Orizondo RA, Bengur FB, Komatsu C, Strong KR, Federspiel WJ, Solari MG. Machine Perfusion Deters Ischemia-Related Derangement of a Rodent Free Flap: Development of a Model.
J Surg Res 2024;
295:203-213. [PMID:
38035871 DOI:
10.1016/j.jss.2023.10.014]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 09/12/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023]
Abstract
INTRODUCTION
Machine perfusion can enable isolated support of composite tissues, such as free flaps. The goal of perfusion in this setting is to preserve tissues prior to transplantation or provide transient support at the wound bed. This study aimed to establish a rodent model of machine perfusion in a fasciocutaneous-free flap to serve as an affordable testbed and determine the potential of the developed support protocol to deter ischemia-related metabolic derangement.
METHODS
Rat epigastric-free flaps were harvested and transferred to a closed circuit that provides circulatory and respiratory support. Whole rat blood was recirculated for 8 h, while adjusting the flow rate to maintain arterial-like perfusion pressures. Blood samples were collected during support. Extracellular tissue lactate and glucose levels were characterized with a microdialysis probe and compared with warm ischemic, cold ischemic, and anastomosed-free flap controls.
RESULTS
Maintenance of physiologic arterial pressures (85-100 mmHg) resulted in average pump flow rates of 360-430 μL/min. Blood-based measurements showed maintained glucose and oxygen consumption throughout machine perfusion. Average normalized lactate to glucose ratio for the perfused flaps was 5-32-fold lower than that for the warm ischemic flap controls during hours 2-8 (P < 0.05).
CONCLUSIONS
We developed a rat model of ex vivo machine perfusion of a fasciocutaneous-free flap with maintained stable flow and tissue metabolic activity for 8 h. This model can be used to assess critical elements of support in this setting as well as explore other novel therapies and technologies to improve free tissue transfer.
Collapse