luke E Meade
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK.
| | - Michael Pittman
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Amy Balanoff
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Stephan Lautenschlager
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
3
|
Nesbitt SJ, Chatterjee S. The osteology of Shuvosaurus inexpectatus, a shuvosaurid pseudosuchian from the Upper Triassic Post Quarry, Dockum Group of Texas, USA. Anat Rec (Hoboken) 2024; 307:1175-1238. [PMID: 38258540 DOI: 10.1002/ar.25376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024]
Abstract
A vast array of pseudosuchian body plans evolved during the diversification of the group in the Triassic Period, but few can compare to the toothless, long-necked, and bipedal shuvosaurids. Members of this clade possess theropod-like character states mapped on top of more plesiomorphic pseudosuchian character states, complicating our understanding of the evolutionary history of the skeleton. One taxon in this clade, Shuvosaurus inexpectatus has been assigned to various theropod dinosaur groups based on a partial skull and referred material and its postcranium was assigned to a different taxon in Pseudosuchia. After the discovery of a skeleton of a shuvosaurid with a Shuvosaurus-like skull and a pseudosuchian postcranial skeleton, it became clear Shuvosaurus inexpectatus was a pseudosuchian. Nevertheless, a number of questions have arisen about what skeletal elements belonged to Shuvosaurus inexpectatus, the identification of skull bones, and the resulting implication for pseudosuchian evolution. Here, we detail the anatomy of the skeleton Shuvosaurus inexpectatus through a critical lens, parse out the bones that belong to the taxon or those that clearly do not or may not belong to the taxon, rediagnose the taxon based on these revisions, and compare the taxon to other archosaurs. We find that Shuvosaurus inexpectatus possesses similar anatomy to other shuvosaurids but parts of the skeleton of the taxon clarifies the anatomy of the group given that they are preserved in Shuvosaurus inexpectatus but not in others. Shuvosaurus inexpectatus is represented by at least 14 individuals from the West Texas Post Quarry (Adamanian holochronozone) and all Shuvosaurus inexpectatus skeletal material from the locality pertains to skeletally immature individuals. All of the skeletons are missing most of the neural arches, ribs, and most of the forelimb. We only recognize Shuvosaurus inexpectatus from the Post Quarry and all other material assigned to the taxon previously is better assigned to the broader group Shuvosauridae.
Collapse
Affiliation(s)
- Sterling J Nesbitt
- Department of Geosciences, Virginia Tech, Blacksburg, Virginia, USA
- Museum of Texas Tech University, Lubbock, Texas, USA
| | | |
Collapse
|
4
|
Fawcett MJ, Lautenschlager S, Bestwick J, Butler RJ. Functional morphology of the Triassic apex predator Saurosuchus galilei (Pseudosuchia: Loricata) and convergence with a post-Triassic theropod dinosaur. Anat Rec (Hoboken) 2024; 307:549-565. [PMID: 37584310 DOI: 10.1002/ar.25299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 08/17/2023]
Abstract
Pseudosuchian archosaurs, reptiles more closely related to crocodylians than to birds, exhibited high morphological diversity during the Triassic and are thus associated with hypotheses of high ecological diversity during this time. One example involves basal loricatans which are non-crocodylomorph pseudosuchians traditionally known as "rauisuchians." Their large size (5-8+ m long) and morphological similarities to post-Triassic theropod dinosaurs, including dorsoventrally deep skulls and serrated dentitions, suggest basal loricatans were apex predators. However, this hypothesis does not consider functional behaviors that can influence more refined roles of predators in their environment, for example, degree of carcass utilization. Here, we apply finite element analysis to a juvenile but three-dimensionally well-preserved cranium of the basal loricatan Saurosuchus galilei to investigate its functional morphology and to compare with stress distributions from the theropod Allosaurus fragilis to assess degrees of functional convergence between Triassic and post-Triassic carnivores. We find similar stress distributions and magnitudes between the two study taxa under the same functional simulations, indicating that Saurosuchus had a somewhat strong skull and thus exhibited some degree of functional convergence with theropods. However, Saurosuchus also had a weak bite for an animal of its size (1015-1885 N) that is broadly equivalent to the bite force of modern gharials (Gavialis gangeticus). We infer that Saurosuchus potentially avoided tooth-bone interactions and consumed the softer parts of carcasses, unlike theropods and other basal loricatans. This deduced feeding mode for Saurosuchus increases the known functional diversity of basal loricatans and highlights functional differences between Triassic and post-Triassic apex predators.
Collapse
Affiliation(s)
- Molly J Fawcett
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Stephan Lautenschlager
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Jordan Bestwick
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Richard J Butler
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
5
|
Müller RT, Ezcurra MD, Garcia MS, Agnolín FL, Stocker MR, Novas FE, Soares MB, Kellner AWA, Nesbitt SJ. New reptile shows dinosaurs and pterosaurs evolved among diverse precursors. Nature 2023; 620:589-594. [PMID: 37587301 DOI: 10.1038/s41586-023-06359-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/22/2023] [Indexed: 08/18/2023]
Abstract
Dinosaurs and pterosaurs have remarkable diversity and disparity through most of the Mesozoic Era1-3. Soon after their origins, these reptiles diversified into a number of long-lived lineages, evolved unprecedented ecologies (for example, flying, large herbivorous forms) and spread across Pangaea4,5. Recent discoveries of dinosaur and pterosaur precursors6-10 demonstrated that these animals were also speciose and widespread, but those precursors have few if any well-preserved skulls, hands and associated skeletons11,12. Here we present a well-preserved partial skeleton (Upper Triassic, Brazil) of the new lagerpetid Venetoraptor gassenae gen. et sp. nov. that offers a more comprehensive look into the skull and ecology of one of these precursors. Its skull has a sharp, raptorial-like beak, preceding that of dinosaurs by around 80 million years, and a large hand with long, trenchant claws that firmly establishes the loss of obligatory quadrupedalism in these precursor lineages. Combining anatomical information of the new species with other dinosaur and pterosaur precursors shows that morphological disparity of precursors resembles that of Triassic pterosaurs and exceeds that of Triassic dinosaurs. Thus, the 'success' of pterosaurs and dinosaurs was a result of differential survival among a broader pool of ecomorphological variation. Our results show that the morphological diversity of ornithodirans started to flourish among early-diverging lineages and not only after the origins of dinosaurs and pterosaurs.
Collapse
Affiliation(s)
- Rodrigo T Müller
- Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia, Universidade Federal de Santa Maria, São João do Polêsine, Brazil.
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, Brazil.
| | - Martín D Ezcurra
- Sección Paleontología de Vertebrados CONICET-Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Buenos Aires, Argentina
| | - Mauricio S Garcia
- Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia, Universidade Federal de Santa Maria, São João do Polêsine, Brazil
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Federico L Agnolín
- Laboratorio de Anatomía Comparada y Evolución de los Vertebrados CONICET-Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Buenos Aires, Argentina
- Fundación de Historia Natural 'Félix de Azara', Departamento de Ciencias Naturales y Antropología, Universidad Maimónides, Buenos Aires, Argentina
| | | | - Fernando E Novas
- Laboratorio de Anatomía Comparada y Evolución de los Vertebrados CONICET-Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Buenos Aires, Argentina
| | - Marina B Soares
- Laboratório de Sistemática e Tafonomia de Vertebrados Fósseis, Setor de Paleovertebrados, Departamento de Geologia e Paleontologia, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexander W A Kellner
- Laboratório de Sistemática e Tafonomia de Vertebrados Fósseis, Setor de Paleovertebrados, Departamento de Geologia e Paleontologia, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
6
|
Holliday CM, Schachner ER. Dispatches from the age of crocodiles: New discoveries from ancient lineages. Anat Rec (Hoboken) 2022; 305:2343-2352. [PMID: 35912969 DOI: 10.1002/ar.25043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 01/19/2023]
Abstract
Crocodilians inspire researchers and the public alike with their explosive hunting methodologies, distinct craniofacial and dental morphology, and resplendent fossil record. This special issue highlights recent advances in the biology and paleontology of this fascinating lineage of vertebrates. The authors in this volume bring crocodylians and their extinct ancestors to life using a variety of approaches including fieldwork, imaging, 3D modeling, developmental biology, physiological monitoring, dissection, and a host of other comparative methods. Our journey begins with early crocodylomorphs from the Triassic, carries us through the radiation of crocodyliforms during the rest of the Mesozoic Era, and finally celebrates the diversification development and biology of extant crocodylians. Crocodyliform science has grown appreciably the past few decades. New fossil species and genetic evidence continue to keep phylogenies and our understanding of relationships wavering in key places of the tree such as the relationships of the extinct marine thalattosuchians as well as still living species like gharials. The application of imaging approaches and 3D modeling to both preserved tissues as well as living specimens is now revealing patterns in brain and lung evolution and function, growth strategies, and feeding and locomotor behaviors across the lineage. Comparative anatomical studies are offering new data on genitals, cephalic venous drainage and thoracoabdominal pressures. The new discoveries found here only reveal there is far more work to be done to understand the biology and behavior responsible for the great radiation extinct suchians and their crocodylian descendants experienced during their conquest of Mesozoic and Tertiary ecosystems.
Collapse
Affiliation(s)
- Casey M Holliday
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Emma R Schachner
- Department of Cell Biology and Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|