1
|
Zhang J, He J, Shuang S, Shi Y, Han L, Hui X, Ouyang X, Zhu J, Wang Z, Zhao B, He R. Analysis of infrared radiation emitted by moxibustion devices made of different materials using Fourier transform infrared spectroscopy. Heliyon 2024; 10:e33221. [PMID: 39005893 PMCID: PMC11239693 DOI: 10.1016/j.heliyon.2024.e33221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/22/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Moxibustion has a long history of use as a traditional Chinese medicine therapy. Infrared radiation is an important and effective factor in moxibustion. Instead of the time-consuming and laborious process of holding moxa sticks in the hand, moxibustion devices are commonly used as moxibustion methods and tools in modern times. With the publication of the international standard of moxibustion devices (ISO18666:2021, Traditional Chinese Medicine - General requirements of moxibustion devices) published, moxibustion devices of various materials are now sold in the pharmacies and online stores. However, the influence of moxibustion devices on the therapeutic effect of moxibustion has not been studied. Therefore, this research was aimed to evaluate the infrared radiation of moxibustion devices, in order to select the moxibustion device that delivered infrared radiation closest to that of moxa stick combustion. The combination of combustion stability and infrared radiation intensity showed that cardboard tubes and silicone were better materials for moxibustion devices. In the mid-far infrared wave band, the moxibustion devices made from cardboard tubes and silica gels can better maintain the thermal effect generated by moxibustion and enable it to be more easily absorbed by the human body. The infrared radiation intensity of the cardboard moxibustion devices increased rapidly and steadily and could be maintained for the longest time. In conclusion, cardboard tubes are the better material for moxibustion devices with respect to infrared radiation.
Collapse
Affiliation(s)
- Jiachen Zhang
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, PR China
| | - Jing He
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, PR China
| | - Shuang Shuang
- National Institute of Clean-and-Low-Carbon Energy, Beijing, PR China
| | - Yuqing Shi
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, PR China
| | - Li Han
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, PR China
| | - Xin Hui
- Beijing Aerospace General Hospital, Beijing, PR China
| | - Xiali Ouyang
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, PR China
| | - Jingyi Zhu
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, PR China
| | - Zhongyu Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, PR China
| | - Baixiao Zhao
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, PR China
| | - Rui He
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, PR China
| |
Collapse
|
2
|
Liang S, Yin Y, Zhang Z, Fang Y, Lu G, Li H, Yin Y, Shen M. Moxibustion prevents tripterygium glycoside-induced oligoasthenoteratozoospermia in rats via reduced oxidative stress and modulation of the Nrf2/HO-1 signaling pathway. Aging (Albany NY) 2024; 16:2141-2160. [PMID: 38277193 PMCID: PMC10911353 DOI: 10.18632/aging.205475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/30/2023] [Indexed: 01/27/2024]
Abstract
Oligoasthenoteratozoospermia (OAT) decreases male fertility, seriously affecting the production of offspring. This study clarified the preventive impact of different moxibustion frequencies on OAT and selected the optimal frequency to elucidate the underlying mechanism. An OAT rat model was constructed by gavage of tripterygium glycosides (TGS) suspension. Daily moxibustion (DM) or alternate-day moxibustion (ADM) was administered on the day of TGS suspension administration. Finally, we selected DM for further study based on sperm quality and DNA fragmentation index, testicular and epididymal morphology, and reproductive hormone level results. Subsequently, the oxidative stress (OS) status was evaluated by observing the OS indices levels; malondialdehyde (MDA), 8-hydroxy-deoxyguanosine (8-OHdG), total antioxidant capacity (T-AOC), and total superoxide dismutase (T-SOD) in testicular tissue using colorimetry and enzyme-linked immunosorbent assay. Furthermore, heme oxygenase 1 (HO-1) and nuclear factor erythropoietin-2-related factor 2 (Nrf2) were evaluated using Western blotting. Immunohistochemistry was employed to locate and assess the expression of HO-1 and Nrf2 protein, while quantitative real-time polymerase chain reaction was utilized to detect their mRNA expression. MDA and 8-OHdG levels decreased following DM treatment, while T-SOD and T-AOC increased, suggesting that DM may prevent TGS-induced OAT in rats by decreasing OS in the testis. Furthermore, protein and mRNA expression of Nrf2 and HO-1 in the testis were elevated, indicating that DM may reduce OS by activating the signaling pathway of Nrf2/HO-1. Therefore, DM could prevent OAT in rats via the Nrf2/HO-1 pathway, thereby presenting a promising therapeutic approach against OAT.
Collapse
Affiliation(s)
- Shangjie Liang
- College of Acupuncture, Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Yaqun Yin
- College of Acupuncture, Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Zhizi Zhang
- College of Acupuncture, Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Yansu Fang
- College of Acupuncture, Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Ge Lu
- College of Acupuncture, Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Hongxiao Li
- College of Acupuncture, Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Yaoli Yin
- College of Acupuncture, Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Meihong Shen
- College of Acupuncture, Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| |
Collapse
|
3
|
Zhang SQ, Jiang XX, Li JC. Traditional Chinese medicine in human diseases treatment: New insights of their potential mechanisms. Anat Rec (Hoboken) 2023; 306:2920-2926. [PMID: 37086202 DOI: 10.1002/ar.25228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/28/2023] [Accepted: 04/07/2023] [Indexed: 04/23/2023]
Abstract
For millennia, traditional Chinese medicine (TCM) has relieved the pain of countless patients with its unique theory and treatment method, which has provoked researchers' interest for exploring the biological and molecular mechanisms. This special issue highlights recent advances of this ancient and mysterious medical system in the basic science research field. The authors in this volume explored the molecular characteristics of TCM syndromes and the disease-resistant mechanisms of acupuncture and Chinese herbs in the diseases effecting the human motor system, digestive system, nervous system, and other organ systems by applying high-throughput omics technologies, molecular biology experiments, animal models and other methods. Alongside enhancing their perception of TCM from these latest findings, readers can also understand how to cross the systematic theory of TCM with modern molecular biology techniques. These studies advance our understanding of the potential mechanisms of TCM in treating human diseases, and also provide inspiration for the development of novel TCM-based therapeutic strategies. We hope these efforts will promote extensive development in TCM research.
Collapse
Affiliation(s)
- Shan-Qiang Zhang
- Clinical Research Laboratory, Shaoxing Seventh People's Hospital, Shaoxing, China
- Department of Anatomy, Shantou University Medical College, Shantou, China
- Department of Histology and Embryology, Zhejiang University Medical School, Hangzhou, China
| | - Xin-Xin Jiang
- Clinical Research Laboratory, Shaoxing Seventh People's Hospital, Shaoxing, China
| | - Ji-Cheng Li
- Clinical Research Laboratory, Shaoxing Seventh People's Hospital, Shaoxing, China
- Department of Anatomy, Shantou University Medical College, Shantou, China
- Department of Histology and Embryology, Zhejiang University Medical School, Hangzhou, China
| |
Collapse
|