1
|
Winkiel MJ, Chowański S, Gołębiowski M, Bufo SA, Słocińska M. Solanaceae Glycoalkaloids Disturb Lipid Metabolism in the Tenebrio molitor Beetle. Metabolites 2023; 13:1179. [PMID: 38132861 PMCID: PMC10744845 DOI: 10.3390/metabo13121179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Glycoalkaloids (GAs) are produced naturally by plants and affect insect survivability and fertility. These compounds can be considered potential bioinsecticides; however, the mechanisms and effects of their action remain undiscovered. As lipids are essential molecules for the proper functioning of an insect organism, this research aimed to determine the effects of GAs on the lipid metabolism of the Tenebrio molitor beetle. Solanine, chaconine, tomatine, and tomato leaf extract were applied to larvae by injection at two concentrations, 10-8 and 10-5 M. Then, the tissue was isolated after 2 and 24 h to determine the levels of free fatty acids, sterols and esters using the GC-MS technique. Moreover, the triacylglyceride level and the activity of the key β-oxidation enzyme, 3-hydroxyacyl-CoA dehydrogenase (HADH), were measured. The results indicate that GAs affect the content and composition of lipid compounds in the beetles' haemolymph and fat body. The effects depend on the GA concentrations, incubation time, and kind of tissue. Moreover, the tested compounds decrease HADH activity, especially in the fat body, which may affect energy production. To our knowledge, this is the first study concerning lipid metabolism in T. molitor after GA application. Our results provide some insights into that topic.
Collapse
Affiliation(s)
- Magdalena Joanna Winkiel
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (S.C.); (M.S.)
| | - Szymon Chowański
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (S.C.); (M.S.)
| | - Marek Gołębiowski
- Laboratory of Analysis of Natural Compounds, Department of Environmental Analytics, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland;
| | - Sabino Aurelio Bufo
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy;
- Department of Geography, Environmental Management and Energy Studies, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2092, South Africa
| | - Małgorzata Słocińska
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (S.C.); (M.S.)
| |
Collapse
|
2
|
Yang XJ, Zhao ZS, Zhang YM, Ying JP, Wang SH, Yuan ML, Zhang QL. A method for isolating highly purified and active mitochondria from insects. JOURNAL OF INSECT PHYSIOLOGY 2022; 140:104402. [PMID: 35679991 DOI: 10.1016/j.jinsphys.2022.104402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
So far, methods that yield the high purity and activity of the isolated mitochondria from insects have not been reported and determined. Here, we develop methods that combine differential centrifugation and discontinuous Nycodenz density gradient centrifugation to isolate highly purified mitochondria from the thorax muscle of insects, and the methods were widely validated across three orders (Coleoptera, Hymenoptera, and Blattaria) covering four insect species using Western blot and transmission electron microscopy (TEM) analysis. The results showed the removal of the residual contamination with nonmitochondrial components such as nucleus, sarcolemma, cytosol, and endoplasmic reticulum. Furthermore, TEM, mitochondria staining, fluorescence detection, and flow cytometry analyses were employed to assess membrane integrity and activity of the isolated mitochondria. The results showed no loss of mitochondria activity/integrity after isolation. In addition, temporal dynamics in activity of the isolated mitochondria under commonly used laboratory temperature (-20 °C, 4 °C, and 25 °C) were respectively detected using a fluorescence microplate reader. The results showed that it should be avoided to store the isolated mitochondria at room temperature, and the mitochondria can meet the requirements of the most downstream experiments when they were stored at -20 °C. Overall, the study presented a method for isolating highly purified and active mitochondria from insects. This study firstly described a high-speed discontinuous density gradient centrifugation-based method that could be widely applied for mitochondria isolation in insects. The present study also provided an example to assess purity and integrity/activity of the isolated mitochondria.
Collapse
Affiliation(s)
- Xiao-Jie Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Zi-Shun Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yan-Mei Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jian-Ping Ying
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Su-Hao Wang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Ming-Long Yuan
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
3
|
Nässel DR, Wu SF. Cholecystokinin/sulfakinin peptide signaling: conserved roles at the intersection between feeding, mating and aggression. Cell Mol Life Sci 2022; 79:188. [PMID: 35286508 PMCID: PMC8921109 DOI: 10.1007/s00018-022-04214-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 12/27/2022]
Abstract
Neuropeptides are the most diverse messenger molecules in metazoans and are involved in regulation of daily physiology and a wide array of behaviors. Some neuropeptides and their cognate receptors are structurally and functionally well conserved over evolution in bilaterian animals. Among these are peptides related to gastrin and cholecystokinin (CCK). In mammals, CCK is produced by intestinal endocrine cells and brain neurons, and regulates gall bladder contractions, pancreatic enzyme secretion, gut functions, satiety and food intake. Additionally, CCK plays important roles in neuromodulation in several brain circuits that regulate reward, anxiety, aggression and sexual behavior. In invertebrates, CCK-type peptides (sulfakinins, SKs) are, with a few exceptions, produced by brain neurons only. Common among invertebrates is that SKs mediate satiety and regulate food ingestion by a variety of mechanisms. Also regulation of secretion of digestive enzymes has been reported. Studies of the genetically tractable fly Drosophila have advanced our understanding of SK signaling mechanisms in regulation of satiety and feeding, but also in gustatory sensitivity, locomotor activity, aggression and reproductive behavior. A set of eight SK-expressing brain neurons plays important roles in regulation of these competing behaviors. In males, they integrate internal state and external stimuli to diminish sex drive and increase aggression. The same neurons also diminish sugar gustation, induce satiety and reduce feeding. Although several functional roles of CCK/SK signaling appear conserved between Drosophila and mammals, available data suggest that the underlying mechanisms differ.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, 10691, Stockholm, Sweden.
| | - Shun-Fan Wu
- College of Plant Protection/Laboratory of Bio-Interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
4
|
Szymczak-Cendlak M, Gołębiowski M, Chowański S, Pacholska-Bogalska J, Marciniak P, Rosiński G, Słocińska M. Sulfakinins influence lipid composition and insulin-like peptides level in oenocytes of Zophobas atratus beetles. J Comp Physiol B 2021; 192:15-25. [PMID: 34415387 PMCID: PMC8816747 DOI: 10.1007/s00360-021-01398-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/28/2021] [Accepted: 08/07/2021] [Indexed: 12/05/2022]
Abstract
Insect sulfakinins are pleiotropic neuropeptides with the homology to vertebrate gastrin/cholecystokinin peptide family. They have been identified in many insect species and affect different metabolic processes. They have a strong influence on feeding and digestion as well as on carbohydrate and lipid processing. Our study reveals that sulfakinins influence fatty acids composition in Zophobas atratus oenocytes and regulate insulin-like peptides (ILPs) level in these cells. Oenocytes are cells responsible for maintenance of the body homeostasis and have an important role in the regulation of intermediary metabolism, especially of lipids. To analyze the lipid composition in oenocytes after sulfakinins injections we used gas chromatography combined with mass spectrometry and for ILPs level determination an immunoenzymatic test was used. Because sulfakinin peptides and their receptors are the main components of sulfakinin signaling, we also analyzed the presence of sulfakinin receptor transcript (SKR2) in insect tissues. We have identified for the first time the sulfakinin receptor transcript (SKR2) in insect oenocytes and found its distribution more widespread in the peripheral tissues (gut, fat body and haemolymph) as well as in the nervous and neuro-endocrine systems (brain, ventral nerve cord, corpora cardiaca/corpora allata CC/CA) of Z. atratus larvae. The presence of sulfakinin receptor transcript (SKR2) in oenocytes suggests that observed effects on oenocytes lipid and ILPs content may result from direction action of these peptides on oenocytes.
Collapse
Affiliation(s)
- M Szymczak-Cendlak
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - M Gołębiowski
- Laboratory of Analysis of Natural Compounds, Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - S Chowański
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - J Pacholska-Bogalska
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - P Marciniak
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - G Rosiński
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - M Słocińska
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| |
Collapse
|
5
|
Słocińska M, Chowański S, Marciniak P. Identification of sulfakinin receptors (SKR) in Tenebrio molitor beetle and the influence of sulfakinins on carbohydrates metabolism. J Comp Physiol B 2020; 190:669-679. [PMID: 32749519 PMCID: PMC7441086 DOI: 10.1007/s00360-020-01300-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/03/2020] [Accepted: 07/19/2020] [Indexed: 11/24/2022]
Abstract
Sulfakinins (SKs) are pleiotropic neuropeptides commonly found in insects, structurally and functionally homologous to the mammalian gastrin/cholecystokinin (CCK) neuropeptides. SKs together with sulfakinin receptors (SKRs) are involved in sulfakinin signaling responsible for variety of biological functions, including food intake or fatty acid metabolism. In the present study, we determined the distribution of SKRs in Tenebrio molitor larvae and characterized the impact of nonsulfated and sulfated SKs on carbohydrates and insulin-like peptides (ILPs) level in beetle hemolymph. Our results indicate the presence of both sulfakinin receptors, SKR1 and SKR2, in the nervous system of T. molitor. The distribution of SKR2 in peripheral tissues was more widespread than SKR1, and their transcripts have been found in fat body, gut and hemolymph. This is also the first evidence for SKRs presence in insect hemocytes indicating immunotropic activity of SKs. Moreover, in the present study, we have demonstrated that SKs regulate ILPs and carbohydrates level in insect hemolymph, and that sulfation is not crucial for peptides activity. Our study confirms the role of SKs in maintaining energy homeostasis in beetles.
Collapse
Affiliation(s)
- M Słocińska
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland.
| | - S Chowański
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| | - P Marciniak
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| |
Collapse
|
6
|
Slocinska M, Kuczer M, Gołębiowski M. Sulfakinin Signalling Influences Fatty Acid Levels and Composition in Tenebrio Molitor Beetle. Protein Pept Lett 2019; 26:949-958. [PMID: 31518216 DOI: 10.2174/0929866526666190913142115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Sulfakinins are arthropod neuropeptides that are structurally and functionally similar to vertebrate gastrin-cholecystokinin. Sulfakinins with sulfated tyrosine (sSK) or nonsulfated tyrosine (nSK) in the C-terminated heptapeptide XY(SO3H)GHMRFamide display different biological functions, including myotropic activity, inhibition of food intake, stimulation of digestive enzymes and regulation of carbohydrate and lipid content. OBJECTIVE To reveal the mechanisms by which sulfakinin signalling modulates lipid homeostasis, we analysed the changes in the level and composition of fatty acids and organic compounds in the fat body and haemolymph of Tenebrio molitor larvae after nSK and sSK treatment. METHODS Fatty acids in fat body and haemolymph of insects were analysed using Gas Chromatography - Mass Spectrometry (GC-MS). RESULTS The direction of the changes observed for major fatty acids, 18:1 and 18:2, and the less abundant fatty acids, 16:0, 18:0, 16:1 and 14:0, was the same for unsaturated (UFAs) and saturated (SFAs) fatty acids, and elevated after nSK application in both analysed tissues. However, the action of sSK in fat body tissue evoked distinct effects and induced either significant decreases in individual fatty acids or UFAs and SFAs. Administration of nSK and sSK significantly increased the level of total organic compounds in the haemolymph, contrary to the effect of sSK in fat body, where the level of total organic compounds decreased, although changes differ between individual chemicals. CONCLUSION Sulfakinins are engaged in the precise modulation of fatty acid levels and composition, but their action depends on the presence of sulfate group on the tyrosyl residue of the peptide what determines the different roles of these peptides in insect physiology.
Collapse
Affiliation(s)
| | - Mariola Kuczer
- Faculty of Chemistry, University of Wroclaw, Wroclaw, Poland
| | - Marek Gołębiowski
- Faculty of Chemistry, University of Gdańsk, ul Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|