Keri RS, Hosamani KM, Reddy HS, Shingalapur RV. Synthesis, in-vitro antimicrobial and cytotoxic studies of novel azetidinone derivatives.
Arch Pharm (Weinheim) 2010;
343:237-47. [PMID:
20205197 DOI:
10.1002/ardp.200900188]
[Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Developing novel antimicrobial drugs is increasingly important in the modern pharmaceutical industry. A series of novel 3-chloro-4-[4-(2-oxo-2H-chromen-4-ylmethoxy)phenyl]-1-phenylazetidin-2-ones 5a-o have been synthesized from 4-bromomethylcoumarins 1a-e and 4-aryliminomethyl-phenols 3a-c. These compounds were screened for their in-vitro antibacterial activity against two Gram-positive (Staphylococcus aureus and Vancomycin resistant enteroccoccus) and two Gram-negative (Escherichia coli and Shigella dysentery) bacterial strains and antifungal activity against Aspergillus fumigatus, Candida albicans, and Penicillium. Results revealed that compounds 5c, 5f, 5h, 5j, and 5m showed excellent activity against a panel of microorganisms. The brine-shrimp bioassay was also carried out to study their in-vitro cytotoxic properties and two compounds, 5h and 5m, possessing LD(50) = 7.154x10(-4 )M and 5.782x10(-4) M, respectively, displayed potent cytotoxic activity against Artemia salina. The presence of a chlorine group in the coumarin moiety, its effect on their antibacterial, antifungal, and cytotoxic activities is discussed. All newly synthesized compounds were characterized by elemental analysis, IR, (1)H-NMR,( 13)C-NMR, and MS.
Collapse