1
|
Ren D, Guo W, Yang P, Song J, He J, Zhao L, Kang L. Structural and functional differentiation of a fat body-like tissue adhering to testis follicles facilitates spermatogenesis in locusts. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 113:103207. [PMID: 31421206 DOI: 10.1016/j.ibmb.2019.103207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/27/2019] [Accepted: 07/28/2019] [Indexed: 06/10/2023]
Abstract
The fat body is distributed throughout the body of insects, playing the essential role in intermediary metabolism and nutrient storage. However, the function of differentiation of fat bodies adhering to different tissues remains largely unknown. Here, we identified a fat body-like tissue (FLT) surrounding testis follicles and described its features at morphological, cellular and molecular levels. The FLT is morphologically distinguished with the abdominal fat body (FB) and dominated by diploid cells instead of polyploid cells. The transcriptomic analysis demonstrated that the FLT and FB have dramatically different gene expression profiles. Moreover, genes in the cell cycle pathway, which include both DNA replication- and cell division-related genes, were successively active during development of the FLT, suggesting that FLT cells possibly undergo a mitotic cycle rather than an endocycle. Deprivation of the FLT resulted in distortion of the testis follicles, disappearance of sperm bundles, reduction of total sperm number and increase of dead sperm, indicating a critical role of the FLT in the spermatogenesis in testis follicles. The special functional differentiation of the two similar tissues suggested that FLT-FB cells are able to establish a promising system to study mitotic-to-endocycle transition.
Collapse
Affiliation(s)
- Dani Ren
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Pengcheng Yang
- Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Juan Song
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jing He
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lianfeng Zhao
- Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Koo HN, Yun SH, Kim H, Kim GH. Elucidation of molecular expression associated with abnormal development and sterility caused by electron beam irradiation in Spodoptera litura (F.) (Lepidoptera: Noctuidae). Int J Radiat Biol 2019; 95:360-367. [PMID: 30499761 DOI: 10.1080/09553002.2019.1552376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE The objective of the present study was to elucidate the mode of indirect action of electron beam irradiation at the molecular level against a quarantine pest, Spodoptera litura (F.). MATERIAL AND METHODS Electron beam irradiation (50-200 Gy) was applied to S. litura eggs, larvae, pupae, and adults, after which the feeding area, body weight, deformity of pupae and adults, ovarian development, expression levels of vitellogenin (Vg) and vitellogenin receptor (VgR) genes, and protein levels were analyzed. RESULTS The amount of feeding by S. litura larvae and the synthesis level of 70 kDa storage protein significantly decreased as the electron beam dose increased. When larvae were treated with the electron beam, morphological deformities appeared in the pupae, and abnormal wing disc (AWD) expression significantly decreased. Ovarian development was completely inhibited in emerged adults that had undergone 200 Gy electron beam irradiation as pupae. Quantitative real-time PCR (qRT-PCR) assays showed significant downregulation of the Vg and VgR genes due to electron beam irradiation; whereas the synthesis level of Vg protein (190 kDa) did not decrease with time in eggs unlike in non-irradiated (control) S. litura eggs, exhibiting irradiation induced impairment of Vg functioning. CONCLUSIONS These findings of radiation-induced abnormal development and sterility in S. litura together with the correlated changes at the molecular level may facilitate the development of a phytosanitary strategy against this quarantine pest using electron beam irradiation.
Collapse
Affiliation(s)
- Hyun-Na Koo
- a Department of Plant Medicine, College of Agriculture, Life and Environment Sciences , Chungbuk National University , Cheongju , Republic of Korea
| | - Seung-Hwan Yun
- a Department of Plant Medicine, College of Agriculture, Life and Environment Sciences , Chungbuk National University , Cheongju , Republic of Korea
| | - HyunKyung Kim
- a Department of Plant Medicine, College of Agriculture, Life and Environment Sciences , Chungbuk National University , Cheongju , Republic of Korea
| | - Gil-Hah Kim
- a Department of Plant Medicine, College of Agriculture, Life and Environment Sciences , Chungbuk National University , Cheongju , Republic of Korea
| |
Collapse
|
3
|
Liu L, Wang Y, Li Y, Lin Y, Hou Y, Zhang Y, Wei S, Zhao P, Zhao P, He H. LBD1 of Vitellogenin Receptor Specifically Binds to the Female-Specific Storage Protein SP1 via LBR1 and LBR3. PLoS One 2016; 11:e0162317. [PMID: 27637099 PMCID: PMC5026343 DOI: 10.1371/journal.pone.0162317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/19/2016] [Indexed: 11/18/2022] Open
Abstract
Storage proteins are the major protein synthesized in the fat body, released into hemolymph and re-sequestered into the fat body before pupation in most insect species. Storage proteins are important amino acid and nutrition resources during the non-feeding pupal period and play essential roles for the metamorphosis and oogenesis of insects. The sequestration of storage protein is a selective, specific receptor-mediated process. However, to date, the potential receptor mediating the sequestration of storage protein has not been determined in Bombyx mori. In this study, we expressed and purified the first ligand binding domain of Bombyx mori vitellogenin receptor (BmVgR), LBD1, and found LBD1 could bind with an unknown protein from the hemolymph of the ultimate silkworm larval instar via pull-down assay. This unknown protein was subsequently identified to be the female-specific storage protein SP1 by mass spectrometry. Furthermore, far western blotting assay, immunoprecipitation and isothermal titration calorimetry analysis demonstrated LBD1 specifically bound with the female-specific SP1, rather than another unisex storage protein SP2. The specific binding of LBD1 with SP1 was dependent on the presence of Ca2+ as it was essential for the proper conformation of LBD1. Deletion mutagenesis and ITC analysis revealed the first and third ligand binding repeats LBR1 and LBR3 were indispensable for the binding of LBD1 with SP1, and LBR2 and LBR4 also had a certain contribution to the specific binding. Our results implied BmVgR may mediate the sequestration of SP1 from hemolymph into the fat body during the larval-pupal transformation of Bombyx mori.
Collapse
Affiliation(s)
- Lina Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China
| | - Yejing Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, College of Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- * E-mail: (YW); (HH)
| | - Yu Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China
| | - Ying Lin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China
| | - Yong Hou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China
| | - Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China
| | - Shuguang Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China
| | - Peng Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China
| | - Huawei He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, College of Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- * E-mail: (YW); (HH)
| |
Collapse
|
4
|
Mrinalini, Siebert AL, Wright J, Martinson E, Wheeler D, Werren JH. PARASITOID VENOM INDUCES METABOLIC CASCADES IN FLY HOSTS. Metabolomics 2015; 11:350-366. [PMID: 27867325 PMCID: PMC5113827 DOI: 10.1007/s11306-014-0697-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Parasitoid wasps inject insect hosts with a cocktail of venoms to manipulate the physiology, development, and immunity of the hosts and to promote development of the parasitoid offspring. The jewel wasp Nasonia vitripennis is a model parasitoid with at least 79 venom proteins. We conducted a high-throughput analysis of Nasonia venom effects on temporal changes of 249 metabolites in pupae of the flesh fly host (Sarcophaga bullata), over a five-day time course. Our results show that venom does not simply arrest the metabolism of the fly host. Rather, it targets specific metabolic processes while keeping hosts alive for at least five days post venom injection by the wasp. We found that venom: (a) Activates the sorbitol biosynthetic pathway while maintaining stable glucose levels, (b) Causes a shift in intermediary metabolism by switching to anaerobic metabolism and blocking the tricarboxylic acid cycle, (c) Arrests chitin biosynthesis that likely reflects developmental arrest of adult fly structures, (d) Elevates the majority of free amino acids, and (e) May be increasing phospholipid degradation. Despite sharing some metabolic effects with cold treatment, diapause, and hypoxia, the venom response is distinct from these conditions. Because Nasonia venom dramatically increases sorbitol levels without changing glucose levels, it could be a useful model for studying the regulation of the sorbitol pathway, which is relevant to diabetes research. Our findings generally support the view that parasitoid venoms are a rich source of bioactive molecules with potential biomedical applications.
Collapse
Affiliation(s)
- Mrinalini
- Biology Department, University of Rochester, Rochester, NY 14627 USA
| | - Aisha L. Siebert
- University of Rochester School of Medicine and Dentistry, Translational Biomedical Science Department, Rochester, NY 14627 USA
| | - Jeremy Wright
- Research and Collections Division, New York State Museum, Albany, NY 12230 USA
| | - Ellen Martinson
- Biology Department, University of Rochester, Rochester, NY 14627 USA
| | - David Wheeler
- Institute of Fundamental Sciences, Massey University, Palmerston North, 4442, New Zealand
| | - John H. Werren
- Biology Department, University of Rochester, Rochester, NY 14627 USA
| |
Collapse
|
5
|
Price DP, Nagarajan V, Churbanov A, Houde P, Milligan B, Drake LL, Gustafson JE, Hansen IA. The fat body transcriptomes of the yellow fever mosquito Aedes aegypti, pre- and post- blood meal. PLoS One 2011; 6:e22573. [PMID: 21818341 PMCID: PMC3144915 DOI: 10.1371/journal.pone.0022573] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 06/24/2011] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND The fat body is the main organ of intermediary metabolism in insects and the principal source of hemolymph proteins. As part of our ongoing efforts to understand mosquito fat body physiology and to identify novel targets for insect control, we have conducted a transcriptome analysis of the fat body of Aedes aegypti before and in response to blood feeding. RESULTS We created two fat body non-normalized EST libraries, one from mosquito fat bodies non-blood fed (NBF) and another from mosquitoes 24 hrs post-blood meal (PBM). 454 pyrosequencing of the non-normalized libraries resulted in 204,578 useable reads from the NBF sample and 323,474 useable reads from the PBM sample. Alignment of reads to the existing reference Ae. aegypti transcript libraries for analysis of differential expression between NBF and PBM samples revealed 116,912 and 115,051 matches, respectively. De novo assembly of the reads from the NBF sample resulted in 15,456 contigs, and assembly of the reads from the PBM sample resulted in 15,010 contigs. Collectively, 123 novel transcripts were identified within these contigs. Prominently expressed transcripts in the NBF fat body library were represented by transcripts encoding ribosomal proteins. Thirty-five point four percent of all reads in the PBM library were represented by transcripts that encode yolk proteins. The most highly expressed were transcripts encoding members of the cathepsin b, vitellogenin, vitellogenic carboxypeptidase, and vitelline membrane protein families. CONCLUSION The two fat body transcriptomes were considerably different from each other in terms of transcript expression in terms of abundances of transcripts and genes expressed. They reflect the physiological shift of the pre-feeding fat body from a resting state to vitellogenic gene expression after feeding.
Collapse
Affiliation(s)
- David P. Price
- The Molecular Biology Program, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Vijayaraj Nagarajan
- Bioinformatics and Computational Biosciences Branch (BCBB), OCICB/OSMO/OD/NIAID/NIH, Bethesda, Maryland, United States of America
| | - Alexander Churbanov
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
- The Roadrunner Sequencing Lab, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Peter Houde
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
- The Roadrunner Sequencing Lab, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Brook Milligan
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
- The Roadrunner Sequencing Lab, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Lisa L. Drake
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - John E. Gustafson
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
- The Molecular Biology Program, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Immo A. Hansen
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
- The Institute of Applied Biosciences, New Mexico State University, Las Cruces, New Mexico, United States of America
- The Molecular Biology Program, New Mexico State University, Las Cruces, New Mexico, United States of America
| |
Collapse
|
6
|
Two storage hexamerins from the beet armyworm Spodoptera exigua: cloning, characterization and the effect of gene silencing on survival. BMC Mol Biol 2010; 11:65. [PMID: 20807423 PMCID: PMC2939506 DOI: 10.1186/1471-2199-11-65] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 08/31/2010] [Indexed: 11/16/2022] Open
Abstract
Background In insects, hemocyanin superfamily proteins accumulate apparently to serve as sources of amino acids during metamorphosis, reproduction and development. Storage hexamerins are important members of the hemocyanin superfamily. Although insects possess storage hexamerins, very little is known about the character and specific functions of hexamerin 1 and storage protein 1 in insect development. Results To gain insight into the function of storage proteins in insects, cDNAs for two storage proteins were cloned from the fat body of Spodoptera exigua. S. exigua hexamerin 1 (SeHex) cDNA contained an open reading frame of 2124 nucleotides encoding a protein of 707 amino acids with a predicted molecular weight of 82.12 kDa. S. exigua storage protein 1 (SeSP1) cDNA contained an open reading frame of 2256 bp encoding a protein of 751 amino acids with a predicted molecular weight of ~88.84 kDa. Northern blotting analyses revealed that SeHex mRNA is expressed in the fat body, cuticle, midgut and Malpighian tubules and SeSP1 in fat body, Malpighian tubules and tracheae. SeHex and SeSP1 mRNAs were expressed in fat body at different levels from first instar larvae to pupae, with expression was much lower from first instar larvae to first-day fifth instar larvae. SeHex transcript expression was high in fat body of wandering larvae (pre-pupae) and steadily decreased to the seventh pupal day. SeSP1 transcript expression was high in fat body of wandering larvae, 2-day-old fifth instar larvae and 2-, 4- and 7-day-old pupae. SeHex and SeSP1 mRNAs levels were expressed lower than control on the condition of starvation at 12 h. Of insects injected with SeHex and SeSP1 dsRNA, 38.7% and 24.3% survived to 204 h after treatment, respectively. This was significantly lower than in the controls groups. Conclusions These findings provide new data on the tissue distribution, expression patterns and the function in starvation of storage proteins. RNA interference results revealed that storage protein genes are key in metamorphosis, reproduction and insect development. The results for SeHex and SeSP1 interference reveal that a potential method to control this pest is to disrupt the regulation of storage proteins.
Collapse
|
7
|
Expression profile of cuticular genes of silkworm, Bombyx mori. BMC Genomics 2010; 11:173. [PMID: 20226095 PMCID: PMC2848646 DOI: 10.1186/1471-2164-11-173] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 03/15/2010] [Indexed: 11/16/2022] Open
Abstract
Background Insect cuticle plays essential roles in many physiological functions. During molting and metamorphosis tremendous changes occur in silkworm cuticle where multiple proteins exist and genes encoding them constitute about 1.5% of all Bombyx mori genes. Results In an effort to determine their expression profiles, a microarray-based investigation was carried out using mRNA collected from larvae to pupae. The results showed that a total of 6676 genes involved in various functions and physiological pathways were activated. The vast majority (93%) of cuticular protein genes were expressed in selected stages with varying expression patterns. There was no correlation between expression patterns and the presence of conserved motifs. Twenty-six RR genes distributed in chromosome 22 were co-expressed at the larval and wandering stages. The 2 kb upstream regions of these genes were further analyzed and three putative elements were identified. Conclusions Data from the present study provide, for the first time, a comprehensive expression profile of genes in silkworm epidermal tissues and evidence that putative elements exist to allow massive production of mRNAs from specific cuticular protein genes.
Collapse
|