1
|
Chen M, Yang J, Tang C, Lu X, Wei Z, Liu Y, Yu P, Li H. Improving ADMET Prediction Accuracy for Candidate Drugs: Factors to Consider in QSPR Modeling Approaches. Curr Top Med Chem 2024; 24:222-242. [PMID: 38083894 DOI: 10.2174/0115680266280005231207105900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 05/04/2024]
Abstract
Quantitative Structure-Property Relationship (QSPR) employs mathematical and statistical methods to reveal quantitative correlations between the pharmacokinetics of compounds and their molecular structures, as well as their physical and chemical properties. QSPR models have been widely applied in the prediction of drug absorption, distribution, metabolism, excretion, and toxicity (ADMET). However, the accuracy of QSPR models for predicting drug ADMET properties still needs improvement. Therefore, this paper comprehensively reviews the tools employed in various stages of QSPR predictions for drug ADMET. It summarizes commonly used approaches to building QSPR models, systematically analyzing the advantages and limitations of each modeling method to ensure their judicious application. We provide an overview of recent advancements in the application of QSPR models for predicting drug ADMET properties. Furthermore, this review explores the inherent challenges in QSPR modeling while also proposing a range of considerations aimed at enhancing model prediction accuracy. The objective is to enhance the predictive capabilities of QSPR models in the field of drug development and provide valuable reference and guidance for researchers in this domain.
Collapse
Affiliation(s)
- Meilun Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Changsha, Hunan, 410013, China
| | - Jie Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Changsha, Hunan, 410013, China
| | - Chunhua Tang
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Changsha, Hunan, 410013, China
| | - Xiaoling Lu
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Changsha, Hunan, 410013, China
| | - Zheng Wei
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Changsha, Hunan, 410013, China
| | - Yijie Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Changsha, Hunan, 410013, China
| | - Peng Yu
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Changsha, Hunan, 410013, China
| | - HuanHuan Li
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Changsha, Hunan, 410013, China
| |
Collapse
|
2
|
High Systemic Exposure of Pyrazinoic Acid Has Limited Antituberculosis Activity in Murine and Rabbit Models of Tuberculosis. Antimicrob Agents Chemother 2016; 60:4197-205. [PMID: 27139472 DOI: 10.1128/aac.03085-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/24/2016] [Indexed: 11/20/2022] Open
Abstract
Pyrazinamide (PZA) is a prodrug requiring conversion to pyrazinoic acid (POA) by an amidase encoded by pncA for in vitro activity. Mutation of pncA is the most common cause of PZA resistance in clinical isolates. To determine whether the systemic delivery of POA or host-mediated conversion of PZA to POA could circumvent such resistance, we evaluated the efficacy of orally administered and host-derived POA in vivo Dose-ranging plasma and intrapulmonary POA pharmacokinetics and the efficacy of oral POA or PZA treatment against PZA-susceptible tuberculosis were determined in BALB/c and C3HeB/FeJ mice. The activity of host-derived POA was assessed in rabbits infected with a pncA-null mutant and treated with PZA. Median plasma POA values for the area under the concentration-time curve from 0 h to infinity (AUC0-∞) were 139 to 222 μg·h/ml and 178 to 287 μg·h/ml after doses of PZA and POA of 150 mg/kg of body weight, respectively, in mice. Epithelial lining fluid POA concentrations in infected mice were comparable after POA and PZA administration. In chronically infected BALB/c mice, PZA at 150 mg/kg reduced lung CFU counts by >2 log10 after 4 weeks. POA was effective only at 450 mg/kg, which reduced lung CFU counts by ∼0.7 log10 POA had no demonstrable bactericidal activity in C3HeB/FeJ mice, nor did PZA administered to rabbits infected with a PZA-resistant mutant. Oral POA administration and host-mediated conversion of PZA to POA producing plasma POA exposures comparable to PZA administration was significantly less effective than PZA. These results suggest that the intrabacillary delivery of POA and that producing higher POA concentrations at the site of infection will be more effective strategies for maximizing POA efficacy.
Collapse
|
3
|
Fernandes JPDS, Pavan FR, Leite CQF, Felli VMA. Synthesis and evaluation of a pyrazinoic acid prodrug in Mycobacterium tuberculosis. Saudi Pharm J 2013; 22:376-80. [PMID: 25161383 DOI: 10.1016/j.jsps.2013.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/14/2013] [Indexed: 11/17/2022] Open
Abstract
Tuberculosis (TB) is a disease caused mainly by infection of Mycobacterium tuberculosis affecting more than ten million people around the world. Despite TB can be treated, the rise of MDR-TB and XDR-TB cases put the disease in a worrying status. As pyrazinamide-resistant strains exhibit low or none pyrazinamidase activity, it is proposed that the active form of pyrazinamide (PZA) is pyrazinoic acid (POA), although this acid has poor penetration in mycobacteria. In this work, we present a convenient one-pot synthesis of 2-chloroethyl pyrazinoate, and its activity in M. tuberculosis H37Rv (ATCC27294) in MIC assay using the MABA technique. The obtained MIC of the compound was 3.96 g/mL, and discussion about the activity profile of some previously evaluated pyrazinoates is also performed.
Collapse
Affiliation(s)
| | - Fernando Rogerio Pavan
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, State University of São Paulo (UNESP), Brazil
| | - Clarice Queico Fujimura Leite
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, State University of São Paulo (UNESP), Brazil
| | - Veni Maria Andres Felli
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), Brazil
| |
Collapse
|
4
|
Ekins S, Freundlich JS, Choi I, Sarker M, Talcott C. Computational databases, pathway and cheminformatics tools for tuberculosis drug discovery. Trends Microbiol 2010; 19:65-74. [PMID: 21129975 DOI: 10.1016/j.tim.2010.10.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/15/2010] [Accepted: 10/29/2010] [Indexed: 01/31/2023]
Abstract
We are witnessing the growing menace of both increasing cases of drug-sensitive and drug-resistant Mycobacterium tuberculosis strains and the challenge to produce the first new tuberculosis (TB) drug in well over 40 years. The TB community, having invested in extensive high-throughput screening efforts, is faced with the question of how to optimally leverage these data to move from a hit to a lead to a clinical candidate and potentially, a new drug. Complementing this approach, yet conducted on a much smaller scale, cheminformatic techniques have been leveraged and are examined in this review. We suggest that these computational approaches should be optimally integrated within a workflow with experimental approaches to accelerate TB drug discovery.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborations in Chemistry, 601 Runnymede Avenue, Jenkintown, PA 19046, USA.
| | | | | | | | | |
Collapse
|