1
|
Tan M, Li Y, Xu J, Yan S, Jiang D. Effects of Arbuscular Mycorrhizal Fungi-Colonized Populus alba × P. berolinensis Seedlings on the Microbial and Metabolic Status of Gypsy Moth Larvae. INSECTS 2022; 13:1002. [PMID: 36354825 PMCID: PMC9697668 DOI: 10.3390/insects13111002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are considered as important biological factors that can affect insect resistance of plants. Herein, we used AMF-poplar seedlings that could either increase or decrease the resistance to gypsy moth larvae, to elucidate the mechanism of mycorrhizal-induced insect resistance/susceptibility at the larval microbial and metabolic levels. Our results found that larval plant consumption and growth were significantly inhibited in the Glomus mossae (GM)-colonized seedlings, whereas they were enhanced in the Glomus intraradices (GI)-colonized seedlings. GM inoculation reduced the beneficial bacteria abundance in the larval gut and inhibited the detoxification and metabolic functions of gut microbiota. However, GI inoculation improved the larval gut environment by decreasing the pathogenic bacteria and activating specific metabolic pathways. Furthermore, GM inoculation triggers a metabolic disorder in the larval fat body, accompanied by the suppression of detoxification and energy production pathways. The levels of differentially accumulated metabolites related to amino acid synthesis and metabolism and exogenous toxin metabolism pathways were significantly increased in the GI group. Taken together, the disadaptation of gypsy moth larvae to leaves of GM-colonized seedlings led to the GM-induced insect resistance in poplar, and to the GI-induced insect susceptibility involved in the improvement of larval gut environment and fat body energy metabolism.
Collapse
Affiliation(s)
- Mingtao Tan
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Yaning Li
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jinsheng Xu
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Shanchun Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
2
|
Kang K, Cai Y, Yue L, Zhang W. Effects of Different Nutritional Conditions on the Growth and Reproduction of Nilaparvata lugens (Stål). Front Physiol 2022; 12:794721. [PMID: 35058803 PMCID: PMC8764137 DOI: 10.3389/fphys.2021.794721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/03/2021] [Indexed: 11/22/2022] Open
Abstract
Growth and reproduction are the two most basic life processes of organisms and the distribution of energy in these processes is a core issue of the life history of organisms. Nilaparvata lugens (Stål), the brown planthopper (BPH), is a single-feeding rice pest. In the present study, this species was used as a model for testing the effects of nutritional conditions on various growth and reproduction indicators. First, the third-instar nymphs were fed with three different concentrations (100, 50, and 25%) of artificial diet until the second day of adulthood. The results showed that as the nutrient concentration decreased, the body development and oviposition of BPH were hindered. The total lipid content in the fat bodies was also significantly reduced. RT-PCR analysis showed compared to the 100% concentration group, the expression levels of vitellogenin (Vg) genes in the fifth-instar nymphs, adults, and in different tissues (ovary, fat body, and other tissues) were significantly decreased in the 50 and 25% treatment groups. Western blot analysis showed that Vg protein expression was highest in the 100% group, followed by the 50% group, with no expression in the 25% group. These results indicate that growth and reproduction in the BPH are regulated by, or correlated with, nutrient concentration. This study is of great significance as it reveals the adaptive strategies of the BPH to nutritional deficiencies and it also provides valuable information for the comprehensive control of this pest.
Collapse
Affiliation(s)
- Kui Kang
- Key Laboratory of Regional Characteristic for Conservation and Utilization of Zoology Resource in Chishui River Basin, College of Biology and Agriculture, Zunyi Normal University, Zunyi, China
| | - Youjun Cai
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lei Yue
- Key Laboratory of Regional Characteristic for Conservation and Utilization of Zoology Resource in Chishui River Basin, College of Biology and Agriculture, Zunyi Normal University, Zunyi, China
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Yue L, Guan Z, Zhong M, Zhao L, Pang R, Liu K. Genome-Wide Identification and Characterization of Amino Acid Polyamine Organocation Transporter Family Genes Reveal Their Role in Fecundity Regulation in a Brown Planthopper Species ( Nilaparvata lugens). Front Physiol 2021; 12:708639. [PMID: 34335311 PMCID: PMC8316623 DOI: 10.3389/fphys.2021.708639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
The brown planthopper (BPH), Nilaparvata lugens Stål (Hemiptera:Delphacidae), is one of the most destructive pests of rice worldwide. As a sap-feeding insect, the BPH is incapable of synthesizing several amino acids which are essential for normal growth and development. Therefore, the insects have to acquire these amino acids from dietary sources or their endosymbionts, in which amino acid transporters (AATs) play a crucial role by enabling the movement of amino acids into and out of insect cells. In this study, a common amino acid transporter gene family of amino acid/polyamine/organocation (APC) was identified in BPHs and analyzed. Based on a homology search and conserved functional domain recognition, 20 putative APC transporters were identified in the BPH genome. Molecular trait analysis showed that the verified BPH APC family members were highly variable in protein features, conserved motif distribution patterns, and exon/intron organization. Phylogenetic analysis of five hemipteran species revealed an evolutionary pattern of interfamily conservation and lineage-specific expansion of this gene family. Moreover, stage- and tissue-specific expression analysis revealed diverse expression patterns in the 20 BPH APC transporter genes. Lastly, a potential BPH fecundity regulatory gene of NlAPC09 was identified and shown to participate in the fecundity regulation through the use of quantitative polymerase chain reaction (qPCR) and RNA inference experiments. Our results provide a basis for further functional investigations of APC transporters in BPH.
Collapse
Affiliation(s)
- Lei Yue
- Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ziying Guan
- Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Mingzhao Zhong
- Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Luyao Zhao
- Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Kai Liu
- Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
4
|
Liu X, Chen G, He J, Wan G, Shen D, Xia A, Chen F. Transcriptomic analysis reveals the inhibition of reproduction in rice brown planthopper, Nilaparvata lugens, after silencing the gene of MagR (IscA1). INSECT MOLECULAR BIOLOGY 2021; 30:253-263. [PMID: 33410574 DOI: 10.1111/imb.12692] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/18/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
MagR (IscA1) is a member of the iron-sulphur cluster assembly proteins, which plays vital roles in many physiological processes, such as energy metabolism, electron transfer, iron homeostasis, heme biosynthesis and physiologically magnetic response. Its deletion leads to the loss of mitochondrial DNA, inactivation of iron-sulphur proteins and abnormal embryonic development in organisms. However, the physiological roles of MagR in insects are unclear. This study characterized the effects and molecular regulatory mechanism of MagR gene silencing on the reproduction of brachypterous female adults of Nilaparvata lugens. After silencing the MagR gene using RNAi approach, the duration of reproductive period was shortened and the fecundity and hatchability reduced significantly. A total of 479 differentially expressed genes (DEGs) were identified for female adults after 2 days of dsRNA injection through RNA-sequencing technology, including 352 significantly upregulated DEGs and 127 significantly downregulated DEGs, among which 44 DEGs were considered the key genes involved in the effects of NlMagR silencing on the reproduction, revealing the regulatory mechanism of MagR at RNA transcription level and providing a new strategy for the control of N. lugens.
Collapse
Affiliation(s)
- X Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - G Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - J He
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - G Wan
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - D Shen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - A Xia
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - F Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Liu S, Wang X, Zhang R, Song M, Zhang N, Li W, Wang Y, Xu Y, Zhang L. Amino acid, fatty acid, and carbohydrate metabolomic profiles with ginsenoside-induced insecticidal efficacy against Ostrinia furnacalis (Guenee). J Ginseng Res 2020; 44:544-551. [PMID: 32617034 PMCID: PMC7322809 DOI: 10.1016/j.jgr.2019.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/14/2019] [Accepted: 04/23/2019] [Indexed: 01/22/2023] Open
Abstract
Background Previous studies have shown the insecticidal efficacy of ginsenosides. In the present study, we aimed to investigate the metabolic mechanism related to the inhibitory effect of panaxadiol saponins (PDSs) against the Asian corn borer Ostrinia furnacalis (Guenee). Methods Third instar larvae of O. furnacalis were fed normal diets with different concentrations of PDSs for 4 days. The consumption index, relative growth rate, approximate digestibility, and conversion of ingested and digested food were recorded. A targeted gas chromatography–mass spectrometry assay was performed to detect the profiles of amino acids, fatty acids, and carbohydrates in larvae of O. furnacalis. In addition, the activity of detoxification-related enzymes was determined. Results and Conclusions PDSs decreased the consumption index, relative growth rate, approximate digestibility, and conversion of ingested and digested food in the 3rd instar larvae of O. furnacalis in a dose-dependent manner. PDSs decreased 15 free amino acids, 16 free fatty acids, and 5 carbohydrates and increased the levels of palmitoleic acid, palmitic acid, and 9-octadecenoic acid in the 3rd instar larvae. The activity of detoxification-related enzymes, such as acetylcholinesterase, glutathione S-transferase, cytochrome P450, carboxylesterase, trehalase, acid phosphatase, and alkaline phosphatase, was reduced in a dose-dependent manner in the 3rd instar larvae exposed to PDSs. These data confirmed the inhibitory effect of PDSs against growth, food utilization, and detoxification in the 3rd instar larvae of O. furnacalis and the potential for using PDSs as an efficient tool for insect pest management for O. furnacalis larvae. Panaxadiol saponins (PDSs) reduced larval growth and food consumption and utilization in Ostrinia furnacalis. PDSs reduced the levels of free amino acids, fatty acids, and sugar in larvae. PDSs inhibited the activity of acetylcholinesterase, glutathione S-transferase, cytochrome P450, carboxylesterase, trehalase, acid phosphatase, and alkaline phosphatase. All the inhibitory effects of PDSs against O. furnacalis larvae were dose dependent.
Collapse
Affiliation(s)
- Shuangli Liu
- National & Local Joint Engineering Research Center for Ginseng Breeding and Application (Jilin), Jilin Agricultural University, China
| | - Xiaohui Wang
- Research Center of Agricultural Environment and Resources, Jilin Academy of Agricultural Sciences, China
| | - Rui Zhang
- National & Local Joint Engineering Research Center for Ginseng Breeding and Application (Jilin), Jilin Agricultural University, China
| | - Mingjie Song
- National & Local Joint Engineering Research Center for Ginseng Breeding and Application (Jilin), Jilin Agricultural University, China
| | - Nanqi Zhang
- National & Local Joint Engineering Research Center for Ginseng Breeding and Application (Jilin), Jilin Agricultural University, China
| | - Wanying Li
- National & Local Joint Engineering Research Center for Ginseng Breeding and Application (Jilin), Jilin Agricultural University, China
| | - Yingping Wang
- National & Local Joint Engineering Research Center for Ginseng Breeding and Application (Jilin), Jilin Agricultural University, China
| | - Yonghua Xu
- National & Local Joint Engineering Research Center for Ginseng Breeding and Application (Jilin), Jilin Agricultural University, China
- Corresponding author. 2888 Xincheng Street, Changchun City, Jilin Province, China.
| | - Lianxue Zhang
- National & Local Joint Engineering Research Center for Ginseng Breeding and Application (Jilin), Jilin Agricultural University, China
- Corresponding author. 2888 Xincheng Street, Changchun City, Jilin Province, China.
| |
Collapse
|
6
|
Sisterson MS, Stenger DC. Disentangling Effects of Vector Birth Rate, Mortality Rate, and Abundance on Spread of Plant Pathogens. JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:487-501. [PMID: 26637536 DOI: 10.1093/jee/tov329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Models on the spread of insect-transmitted plant pathogens often fix vector population size by assuming that deaths are offset by births. Although such mathematical simplifications are often justified, deemphasizing parameters that govern vector population size is problematic, as reproductive biology and mortality schedules of vectors of plant pathogens receive little empirical attention. Here, the importance of explicitly including parameters for vector birth and death rates was evaluated by comparing results from models with fixed vector population size with models with logistic vector population growth. In fixed vector population size models, increasing vector mortality decreased percentage of inoculative vectors, but had no effect on vector population size, as deaths were offset by births. In models with logistic vector population growth, increasing vector mortality decreased percentage of inoculative vectors and decreased vector population size. Consequently, vector mortality had a greater effect on pathogen spread in models with logistic vector population growth than in models with fixed vector population size. Further, in models with logistic vector population growth, magnitude of vector birth rate determined time required for vector populations to reach large size, thereby determining when pathogen spread occurred quickly. Assumptions regarding timing of vector mortality within a time step also affected model outcome. A greater emphasis of vector entomologists on studying reproductive biology and mortality schedules of insect species that transmit plant pathogens will facilitate identification of conditions associated with rapid growth of vector populations and could lead to development of novel control strategies.
Collapse
|
7
|
TOR Pathway-Mediated Juvenile Hormone Synthesis Regulates Nutrient-Dependent Female Reproduction in Nilaparvata lugens (Stål). Int J Mol Sci 2016; 17:438. [PMID: 27043527 PMCID: PMC4848894 DOI: 10.3390/ijms17040438] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/11/2016] [Accepted: 03/15/2016] [Indexed: 11/17/2022] Open
Abstract
The “target of rapamycin” (TOR) nutritional signaling pathway and juvenile hormone (JH) regulation of vitellogenesis has been known for a long time. However, the interplay between these two pathways regulating vitellogenin (Vg) expression remains obscure. Here, we first demonstrated the key role of amino acids (AAs) in activation of Vg synthesis and egg development in Nilaparvata lugens using chemically defined artificial diets. AAs induced the expression of TOR and S6K (S6 kinase), whereas RNAi-mediated silencing of these two TOR pathway genes and rapamycin application strongly inhibited the AAs-induced Vg synthesis. Furthermore, knockdown of Rheb (Ras homologue enriched in brain), TOR, S6K and application of rapamycin resulted in a dramatic reduction in the mRNA levels of jmtN (juvenile hormone acid methyltransferase, JHAMT). Application of JH III on the RNAi (Rheb and TOR) and rapamycin-treated females partially rescued the Vg expression. Conversely, knockdown of either jmtN or met (methoprene-tolerant, JH receptor) and application of JH III had no effects on mRNA levels of Rheb, TOR and S6K and phosphorylation of S6K. In summary, our results demonstrate that the TOR pathway induces JH biosynthesis that in turn regulates AAs-mediated Vg synthesis in N. lugens.
Collapse
|
8
|
Lu K, Chen X, Liu WT, Zhang XY, Chen MX, Zhou Q. Nutritional Signaling Regulates Vitellogenin Synthesis and Egg Development through Juvenile Hormone in Nilaparvata lugens (Stål). Int J Mol Sci 2016; 17:269. [PMID: 26927076 PMCID: PMC4813133 DOI: 10.3390/ijms17030269] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/02/2016] [Accepted: 02/14/2016] [Indexed: 01/06/2023] Open
Abstract
Insect female reproduction which comprises the synthesis of vitellogenein (Vg) in the fat body and its incorporation into developing oocytes, needs a large amount of energy and food resources. Our previous studies found that juvenile hormone (JH) regulates vitellogenesis in the brown planthopper, Nilaparvata lugens. Here, we report on the role of JH in nutrient-regulated Vg synthesis and egg development. We first cloned the genes coding for juvenile hormone acid methyltransferase (JHAMT) which is involved in JH biosynthesis and methoprene-tolerant (Met) for JH action. Amino acids (AAs) induced the expression of jmtN, while showing no effects on the expression of met using an artificial diet culture system. Reduction in JH biosynthesis or its action by RNA interference (RNAi)-mediated silencing of jmtN or met led to a severe inhibition of AAs-induced Vg synthesis and oocyte maturation, together with lower fecundity. Furthermore, exogenous application of JH III partially restored Vg expression levels in jmtN RNAi females. However, JH III application did not rescue Vg synthesis in these met RNAi insects. Our results show that AAs induce Vg synthesis in the fat body and egg development in concert with JH biosynthesis in Nilaparvata lugens (Stål), rather than through JH action.
Collapse
Affiliation(s)
- Kai Lu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Xia Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Wen-Ting Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xin-Yu Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Ming-Xiao Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Qiang Zhou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|