1
|
Lin B, Wu S, Xiao Q, Kou J, Hu J, Zhu Z, Zhou X, Weng J, Wang Z. Development of Scalable Processes for the Preparation of 4-(chloromethyl)-1-cyclohexyl-2-(trifluoromethyl)benzene: A Key Intermediate for Siponimod. Org Process Res Dev 2023; 27:1474-1484. [DOI: 10.1021/acs.oprd.3c00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Affiliation(s)
- Biyue Lin
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
- HEC Research and Development Center, HEC Pharm Group, Dongguan 523871, P. R. China
- Anti-infection Innovation Department, New Drug Research Institute, HEC Pharm Group, Dongguan 523871, P. R. China
| | - Shuming Wu
- HEC Research and Development Center, HEC Pharm Group, Dongguan 523871, P. R. China
- Anti-infection Innovation Department, New Drug Research Institute, HEC Pharm Group, Dongguan 523871, P. R. China
| | - Qingbo Xiao
- HEC Research and Development Center, HEC Pharm Group, Dongguan 523871, P. R. China
| | - Jingping Kou
- HEC Research and Development Center, HEC Pharm Group, Dongguan 523871, P. R. China
| | - Ji’an Hu
- HEC Research and Development Center, HEC Pharm Group, Dongguan 523871, P. R. China
| | - Zhu Zhu
- HEC Research and Development Center, HEC Pharm Group, Dongguan 523871, P. R. China
| | - Xinglin Zhou
- HEC Research and Development Center, HEC Pharm Group, Dongguan 523871, P. R. China
| | - Jiang Weng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Zhongqing Wang
- HEC Research and Development Center, HEC Pharm Group, Dongguan 523871, P. R. China
- Anti-infection Innovation Department, New Drug Research Institute, HEC Pharm Group, Dongguan 523871, P. R. China
- School of Pharmacy, Xiangnan University, Chenzhou 423000, Hunan, China
| |
Collapse
|
2
|
Catalano A, Luciani R, Carocci A, Cortesi D, Pozzi C, Borsari C, Ferrari S, Mangani S. X-ray crystal structures of Enterococcus faecalis thymidylate synthase with folate binding site inhibitors. Eur J Med Chem 2016; 123:649-664. [PMID: 27517810 DOI: 10.1016/j.ejmech.2016.07.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 11/26/2022]
Abstract
Infections caused by Enterococcus faecalis (Ef) represent nowadays a relevant health problem. We selected Thymidylate synthase (TS) from this organism as a potential specific target for antibacterial therapy. We have previously demonstrated that species-specific inhibition of the protein can be achieved despite the relatively high structural similarity among bacterial TSs and human TS. We had previously obtained the EfTS crystal structure of the protein in complex with the metabolite 5-formyl-tetrahydrofolate (5-FTHF) suggesting the protein role as metabolite reservoir; however, protein-inhibitors complexes were still missing. In the present work we identified some inhibitors bearing the phthalimidic core from our in-house library and we performed crystallographic screening towards EfTS. We obtained two X-ray crystallographic structures: the first with a weak phthalimidic inhibitor bound in one subunit and 5-hydroxymethylene-6-hydrofolic acid (5-HMHF) in the other subunit; a second X-ray structure complex with methotrexate. The structural information achieved confirm the role of EfTS as an enzyme involved in the folate pool system and provide a structural basis for structure-based drug design.
Collapse
Affiliation(s)
- Alessia Catalano
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Rosaria Luciani
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Alessia Carocci
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Debora Cortesi
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Cecilia Pozzi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Chiara Borsari
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Stefania Ferrari
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy.
| | - Stefano Mangani
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| |
Collapse
|
3
|
Searching for new antiarrhythmic agents: Evaluation of meta-hydroxymexiletine enantiomers. Eur J Med Chem 2013; 65:511-6. [DOI: 10.1016/j.ejmech.2013.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/02/2013] [Accepted: 05/10/2013] [Indexed: 11/23/2022]
|
4
|
Agelis G, Resvani A, Koukoulitsa C, Tůmová T, Slaninová J, Kalavrizioti D, Spyridaki K, Afantitis A, Melagraki G, Siafaka A, Gkini E, Megariotis G, Grdadolnik SG, Papadopoulos MG, Vlahakos D, Maragoudakis M, Liapakis G, Mavromoustakos T, Matsoukas J. Rational design, efficient syntheses and biological evaluation of N,N'-symmetrically bis-substituted butylimidazole analogs as a new class of potent Angiotensin II receptor blockers. Eur J Med Chem 2013; 62:352-70. [PMID: 23376252 DOI: 10.1016/j.ejmech.2012.12.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/25/2012] [Accepted: 12/26/2012] [Indexed: 10/27/2022]
Abstract
A series of symmetrically bis-substituted imidazole analogs bearing at the N-1 and N-3 two biphenyl moieties ortho substituted either with tetrazole or carboxylate functional groups was designed based on docking studies and utilizing for the first time an extra hydrophobic binding cleft of AT1 receptor. The synthesized analogs were evaluated for their in vitro antagonistic activities (pA2 values) and binding affinities (-logIC50 values) to the Angiotensin II AT1 receptor. Among them, the potassium (-logIC50 = 9.04) and the sodium (-logIC50 = 8.54) salts of 4-butyl-N,N'-bis{[2'-(2H-tetrazol-5-yl)biphenyl-4-yl]methyl}imidazolium bromide (12a and 12b, respectively) as well as its free acid 11 (-logIC50 = 9.46) and the 4-butyl-2-hydroxymethyl-N,N'-bis{[2'-(2H-tetrazol-5-yl)biphenyl-4-yl]methyl}imidazolium bromide (14) (-logIC50 = 8.37, pA2 = 8.58) showed high binding affinity to the AT1 receptor and high antagonistic activity (potency). The potency was similar or even superior to that of Losartan (-logIC50 = 8.25, pA2 = 8.25). On the contrary, 2-butyl-N,N'-bis{[2'-[2H-tetrazol-5-yl)]biphenyl-4-yl]methyl}imidazolium bromide (27) (-logIC50 = 5.77) and 2-butyl-4-chloro-5-hydroxymethyl-N,N'-bis{[2'-[2H-tetrazol-5-yl)]biphenyl-4-yl]methyl}imidazolium bromide (30) (-logIC50 = 6.38) displayed very low binding affinity indicating that the orientation of the n-butyl group is of primary importance. Docking studies of the representative highly active 12b clearly showed that this molecule has an extra hydrophobic binding feature compared to prototype drug Losartan and it fits to the extra hydrophobic cavity. These results may contribute to the discovery and development of a new class of biologically active molecules through bis-alkylation of the imidazole ring by a convenient and cost effective synthetic strategy.
Collapse
Affiliation(s)
- George Agelis
- Department of Chemistry, University of Patras, 26500 Patras, Greece.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|