1
|
Lebenzon JE, Toxopeus J. Knock down to level up: Reframing RNAi for invertebrate ecophysiology. Comp Biochem Physiol A Mol Integr Physiol 2024; 297:111703. [PMID: 39029617 DOI: 10.1016/j.cbpa.2024.111703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Comparative ecophysiologists strive to understand physiological problems in non-model organisms, but molecular tools such as RNA interference (RNAi) are under-used in our field. Here, we provide a framework for invertebrate ecophysiologists to use RNAi to answer questions focused on physiological processes, rather than as a tool to investigate gene function. We specifically focus on non-model invertebrates, in which the use of other genetic tools (e.g., genetic knockout lines) is less likely. We argue that because RNAi elicits a temporary manipulation of gene expression, and resources to carry out RNAi are technically and financially accessible, it is an effective tool for invertebrate ecophysiologists. We cover the terminology and basic mechanisms of RNA interference as an accessible introduction for "non-molecular" physiologists, include a suggested workflow for identifying RNAi gene targets and validating biologically relevant gene knockdowns, and present a hypothesis-testing framework for using RNAi to answer common questions in the realm of invertebrate ecophysiology. This review encourages invertebrate ecophysiologists to use these tools and workflows to explore physiological processes and bridge genotypes to phenotypes in their animal(s) of interest.
Collapse
Affiliation(s)
- Jacqueline E Lebenzon
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4.
| | - Jantina Toxopeus
- Department of Biology, St. Francis Xavier University, 2321 Notre Dame Ave, Antigonish, NS, Canada B2G 2W5
| |
Collapse
|
2
|
Izadi H, Cuthbert RN, Haubrock PJ, Renault D. Advances in understanding Lepidoptera cold tolerance. J Therm Biol 2024; 125:103992. [PMID: 39418723 DOI: 10.1016/j.jtherbio.2024.103992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Ambient thermal conditions mediate insect growth, development, reproduction, survival, and distribution. With increasingly frequent and severe cold spells, it is critical to determine low-temperature performance and cold tolerances of ecologically and economically essential insect groups to predict their responses to global environmental change. This review covers the cold tolerance strategies of 49 species of Lepidoptera (moths and butterflies), focusing on species that are known as crop pests and crop storage facilities. We synthesize cold tolerance strategies of well-studied species within this order, finding that diapause is a distinctive mechanism that has independently evolved in different genera and families of Lepidoptera. However, the occurrence of diapause in each life stage is specific to the species, and in most studied lepidopteran species, the feeding stage (as larva) is the predominant overwintering stage. We also found that the onset of diapause and the improvement of cold tolerance are interdependent phenomena that typically occur together. Moreover, adopting a cold tolerance strategy is not an inherent, fixed trait and is greatly influenced by a species' geographic distribution and rearing conditions. This review further finds that freeze avoidance rather than freeze tolerance or chill susceptibility is the primary cold tolerance strategy among lepidopteran species. The cold hardiness of lepidopteran insects primarily depends on the accumulation of cryoprotectants and the depression of the supercooling point. We highlight variations in cold tolerance strategies and mechanisms among a subset of Lepidoptera, however, further work is needed to elucidate these strategies for the vast numbers of neglected species and populations to understand broad-scale responses to global change.
Collapse
Affiliation(s)
- Hamzeh Izadi
- Division of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, United Kingdom
| | - Phillip J Haubrock
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, 389 25, Vodňany, Czech Republic
| | - David Renault
- Université de Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], 35000, Rennes, France
| |
Collapse
|
3
|
Xu Y, Song X, Li Y, Niu Y, Zhi L, Zong S, Tao J. Glycerol Metabolism is Important for the Low-Temperature Adaptation of a Global Quarantine Pest Anoplophora glabripennis Larvae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17868-17879. [PMID: 39083594 DOI: 10.1021/acs.jafc.4c03896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Anoplophora glabripennis is a critical global quarantine pest. Recently, its distribution has been extended to colder and higher-latitude regions. The adaptation to low temperatures is vital for the successful colonization of insects in new environments. However, the metabolic pathways of A. glabripennis larvae under cold stress remain undefined. This study analyzed the larval hemolymph under different low-temperature treatments using LC-MS/MS. The results showed that differential metabolites associated with sugar and lipid metabolism are pivotal in the larval chill coma process. Under low-temperature treatments, the glycerol content increased significantly compared with the control group. Cold stress significantly induced the expression of AglaGK2 and AglaGPDHs. After undergoing RNAi treatment for 48 h, larvae exposed to -20 °C for 1 h showed reduced recovery when injected with ds-AglaGK2 and ds-AglaGPDH1 compared to the control group, indicating that glycerol biosynthesis plays a role in the low-temperature adaptation of A. glabripennis larvae. Our results provide a theoretical basis for clarifying the molecular mechanism of A. glabripennis larvae in response to environmental stresses.
Collapse
Affiliation(s)
- Yabei Xu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Xue Song
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Yurong Li
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Yiming Niu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Lingxu Zhi
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Shixiang Zong
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Jing Tao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
4
|
Tao YD, Liu Y, Wan XS, Xu J, Fu DY, Zhang JZ. High and Low Temperatures Differentially Affect Survival, Reproduction, and Gene Transcription in Male and Female Moths of Spodoptera frugiperda. INSECTS 2023; 14:958. [PMID: 38132631 PMCID: PMC10743771 DOI: 10.3390/insects14120958] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
In this study, we found that both heat and cold stresses significantly affected the survival and reproduction of both sexes in Spodoptera frugiperda adults, with larvae showing relatively higher extreme temperature tolerance. Further transcriptomic analysis in adults found remarkable differences and similarities between sexes in terms of temperature stress responses. Metabolism-related processes were suppressed in heat stressed females, which did not occur to the same extend in males. Moreover, both heat and cold stress reduced immune activities in both sexes. Heat stress induced the upregulation of many heat shock proteins in both sexes, whereas the response to cold stress was insignificant. More cold tolerance-related genes, such as cuticle proteins, UDP-glucuronosyltransferase, and facilitated trehalose transporter Tret1, were found upregulated in males, whereas most of these genes were downregulated in females. Moreover, a large number of fatty acid-related genes, such as fatty acid synthases and desaturases, were differentially expressed under heat and cold stresses in both sexes. Heat stress in females induced the upregulation of a large number of zinc finger proteins and reproduction-related genes; whereas cold stress induced downregulation in genes linked to reproduction. In addition, TRPA1-like encoding genes (which have functions involved in detecting temperature changes) and sex peptide receptor-like genes were found to be differentially expressed in stressed moths. These results indicate sex-specific heat and cold stress responses and adaptive mechanisms and suggest sex-specific trade-offs between stress-resistant progresses and fundamental metabolic processes as well as between survival and reproduction.
Collapse
Affiliation(s)
- Yi-Dong Tao
- Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.-D.T.); (D.-Y.F.)
| | - Yu Liu
- Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.-D.T.); (D.-Y.F.)
| | - Xiao-Shuang Wan
- Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.-D.T.); (D.-Y.F.)
| | - Jin Xu
- Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.-D.T.); (D.-Y.F.)
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming 650224, China
| | - Da-Ying Fu
- Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.-D.T.); (D.-Y.F.)
| | - Jun-Zhong Zhang
- Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.-D.T.); (D.-Y.F.)
| |
Collapse
|
5
|
Zhang J, Qi L, Chen B, Li H, Hu L, Wang Q, Wang S, Xi J. Trehalose-6-Phosphate Synthase Contributes to Rapid Cold Hardening in the Invasive Insect Lissorhoptrus oryzophilus (Coleoptera: Curculionidae) by Regulating Trehalose Metabolism. INSECTS 2023; 14:903. [PMID: 38132577 PMCID: PMC10744047 DOI: 10.3390/insects14120903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Rapid cold hardening (RCH) is known to rapidly enhance the cold tolerance of insects. Trehalose has been demonstrated to be a cryoprotectant in Lissorhoptrus oryzophilus, an important invasive pest of rice in China. Trehalose synthesis mainly occurs through the Trehalose-6-phosphate synthase (TPS)/trehalose-6-phosphate phosphatase (TPP) pathway in insects. In this study, the TPS gene from L. oryzophilus (LoTPS) was cloned and characterized for the first time. Its expression and trehalose content changes elicited by RCH were investigated. Our results revealed that RCH not only increased the survival rate of adults but also upregulated the expression level of LoTPS and increased the trehalose content under low temperature. We hypothesized that upregulated LoTPS promoted trehalose synthesis and accumulation to protect adults from low-temperature damage. To further verify the function of the LoTPS gene, we employed RNA interference (RNAi) technology. Our findings showed that RCH efficiency disappeared and the survival rate did not increase when the adults were fed dsRNA of LoTPS. Additionally, inhibiting LoTPS expression resulted in no significant difference in trehalose content between the RCH and non-RCH treatments. Furthermore, the expression patterns of trehalose transporter (TRET) and trehalase (TRE) were also affected. Collectively, these results indicate the critical role of LoTPS in L. oryzophilus cold resistance after RCH induction. LoTPS can enhance survival ability by regulating trehalose metabolism. These findings contribute to further understanding the role of TPS in insect cold resistance and the invasiveness of L. oryzophilus. Moreover, RNAi of LoTPS opens up possibilities for novel control strategies against L. oryzophilus in the future.
Collapse
Affiliation(s)
- Juhong Zhang
- College of Plant Science, Jilin University, Changchun 130062, China; (J.Z.); (L.Q.); (H.L.); (L.H.); (Q.W.); (S.W.)
| | - Lizhong Qi
- College of Plant Science, Jilin University, Changchun 130062, China; (J.Z.); (L.Q.); (H.L.); (L.H.); (Q.W.); (S.W.)
| | - Baoyu Chen
- Key Laboratory of Plant Nutrition and Agro-Environment in Northeast Region, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Agricultural Resources and Environment Research, Jilin Academy of Agricultural Sciences, Changchun 130033, China;
| | - Hongye Li
- College of Plant Science, Jilin University, Changchun 130062, China; (J.Z.); (L.Q.); (H.L.); (L.H.); (Q.W.); (S.W.)
| | - Lianglin Hu
- College of Plant Science, Jilin University, Changchun 130062, China; (J.Z.); (L.Q.); (H.L.); (L.H.); (Q.W.); (S.W.)
| | - Qingtai Wang
- College of Plant Science, Jilin University, Changchun 130062, China; (J.Z.); (L.Q.); (H.L.); (L.H.); (Q.W.); (S.W.)
| | - Shang Wang
- College of Plant Science, Jilin University, Changchun 130062, China; (J.Z.); (L.Q.); (H.L.); (L.H.); (Q.W.); (S.W.)
| | - Jinghui Xi
- College of Plant Science, Jilin University, Changchun 130062, China; (J.Z.); (L.Q.); (H.L.); (L.H.); (Q.W.); (S.W.)
| |
Collapse
|