1
|
Sheng S, Wang J, Chu J, Ding J, Liu ZX, Jiang D, Liang X, Shao Z, Wang J, Wu FA. Analysis of the Glyphodes pyloalis larvae immune transcriptome in response to parasitization by its endoparasitoid, Aulacococentrum confusum. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 38:100803. [DOI: 10.1016/j.cbd.2021.100803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 01/22/2023]
|
2
|
Wang J, Jin H, Schlenke T, Yang Y, Wang F, Yao H, Fang Q, Ye G. Lipidomics reveals how the endoparasitoid wasp Pteromalus puparum manipulates host energy stores for its young. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158736. [PMID: 32438058 DOI: 10.1016/j.bbalip.2020.158736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 02/02/2023]
Abstract
Endoparasitoid wasps inject venom along with their eggs to adjust the physiological and nutritional environment inside their hosts to benefit the development of their offspring. In particular, wasp venoms are known to modify host lipid metabolism, lipid storage in the fat body, and release of lipids into the hemolymph, but how venoms accomplish these functions remains unclear. Here, we use an UPLC-MS-based lipidomics approach to analyze the identities and concentrations of lipids in both fat body and hemolymph of host cabbage butterfly (Pieris rapae) infected by the pupal endoparasitoid Pteromalus puparum. During infection, host fat body levels of highly unsaturated, soluble triacylglycerides (TAGs) increased while less unsaturated, less soluble forms decreased. Furthermore, in infected host hemolymph, overall levels of TAG and phospholipids (the major component of cell membranes) increased, suggesting that fat body cells are destroyed and their contents are dispersed. Altogether, these data suggest that wasp venom induces host fat body TAGs to be transformed into lower melting point (more liquid) forms and released into the host hemolymph following infection, allowing simple absorption and nutritional acquisition by wasp larvae. Finally, cholesteryl esters (CEs, a dietary lipid derived from cholesterol) increased in host hemolymph following infection with no concomitant decrease in host cholesterol, implying that the wasp may provide this necessary food resource to its offspring via its venom. This study provides novel insight into how parasitoid infection alters lipid metabolism in insect hosts, and begins to uncover the wasp venom proteins responsible for host physiological changes and offspring development.
Collapse
Affiliation(s)
- Jiale Wang
- State Key Laboratory of Rice Biology & Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Hongxia Jin
- State Key Laboratory of Rice Biology & Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Todd Schlenke
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Yi Yang
- State Key Laboratory of Rice Biology & Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fang Wang
- State Key Laboratory of Rice Biology & Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongwei Yao
- State Key Laboratory of Rice Biology & Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Wang HZ, Zhong X, Gu L, Li SS, Zhang GR, Liu X. Analysis of the Gynaephora qinghaiensis pupae immune transcriptome in response to parasitization by Thektogaster sp. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 100:e21553. [PMID: 30656736 DOI: 10.1002/arch.21533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
As a pest on the Qinghai-Tibet Plateau, Gynaephora qinghaiensis causes severe damage to grassland vegetation and its pupae are also natural hosts of Thektogaster sp. To successfully parasitize, endoparasitoids generally introduce or secrete multiple parasitic factors into the host body during the spawning stage to suppress the host immune response. To study the parasitic effects of Thektogaster sp. on G. qinghaiensis, a transcriptome analysis of immune-related genes in parasitized and nonparasitized G. qinghaiensis pupae was performed. A total of 371,260,704 clean reads were assembled into 118,144 unigenes with an average length of 884.33 base pairs. Of these, 23,660 unigenes were annotated in at least one database and 94,484 unigenes were not annotated in any databases. These findings indicated that the majority of the genetic resources (79.97% of all unigenes) in Gynaephora should be further explored. Parasitization significantly affected the transcriptional profile of G. qinghaiensis pupae. The present study identified 12,322 differentially expressed genes and 57 immune-related genes were identified in parasitized G. qinghaiensis pupae. Most immune-related genes were downregulated, potentially resulting from the inhibitory effect of Thektogaster sp. on G. qinghaiensis pupae after parasitization. Overall, the transcriptome analysis sheds valuable light on the molecular mechanisms of G. qinghaiensis parasitization by Thektogaster sp. and promotes the development of novel biocontrol strategies for Gynaephora based on immune defense.
Collapse
Affiliation(s)
- Hai-Zhen Wang
- Food and Health Engineering Research Center of the State Education Ministry, School of Life Science, Sun Yat-Sen University, Guangzhou, China
| | - Xin Zhong
- Food and Health Engineering Research Center of the State Education Ministry, School of Life Science, Sun Yat-Sen University, Guangzhou, China
| | - Li Gu
- Food and Health Engineering Research Center of the State Education Ministry, School of Life Science, Sun Yat-Sen University, Guangzhou, China
| | - Shao-Song Li
- Food and Health Engineering Research Center of the State Education Ministry, School of Life Science, Sun Yat-Sen University, Guangzhou, China
| | - Gu-Ren Zhang
- State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, China
| | - Xin Liu
- Food and Health Engineering Research Center of the State Education Ministry, School of Life Science, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
4
|
Yan Z, Fang Q, Liu Y, Xiao S, Yang L, Wang F, An C, Werren JH, Ye G. A Venom Serpin Splicing Isoform of the Endoparasitoid Wasp Pteromalus puparum Suppresses Host Prophenoloxidase Cascade by Forming Complexes with Host Hemolymph Proteinases. J Biol Chem 2017; 292:1038-1051. [PMID: 27913622 PMCID: PMC5247638 DOI: 10.1074/jbc.m116.739565] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 11/28/2016] [Indexed: 12/11/2022] Open
Abstract
To ensure successful parasitism, parasitoid wasps inject venom along with their eggs into their hosts. The venom serves to suppress host immune responses, including melanization. Venom from Pteromalus puparum, a pupal endoparasitoid, inhibits melanization of host hemolymph in vitro in a dose-dependent manner. Using assay-guided fractionation, a serpin splicing isoform with phenoloxidase inhibitory activity was identified as P puparum serpin-1, venom isoform (PpS1V). This serpin gene has 16 predicted splicing isoforms that differ only in the C-terminal region. RT-PCR results show that the specific serpin isoform is differentially expressed in the venom gland. Recombinant PpS1V (rPpS1V) suppresses host prophenoloxidase (PPO) activation rather than inhibiting the phenoloxidase directly. Pulldown assays show that PpS1V forms complexes with two host hemolymph proteins, here named Pieris rapae hemolymph proteinase 8 (PrHP8) and P. rapae prophenoloxidase-activating proteinase 1 (PrPAP1), based on gene sequence blasting and phylogenetic analysis. The role of rPrPAP1 in the PPO activation cascade and its interaction with rPpS1V were confirmed. The stoichiometry of inhibition of PrPAP1 by PpS1V is 2.3. PpS1V also inhibits PPO activation in a non-natural host, Ostrinia furnacalis, through forming a complex with O. furnacalis serine protease 13 (OfSP13), an ortholog to PrPAP1. Our results identify a venom-enriched serpin isoform in P. puparum that inhibits host PPO activation, probably by forming a complex with host hemolymph proteinase PrPAP1.
Collapse
Affiliation(s)
- Zhichao Yan
- From the State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi Fang
- From the State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Liu
- From the State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shan Xiao
- From the State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lei Yang
- From the State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fei Wang
- From the State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chunju An
- the Department of Entomology, College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China, and
| | - John H Werren
- the Department of Biology, University of Rochester, Rochester, New York 14627
| | - Gongyin Ye
- From the State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China,
| |
Collapse
|