1
|
Burgoyne T, Toms M, Way C, Tracey-White D, Futter CE, Moosajee M. Changes in Mitochondrial Size and Morphology in the RPE and Photoreceptors of the Developing and Ageing Zebrafish. Cells 2022; 11:cells11223542. [PMID: 36428971 PMCID: PMC9688747 DOI: 10.3390/cells11223542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/05/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022] Open
Abstract
Mitochondria are essential adenosine triphosphate (ATP)-generating cellular organelles. In the retina, they are highly numerous in the photoreceptors and retinal pigment epithelium (RPE) due to their high energetic requirements. Fission and fusion of the mitochondria within these cells allow them to adapt to changing demands over the lifespan of the organism. Using transmission electron microscopy, we examined the mitochondrial ultrastructure of zebrafish photoreceptors and RPE from 5 days post fertilisation (dpf) through to late adulthood (3 years). Notably, mitochondria in the youngest animals were large and irregular shaped with a loose cristae architecture, but by 8 dpf they had reduced in size and expanded in number with more defined cristae. Investigation of temporal gene expression of several mitochondrial-related markers indicated fission as the dominant mechanism contributing to the changes observed over time. This is likely to be due to continued mitochondrial stress resulting from the oxidative environment of the retina and prolonged light exposure. We have characterised retinal mitochondrial ageing in a key vertebrate model organism, that provides a basis for future studies of retinal diseases that are linked to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Thomas Burgoyne
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- Royal Brompton Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London SW3 6NP, UK
| | - Maria Toms
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Chris Way
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Dhani Tracey-White
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Clare E. Futter
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- The Francis Crick Institute, London NW1 1AT, UK
- Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Correspondence:
| |
Collapse
|
2
|
Ball JM, Chen S, Li W. Mitochondria in cone photoreceptors act as microlenses to enhance photon delivery and confer directional sensitivity to light. SCIENCE ADVANCES 2022; 8:eabn2070. [PMID: 35235359 PMCID: PMC8890704 DOI: 10.1126/sciadv.abn2070] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/03/2022] [Indexed: 05/10/2023]
Abstract
Mammalian photoreceptors aggregate numerous mitochondria, organelles chiefly for energy production, in the ellipsoid region immediately adjacent to the light-sensitive outer segment to support the high metabolic demands of phototransduction. However, these complex, lipid-rich organelles are also poised to affect light passage into the outer segment. Here, we show, via live imaging and simulations, that despite this risk of light scattering or absorption, these tightly packed mitochondria "focus" light for entry into the outer segment and that mitochondrial remodeling affects such light concentration. This "microlens"-like feature of cone mitochondria delivers light with an angular dependence akin to the Stiles-Crawford effect (SCE), providing a simple explanation for this essential visual phenomenon that improves resolution. This new insight into the optical role of mitochondria is relevant for the interpretation of clinical ophthalmological imaging, lending support for the use of SCE as an early diagnostic tool in retinal disease.
Collapse
Affiliation(s)
- John M. Ball
- Retinal Neurophysiology Section, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Shan Chen
- Retinal Neurophysiology Section, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Wei Li
- Corresponding author. (J.M.B.); (W.L.)
| |
Collapse
|
3
|
Kawamura S, Tachibanaki S. Molecular basis of rod and cone differences. Prog Retin Eye Res 2021; 90:101040. [PMID: 34974196 DOI: 10.1016/j.preteyeres.2021.101040] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022]
Abstract
In the vertebrate retina, rods and cones both detect light, but they are different in functional aspects such as light sensitivity and time resolution, for example, and in some of cell biological aspects. For functional aspects, both photoreceptors are known to share a common mechanism, phototransduction cascade, consisting of a series of enzyme reactions to convert a photon-capture signal to an electrical signal. To understand the mechanisms of the functional differences between rods and cones at the molecular level, we compared biochemically each of the reactions in the phototransduction cascade between rods and cones using the cells isolated and purified from carp retina. Although proteins in the cascade are functionally similar between rods and cones, their activities together with their expression levels are mostly different between these photoreceptors. In general, reactions to generate a response are slightly less effective, as a total, in cones than in rods, but each of the reactions for termination and recovery of a response are much more effective in cones. These findings explain lower light sensitivity and briefer light responses in cones than in rods. In addition, our considerations suggest that a Ca2+-binding protein, S-modulin or recoverin, has a currently unnoticed role in shaping light responses. With comparison of the expression levels of proteins and/or mRNAs using purified cells, several proteins were found to be specifically or predominantly expressed in cones. These proteins would be of interest for future studies on the difference between rods and cones.
Collapse
Affiliation(s)
- Satoru Kawamura
- Graduate School of Frontier Biosciences, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan.
| | - Shuji Tachibanaki
- Graduate School of Frontier Biosciences, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
4
|
Giarmarco MM, Brock DC, Robbings BM, Cleghorn WM, Tsantilas KA, Kuch KC, Ge W, Rutter KM, Parker ED, Hurley JB, Brockerhoff SE. Daily mitochondrial dynamics in cone photoreceptors. Proc Natl Acad Sci U S A 2020; 117:28816-28827. [PMID: 33144507 PMCID: PMC7682359 DOI: 10.1073/pnas.2007827117] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cone photoreceptors in the retina are exposed to intense daylight and have higher energy demands in darkness. Cones produce energy using a large cluster of mitochondria. Mitochondria are susceptible to oxidative damage, and healthy mitochondrial populations are maintained by regular turnover. Daily cycles of light exposure and energy consumption suggest that mitochondrial turnover is important for cone health. We investigated the three-dimensional (3D) ultrastructure and metabolic function of zebrafish cone mitochondria throughout the day. At night retinas undergo a mitochondrial biogenesis event, corresponding to an increase in the number of smaller, simpler mitochondria and increased metabolic activity in cones. In the daytime, endoplasmic reticula (ER) and autophagosomes associate more with mitochondria, and mitochondrial size distribution across the cluster changes. We also report dense material shared between cone mitochondria that is extruded from the cell at night, sometimes forming extracellular structures. Our findings reveal an elaborate set of daily changes to cone mitochondrial structure and function.
Collapse
Affiliation(s)
| | - Daniel C Brock
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Brian M Robbings
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | | | | | - Kellie C Kuch
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - William Ge
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Kaitlyn M Rutter
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Edward D Parker
- Department of Ophthalmology, University of Washington, Seattle, WA 98195
| | - James B Hurley
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Department of Ophthalmology, University of Washington, Seattle, WA 98195
| | - Susan E Brockerhoff
- Department of Biochemistry, University of Washington, Seattle, WA 98195;
- Department of Ophthalmology, University of Washington, Seattle, WA 98195
| |
Collapse
|
5
|
Ozaki T, Utsumi S, Iwamoto T, Tanaka M, Tomita H, Sugano E, Ishiyama E, Ishida K. Data on mitochondrial ultrastructure of photoreceptors in pig, rabbit, and mouse retinas. Data Brief 2020; 30:105544. [PMID: 32368587 PMCID: PMC7186507 DOI: 10.1016/j.dib.2020.105544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/17/2020] [Accepted: 04/02/2020] [Indexed: 12/05/2022] Open
Abstract
Photoreceptors are one of the most energy-consuming cell types within the human body. To meet their high energy demand, photoreceptors possess a mitochondrial cluster in the inner segment of the cell. Interestingly, in several species, the inner segment of cone photoreceptors contains extremely large mitochondria that exceed 2 µm in diameter, called mega-mitochondria. We previously reported that pig retinas also contain mega-mitochondria, however, there are few reports whether mega-mitochondria are present in mammalian photoreceptors. In the present experiment, we analyzed pig, rabbit, and mouse photoreceptors under a scanning electron microscope (SEM), and compared the mitochondrial morphology. Our data showed that all three species present numerous mitochondrial clusters in the ellipsoid zone of photoreceptors, adjacent to the outer segment. In the pig retina, the inner segments of cone and rod photoreceptors were localized in different layers; consequently, we were able to distinguish them easily. Mega-mitochondria were identified only in the inner segment of cone photoreceptors. Also, mitochondria of cone photoreceptors, including mega-mitochondria, were dense cristae and high electron-densities compared to those of rod photoreceptors. In the rabbit retina, cone photoreceptors were existed within the layer of rod photoreceptor outer segment. The rod photoreceptors had a characteristic long outer segment. Cone photoreceptors had a short outer segment, and also had a thick inner segment compared to rod photoreceptors. Most of the mitochondria present in the rod photoreceptor inner segment were long and narrow, whereas mitochondria of cone photoreceptors were fragmented and short. Mega-mitochondria was not detected in rabbit retina. In the mouse retina, most of the photoreceptor cells were rod photoreceptors. Since the shape of the inner segments were very similar, we distinguished cone and rod photoreceptors based on the shape of the outer segments. Some mitochondria of both rod and cone photoreceptors were long and narrow, and there was no significant difference in mitochondrial morphology. Our data showed that mitochondrial morphology in the inner segment of photoreceptors vary among mammalian species. Although mega-mitochondria were present in pig photoreceptors, we could not observe their presence in rabbit nor mouse retinas. To our knowledge, this is a first experiment that perform the wide field observation of rabbit and mouse retina using electron microscopy, and that compare the mitochondrial morphology of photoreceptor cells in pig, rabbit and mouse.
Collapse
Key Words
- CIS, cone photoreceptor inner segment
- Cone
- Ellipsoid
- GCL, ganglion cell layer
- INL, inner nuclear layer
- IPL, inner plexiform layer
- IS, inner segment
- Inner segment
- Mitochondria
- ONL, outer nuclear layer
- OPL, outer plexiform layer
- OS, outer segment
- Photoreceptor
- RIS, rod photoreceptor inner segment
- Retina
- Rod
- SEM imaging
- SEM, scanning electron microscopy
Collapse
Affiliation(s)
- Taku Ozaki
- Department of Biological Science, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Shinto Utsumi
- Department of Biological Science, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Takeshi Iwamoto
- Department of Biological Science, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Makoto Tanaka
- Department of Biological Science, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Hiroshi Tomita
- Department of Biological Science, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Eriko Sugano
- Department of Biological Science, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Eri Ishiyama
- Technical Support Center for Life Science Research, Iwate Medical University, Morioka, Japan
| | - Kinji Ishida
- Technical Support Center for Life Science Research, Iwate Medical University, Morioka, Japan
| |
Collapse
|
6
|
Utsumi S, Sakamoto K, Yamashita T, Tomita H, Sugano E, Ishida K, Ishiyama E, Ozaki T. Presence of ES1 homolog in the mitochondrial intermembrane space of porcine retinal cells. Biochem Biophys Res Commun 2020; 524:542-548. [DOI: 10.1016/j.bbrc.2020.01.127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 10/25/2022]
|
7
|
Iwamoto T, Ishiyama E, Ishida K, Yamashita T, Tomita H, Ozaki T. Presence of calpain-5 in mitochondria. Biochem Biophys Res Commun 2018; 504:454-459. [DOI: 10.1016/j.bbrc.2018.08.144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 08/24/2018] [Indexed: 01/10/2023]
|
8
|
Ackerman CM, Weber PK, Xiao T, Thai B, Kuo TJ, Zhang E, Pett-Ridge J, Chang CJ. Multimodal LA-ICP-MS and nanoSIMS imaging enables copper mapping within photoreceptor megamitochondria in a zebrafish model of Menkes disease. Metallomics 2018; 10:474-485. [PMID: 29507920 DOI: 10.1039/c7mt00349h] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Copper is essential for eukaryotic life, and animals must acquire this nutrient through the diet and distribute it to cells and organelles for proper function of biological targets. Indeed, mutations in the central copper exporter ATP7A contribute to a spectrum of diseases, including Menkes disease, with symptoms ranging from neurodegeneration to lax connective tissue. As such, a better understanding of the fundamental impacts of ATP7A mutations on in vivo copper distributions is of relevance to those affected by these diseases. Here we combine metal imaging and optical imaging techniques at a variety of spatial resolutions to identify tissues and structures with altered copper levels in the Calamitygw71 zebrafish model of Menkes disease. Rapid profiling of tissue slices with LA-ICP-MS identified reduced copper levels in the brain, neuroretina, and liver of Menkes fish compared to control specimens. High resolution nanoSIMS imaging of the neuroretina, combined with electron and confocal microscopies, identified the megamitochondria of photoreceptors as loci of copper accumulation in wildtype fish, with lower levels of megamitochondrial copper observed in Calamitygw71 zebrafish. Interestingly, this localized copper decrease does not result in impaired photoreceptor development or altered megamitochondrial morphology, suggesting the prioritization of copper at sufficient levels for maintaining essential mitochondrial functions. Together, these data establish the Calamitygw71 zebrafish as an optically transparent in vivo model for the study of neural copper misregulation, illuminate a role for the ATP7A copper exporter in trafficking copper to the neuroretina, and highlight the utility of combining multiple imaging techniques for studying metals in whole organism settings with spatial resolution.
Collapse
Affiliation(s)
- Cheri M Ackerman
- Department of Chemistry, University of California, Berkeley, California, USA.
| | - Peter K Weber
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California, USA.
| | - Tong Xiao
- Department of Chemistry, University of California, Berkeley, California, USA. and Howard Hughes Medical Institute, University of California, Berkeley, California, USA
| | - Bao Thai
- Department of Chemistry, University of California, Berkeley, California, USA.
| | - Tiffani J Kuo
- Department of Chemistry, University of California, Berkeley, California, USA.
| | - Emily Zhang
- Department of Chemistry, University of California, Berkeley, California, USA.
| | - Jennifer Pett-Ridge
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California, USA.
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, California, USA. and Howard Hughes Medical Institute, University of California, Berkeley, California, USA and Department of Molecular and Cellular Biology, University of California, Berkeley, California, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
9
|
Toomey MB, Corbo JC. Evolution, Development and Function of Vertebrate Cone Oil Droplets. Front Neural Circuits 2017; 11:97. [PMID: 29276475 PMCID: PMC5727011 DOI: 10.3389/fncir.2017.00097] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/20/2017] [Indexed: 11/24/2022] Open
Abstract
To distinguish colors, the nervous system must compare the activity of distinct subtypes of photoreceptors that are maximally sensitive to different portions of the light spectrum. In vertebrates, a variety of adaptations have arisen to refine the spectral sensitivity of cone photoreceptors and improve color vision. In this review article, we focus on one such adaptation, the oil droplet, a unique optical organelle found within the inner segment of cone photoreceptors of a diverse array of vertebrate species, from fish to mammals. These droplets, which consist of neutral lipids and carotenoid pigments, are interposed in the path of light through the photoreceptor and modify the intensity and spectrum of light reaching the photosensitive outer segment. In the course of evolution, the optical function of oil droplets has been fine-tuned through changes in carotenoid content. Species active in dim light reduce or eliminate carotenoids to enhance sensitivity, whereas species active in bright light precisely modulate carotenoid double bond conjugation and concentration among cone subtypes to optimize color discrimination and color constancy. Cone oil droplets have sparked the curiosity of vision scientists for more than a century. Accordingly, we begin by briefly reviewing the history of research on oil droplets. We then discuss what is known about the developmental origins of oil droplets. Next, we describe recent advances in understanding the function of oil droplets based on biochemical and optical analyses. Finally, we survey the occurrence and properties of oil droplets across the diversity of vertebrate species and discuss what these patterns indicate about the evolutionary history and function of this intriguing organelle.
Collapse
Affiliation(s)
- Matthew B Toomey
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Joseph C Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
10
|
Masuda T, Wada Y, Kawamura S. ES1 is a mitochondrial enlarging factor contributing to form mega-mitochondria in zebrafish cones. Sci Rep 2016; 6:22360. [PMID: 26926452 PMCID: PMC4772128 DOI: 10.1038/srep22360] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/12/2016] [Indexed: 12/15/2022] Open
Abstract
Total mass of mitochondria increases during cell proliferation and differentiation through mitochondrial biogenesis, which includes mitochondrial proliferation and growth. During the mitochondrial growth, individual mitochondria have been considered to be enlarged independently of mitochondrial fusion. However, molecular basis for this enlarging process has been poorly understood. Cone photoreceptor cells in the retina possess large mitochondria, so-called mega-mitochondria that have been considered to arise via the enlarging process. Here we show that ES1 is a novel mitochondria-enlarging factor contributing to form mega-mitochondria in cones. ES1 is specifically expressed in cones and localized to mitochondria including mega-mitochondria. Knockdown of ES1 markedly reduced the mitochondrial size in cones. In contrast, ectopic expression of ES1 in rods significantly increased both the size of individual mitochondria and the total mass of the mitochondrial cluster without changing the number of them. RNA-seq analysis showed that ERRα and its downstream mitochondrial genes were significantly up-regulated in the ES1-expressing rods, suggesting facilitation of mitochondrial enlargement via ERRα-dependent processes. Furthermore, higher energy state was detected in the ES1-expressing rods, indicating that the enlarged mitochondria by ES1 are capable of producing high energy. ES1 is the mitochondrial protein that is first found to promote enlargement of individual mitochondria.
Collapse
Affiliation(s)
- Takamasa Masuda
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasutaka Wada
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Suita, Osaka 565-0871, Japan
| | - Satoru Kawamura
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
11
|
Knabe W, Washausen S. Early development of the nervous system of the eutherian <i>Tupaia belangeri</i>. Primate Biol 2015. [DOI: 10.5194/pb-2-25-2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Abstract. The longstanding debate on the taxonomic status of Tupaia belangeri (Tupaiidae, Scandentia, Mammalia) has persisted in times of molecular biology and genetics. But way beyond that Tupaia belangeri has turned out to be a valuable and widely accepted animal model for studies in neurobiology, stress research, and virology, among other topics. It is thus a privilege to have the opportunity to provide an overview on selected aspects of neural development and neuroanatomy in Tupaia belangeri on the occasion of this special issue dedicated to Hans-Jürg Kuhn. Firstly, emphasis will be given to the optic system. We report rather "unconventional" findings on the morphogenesis of photoreceptor cells, and on the presence of capillary-contacting neurons in the tree shrew retina. Thereafter, network formation among directionally selective retinal neurons and optic chiasm development are discussed. We then address the main and accessory olfactory systems, the terminal nerve, the pituitary gland, and the cerebellum of Tupaia belangeri. Finally, we demonstrate how innovative 3-D reconstruction techniques helped to decipher and interpret so-far-undescribed, strictly spatiotemporally regulated waves of apoptosis and proliferation which pass through the early developing forebrain and eyes, midbrain and hindbrain, and through the panplacodal primordium which gives rise to all ectodermal placodes. Based on examples, this paper additionally wants to show how findings gained from the reported projects have influenced current neuroembryological and, at least partly, medical research.
Collapse
|
12
|
Abstract
Ultrastructural examination of photoreceptor inner segment ellipsoids in larval (4, 8, and 15 days postfertilization; dpf) and adult zebrafish identified morphologically different types of mitochondria. All photoreceptors had mitochondria of different sizes (large and small). At 4 dpf, rods had small, moderately stained electron-dense mitochondria (E-DM), and two cone types could be distinguished: (1) those with electron-lucent mitochondria (E-LM) and (2) those with mitochondria of moderate electron density. These distinctions were also apparent at later ages (8 and 15 dpf). Rods from adult fish had fewer mitochondria than their corresponding cones. The ellipsoids of some fully differentiated single and double cones contained large E-DM with few cristae; these were surrounded by small E-LM with typical internal morphology. The mitochondria within the ellipsoids of other single cones showed similar electron density. Microspectrophotometry of cone ellipsoids from adult fish indicated that the large E-DM had a small absorbance peak (∼0.03 OD units) and did not contain cytochrome-c, but crocetin, a carotenoid found in old world monkeys. Crocetin functions to prevent oxidative damage to photoreceptors, suggesting that the ellipsoid mitochondria in adult zebrafish cones protect against apoptosis and function metabolically, rather than as a light filter.
Collapse
|
13
|
Tarboush R, Chapman GB, Connaughton VP. Ultrastructure of the distal retina of the adult zebrafish, Danio rerio. Tissue Cell 2012; 44:264-79. [PMID: 22608306 DOI: 10.1016/j.tice.2012.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 02/07/2012] [Accepted: 04/20/2012] [Indexed: 01/01/2023]
Abstract
The organization, morphological characteristics, and synaptic structure of photoreceptors in the adult zebrafish retina were studied using light and electron microscopy. Adult photoreceptors show a typical ordered tier arrangement with rods easily distinguished from cones based on outer segment (OS) morphology. Both rods and cones contain mitochondria within the inner segments (IS), including the large, electron-dense megamitochondria previously described (Kim et al.) Four major ultrastructural differences were observed between zebrafish rods and cones: (1) the membranes of cone lamellar disks showed a wider variety of relationships to the plasma membrane than those of rods, (2) cone pedicles typically had multiple synaptic ribbons, while rod spherules had 1-2 ribbons, (3) synaptic ribbons in rod spherules were ∼2 times longer than ribbons in cone pedicles, and (4) rod spherules had a more electron-dense cytoplasm than cone pedicles. Examination of photoreceptor terminals identified four synaptic relationships at cone pedicles: (1) invaginating contacts postsynaptic to cone ribbons forming dyad, triad, and quadrad synapses, (2) presumed gap junctions connecting adjacent postsynaptic processes invaginating into cone terminals, (3) basal junctions away from synaptic ribbons, and (4) gap junctions between adjacent photoreceptor terminals. More vitread and slightly farther removed from photoreceptor terminals, extracellular microtubule-like structures were identified in association with presumed horizontal cell processes in the OPL. These findings, the first to document the ultrastructure of the distal retina in adult zebrafish, indicate that zebrafish photoreceptors have many characteristics similar to other species, further supporting the use of zebrafish as a model for the vertebrate visual system.
Collapse
Affiliation(s)
- R Tarboush
- Department of Biology, American University, Washington, DC 20016, USA.
| | | | | |
Collapse
|
14
|
Cornea, retina, and lens morphology in five Soricidae species (Soricomorpha: Mammalia). Anat Sci Int 2009; 84:312-22. [PMID: 19367448 DOI: 10.1007/s12565-009-0042-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 03/11/2009] [Indexed: 10/20/2022]
Abstract
We analyzed the cornea, retina, and lens of five species of Soricidae (pygmy shrew, Sorex minutus; common shrew, Sorex araneus; Millet's shrew, Sorex coronatus; water shrew, Neomys fodiens; greater white-toothed shrew, Crocidura russula) by light and electron microscopy. In all of these species, the corneal epithelium showed a dead cell layer, which may increase the refractive power of the cornea, thereby reducing the hypermetropy that would be expected in a small eye. Moreover, the anterior surface of the lens was more curved than the posterior, thus minimizing spherical aberrations. The thicker lens and its smaller radii of curvature indicated that Sorex species and N. fodiens have a higher refractive lens power than the most nocturnal species, C. russula. In addition, only in the retina cone inner segments of the most diurnal species (genus Sorex) did we find megamitochondria that might act as microlenses to enhance the efficiency of cones. In C. russula, the scarcity of cones and the relatively small yet abundant rod nuclei were found to be consistent with its habits. The flat lens and its more anterior arrangement, together with the lack of megamitochondria in the retina of C. russula, indicated that this species has less visual acuity than the other shrews studied here.
Collapse
|
15
|
Kim J, Lee E, Chang BS, Oh CS, Mun GH, Chung YH, Shin DH. The presence of megamitochondria in the ellipsoid of photoreceptor inner segment of the zebrafish retina. Anat Histol Embryol 2006; 34:339-42. [PMID: 16288603 DOI: 10.1111/j.1439-0264.2005.00612.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although the megamitochondria (MM) were localized in various pathological conditions, normal retina of some mammalian species was reported to include MM for various physiological roles. However, it was not clearly confirmed whether the MM is present in the retina of lower vertebrate as well. In this study, we tried to show the presence of the MM in the zebrafish retina using electron microscopic technique. In all the photoreceptors including rods, cones and double cones of the zebrafish retina, MM were observed in the ellipsoid of inner segment. In the photoreceptor epllipsoid of the zebrafish retina, the mitochondria located in the central portion of the ellipsoid had a highly electron-dense matrix, which were accompanied by the mitochondria with electron-lucent matrix in the apical portion of the ellipsoid. The presence of MM was more clearly discernable in the rods, which were localized under the double cones. This finding is somewhat different from those observed in the previous studies because MM were localized in the inner segment of cones, but were not in those of rods in the case of mammalian retina. Although the exact physiological meaning for the presence of MM in some vertebrate species should be further studied, the present study could show that the MM in the ellipsoid of the retinal photoreceptors was not only restricted in some mammalian species.
Collapse
Affiliation(s)
- J Kim
- Department of Anatomy, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul 110-799, Korea
| | | | | | | | | | | | | |
Collapse
|