1
|
Mohamed MF, Ibrahim NS, Ibrahim SA, El-Manawaty MA, El-Hallouty SM, Hassaneen HM, Abdelhamid IA. Cytotoxic Activity, Apoptosis Induction and Cell Cycle Arrest in Human Breast Cancer (MCF7) Cells by a Novel Fluorinated Tetrahydro-[1,2,4]Triazolo[3,4-a]Isoquinolin Chalcones. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.2014535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Magda F. Mohamed
- Department of Chemistry (Biochemistry Branch), Faculty of Science, Cairo University, Giza, Egypt
| | - Nada S. Ibrahim
- Department of Chemistry (Biochemistry Branch), Faculty of Science, Cairo University, Giza, Egypt
| | | | - May A. El-Manawaty
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Center, Giza, Egypt
| | - Salwa M. El-Hallouty
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Center, Giza, Egypt
| | | | | |
Collapse
|
2
|
Synthesis of chalcones derived from 1-naphthylacetophenone and evaluation of their cytotoxic and apoptotic effects in acute leukemia cell lines. Bioorg Chem 2021; 116:105315. [PMID: 34496319 DOI: 10.1016/j.bioorg.2021.105315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 01/26/2023]
Abstract
Chalcones and their derivatives have been described as promising compounds with antiproliferative activity against leukemic cells. This study aimed to investigate the cytotoxic effect of three synthetic chalcones derived from 1-naphthylacetophenone (F07, F09, and F10) in acute leukemia cell lines (K562 and Jurkat) and examine the mechanisms of cell death induced by these compounds. The three compounds were cytotoxic to K562 and Jurkat cells, with IC50 values ranging from 1.03 to 31.66 µM. Chalcones induced intrinsic and extrinsic apoptosis, resulting in activation of caspase-3 and DNA fragmentation. F07, F09, and F10 were not cytotoxic to human peripheral blood mononuclear cells, did not produce any significant hemolytic activity, and did not affect platelet aggregation after ADP stimulation. These results, combined with calculations of molecular properties, suggest that chalcones F07, F09, and F10 are promising molecules for the development of novel antileukemic drugs.
Collapse
|
3
|
da Cunha Xavier J, Almeida-Neto FWDQ, da Silva PT, de Sousa AP, Marinho ES, Marinho MM, Rocha JE, Freitas PR, de Araújo ACJ, Freitas TS, Nogueira CES, de Lima-Neto P, Bandeira PN, Teixeira AMR, Coutinho HDM, dos Santos HS. Structural characterization, DFT calculations, ADMET studies, antibiotic potentiating activity, evaluation of efflux pump inhibition and molecular docking of chalcone (E)-1-(2-hydroxy-3,4,6-trimethoxyphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Xavier JDC, Almeida-Neto FWQ, da Silva PT, Marinho ES, Ferreira MKA, Magalhães FEA, Nogueira CES, Bandeira PN, de Menezes JESA, Teixeira AMR, Santos HSD. Structural characterization, electronic properties, and anxiolytic-like effect in adult zebrafish (Danio rerio) of cinnamaldehyde chalcone. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128954] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Gao F, Huang G, Xiao J. Chalcone hybrids as potential anticancer agents: Current development, mechanism of action, and structure-activity relationship. Med Res Rev 2020; 40:2049-2084. [PMID: 32525247 DOI: 10.1002/med.21698] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 12/14/2022]
Abstract
The continuous emergency of drug-resistant cancers and the low specificity of anticancer agents have been the major challenges in the control and treatment of cancer, making an urgent need to develop novel anticancer agents with high efficacy. Chalcones, precursors of flavonoids and isoflavonoids, exhibit structural heterogeneity and can act on various drug targets. Chalcones which demonstrated potential in vitro and in vivo activity against both drug-susceptible and drug-resistant cancers, are useful templates for the development of novel anticancer agents. Hybridization of chalcone moiety with other anticancer pharmacophores could provide the hybrids which have the potential to overcome drug resistance and improve the specificity, so it represents a promising strategy to develop novel anticancer agents. This review emphasizes the development, the mechanisms of action as well as structure-activity relationships of chalcone hybrids with potential therapeutic application for many cancers in recent 10 years.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jiaqi Xiao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
6
|
Liu C, Tian X, Su C, Huang J, Chu X, Deng S, Cheng K. Synthesis and cytotoxicity of pentacyclic triterpenes‐aniline nitrogen mustard derivatives. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.201900049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chun‐Mei Liu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and PharmacyGuangxi Normal University Guilin P. R. China
| | - Xiao‐Yan Tian
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and PharmacyGuangxi Normal University Guilin P. R. China
| | - Chun‐Hua Su
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and PharmacyGuangxi Normal University Guilin P. R. China
| | - Jia‐Yan Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and PharmacyGuangxi Normal University Guilin P. R. China
| | - Xiang‐Wu Chu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and PharmacyGuangxi Normal University Guilin P. R. China
| | - Sheng‐Ping Deng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and PharmacyGuangxi Normal University Guilin P. R. China
| | - Ke‐Guang Cheng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and PharmacyGuangxi Normal University Guilin P. R. China
| |
Collapse
|
7
|
Cuartas V, Robledo SM, Vélez ID, Crespo MDP, Sortino M, Zacchino S, Nogueras M, Cobo J, Upegui Y, Pineda T, Yepes L, Insuasty B. New thiazolyl‐pyrazoline derivatives bearing nitrogen mustard as potential antimicrobial and antiprotozoal agents. Arch Pharm (Weinheim) 2020; 353:e1900351. [DOI: 10.1002/ardp.201900351] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Viviana Cuartas
- Grupo de Investigación de Compuestos Heterocíclicos, Departamento de QuímicaUniversidad del ValleCali Colombia
- Centre for Bioinformatics and Photonics‐CIBioFIUniversidad del ValleCali Colombia
| | - Sara M. Robledo
- PECET, Instituto de Investigaciones Médicas, Facultad de MedicinaUniversidad de AntioquiaMedellín Colombia
| | - Iván D. Vélez
- PECET, Instituto de Investigaciones Médicas, Facultad de MedicinaUniversidad de AntioquiaMedellín Colombia
| | - María del Pilar Crespo
- Grupo de Biotecnología e Infecciones Bacterianas, Departamento de MicrobiologíaUniversidad del ValleCali Colombia
| | - Maximiliano Sortino
- Área Farmacognosia, Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de RosarioRosario Argentina
| | - Susana Zacchino
- Área Farmacognosia, Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de RosarioRosario Argentina
| | - Manuel Nogueras
- Department of Inorganic and Organic ChemistryUniversidad de JaénJaén Spain
| | - Justo Cobo
- Department of Inorganic and Organic ChemistryUniversidad de JaénJaén Spain
| | - Yulieth Upegui
- PECET, Instituto de Investigaciones Médicas, Facultad de MedicinaUniversidad de AntioquiaMedellín Colombia
| | - Tatiana Pineda
- PECET, Instituto de Investigaciones Médicas, Facultad de MedicinaUniversidad de AntioquiaMedellín Colombia
| | - Lina Yepes
- PECET, Instituto de Investigaciones Médicas, Facultad de MedicinaUniversidad de AntioquiaMedellín Colombia
| | - Braulio Insuasty
- Grupo de Investigación de Compuestos Heterocíclicos, Departamento de QuímicaUniversidad del ValleCali Colombia
- Centre for Bioinformatics and Photonics‐CIBioFIUniversidad del ValleCali Colombia
| |
Collapse
|
8
|
Design, synthesis, and validation of novel nitrogen-based chalcone analogs against triple negative breast cancer. Eur J Med Chem 2019; 187:111954. [PMID: 31838326 DOI: 10.1016/j.ejmech.2019.111954] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/24/2022]
Abstract
Great strides have been made in triple negative breast cancer (TNBC) treatment, which represents 20% of total predicted annual US breast cancer (BC) cases. Despite the development of several therapeutics, TNBC patients have poor overall survival rate, compared to other BC patients, justifying the urgent need to discover new entities for use to control TNBC. Chalcones are important natural products with diverse bioactivities including anticancer effects. This study aimed to design, synthesize and validate novel chalcone leads as potential therapies for TNBC. Fourteen novel chalcone analogs were designed and synthesized comprising alicyclic amines (pyrrolidine, morpholine and piperidine) or nitrogen mustard (Bis-(2-chloroethyl) amine) substituents. Among them, compound 14((E)-3-(4-(Bis(2-chloroethyl) amino) phenyl)-1-(3-methoxyphenyl) prop-2-en-1-one) was identified as the most effective against TNBC and other BC phenotypes, with anti-proliferative IC50 values ranging between 3.94 and 9.22 μM against the TNBC cell lines MDA-MB-231 and MDA-MB-468, as well as against the estrogen positive MCF-7 cell line. Chalcone 14 effectively suppressed the colony formation capacity of MDA-MB-231, MDA-MB-468, and MCF-7 cell lines at 5 and 10 μM treatment concentrations. Furthermore, compound 14 has significantly inhibited cell invasion and migration of MDA-MB-231 and MCF-7 BC cell lines. Additionally, compound 14 had significantly promoted apoptosis by upregulating BAX and downregulating Bcl-2 proteins. Compound 14 induced significant cell cycle arrest of TNBC cells at the G2/M phase. It also induced a reversal of Epithelial Mesenchymal Transition (EMT) by upregulating the epithelial markers E-cadherin and Pan-cadherin and downregulating FAK. Furthermore, it had dramatically diminished new vessel formation (vasculogenesis) in chick chorioallantoic membrane (CAM) model by 60.20 ± 8.47%. Chalcone 14 inhibited 46.41 ± 0.71% of the TNBC MAD-MB-231 cells growth in a nude mouse orthotopic xenograft model in comparison with vehicle control treated animals. Collectively, this study results propose chalcone 14 as a promising lead molecule for the control of TNBC as well as other breast cancer phenotypes.
Collapse
|
9
|
Sabina XJ, Karthikeyan J, Velmurugan G, Tamizh MM, Shetty AN. Design and in vitro biological evaluation of substituted chalcones synthesized from nitrogen mustards as potent microtubule targeted anticancer agents. NEW J CHEM 2017. [DOI: 10.1039/c7nj00265c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Six chalcones were synthesized and their structures determined by single crystal X-ray diffraction studies. They exhibited enhanced anticancer activity and tubulin inhibition.
Collapse
Affiliation(s)
- X. Janet Sabina
- Department of Chemistry
- Sathyabama University
- Chennai – 600119
- India
| | - J. Karthikeyan
- Department of Chemistry
- Sathyabama University
- Chennai – 600119
- India
| | | | - M. Muthu Tamizh
- Department of Chemistry
- Siddha Central Research Institute
- Central Council for Research in Siddha
- Chennai – 600106
- India
| | - A. Nityananda Shetty
- Department of Chemistry
- National Institute of Technology Karnataka
- Mangalore – 575025
- India
| |
Collapse
|
10
|
Chen YH, Chang CY, Chang CF, Chen PC, Lee YT, Chern CY, Tsai JN. Pro-Angiogenic Effects of Chalcone Derivatives in Zebrafish Embryos in Vivo. Molecules 2015; 20:12512-24. [PMID: 26184137 PMCID: PMC6332238 DOI: 10.3390/molecules200712512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/03/2015] [Accepted: 07/06/2015] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to investigate novel chalcones with potent angiogenic activities in vivo. Chalcone-based derivatives were evaluated using a transgenic zebrafish line with fluorescent vessels to real-time monitor the effect on angiogenesis. Results showed that the chalcone analogues did not possess anti-angiogenic effect on zebrafish vasculatures; instead, some of them displayed potent pro-angiogenic effects on the formation of the sub-intestinal vein. Similar pro-angiogenic effects can also be seen on wild type zebrafish embryos. Moreover, the expression of vegfa, the major regulator for angiogenesis, was also upregulated in their treatment. Taken together, we have synthesized and identified a series of novel chalcone-based derivatives as potent in vivo pro-angiogenic compounds. These novel compounds hold potential for therapeutic angiogenesis.
Collapse
Affiliation(s)
- Yau-Hung Chen
- Department of Chemistry, Tamkang University, 151, Ying-chuan Road, Danshui District, New Taipei City 25137, Taiwan.
| | - Chao-Yuan Chang
- Department of Chemistry, Tamkang University, 151, Ying-chuan Road, Danshui District, New Taipei City 25137, Taiwan.
| | - Chiung-Fang Chang
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Po-Chih Chen
- Department of Applied Chemistry, National Chia-Yi University, Chia-Yi 60004, Taiwan.
| | - Ya-Ting Lee
- Department of Chemistry, Tamkang University, 151, Ying-chuan Road, Danshui District, New Taipei City 25137, Taiwan.
| | - Ching-Yuh Chern
- Department of Applied Chemistry, National Chia-Yi University, Chia-Yi 60004, Taiwan.
| | - Jen-Ning Tsai
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan.
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| |
Collapse
|
11
|
Wang FW, Wang SQ, Zhao BX, Miao JY. Discovery of 2'-hydroxychalcones as autophagy inducer in A549 lung cancer cells. Org Biomol Chem 2015; 12:3062-70. [PMID: 24695783 DOI: 10.1039/c3ob42429d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A series of 2'-hydroxychalcone derivatives was synthesized and the effects of all the compounds on growth of A549 lung cancer cell were investigated. The results showed that all compounds had inhibitory effects on the growth of A549 lung cancer cells and compound possessed the highest growth inhibitory effect and induced autophagy of A549 lung cancer cells.
Collapse
Affiliation(s)
- Fang-Wu Wang
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, P.R. China.
| | | | | | | |
Collapse
|
12
|
Lee YT, Fong TH, Chen HM, Chang CY, Wang YH, Chern CY, Chen YH. Toxicity assessments of chalcone and some synthetic chalcone analogues in a zebrafish model. Molecules 2014; 19:641-50. [PMID: 24402197 PMCID: PMC6271973 DOI: 10.3390/molecules19010641] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/04/2013] [Accepted: 12/17/2013] [Indexed: 12/20/2022] Open
Abstract
The aim of this study was to investigate the in vivo toxicities of some novel synthetic chalcones. Chalcone and four chalcone analogues 1a–d were evaluated using zebrafish embryos following antibody staining to visualize their morphological changes and muscle fiber alignment. Results showed that embryos treated with 3'-hydroxychalcone (compound 1b) displayed a high percentage of muscle defects (96.6%), especially myofibril misalignment. Ultrastructural analysis revealed that compound 1b-treated embryos displayed many muscle defect phenotypes, including breakage and collapse of myofibrils, reduced cell numbers, and disorganized thick (myosin) and thin (actin) filaments. Taken together, our results provide in vivo evidence of the myotoxic effects of the synthesized chalcone analogues on developing zebrafish embryos.
Collapse
Affiliation(s)
- Ya-Ting Lee
- Department of Chemistry, Tamkang University, 151, Yingzhuan Road, Danshui Dist., New Taipei City 25137, Taiwan.
| | - Tsorng-Harn Fong
- Department of Chemistry, Tamkang University, 151, Yingzhuan Road, Danshui Dist., New Taipei City 25137, Taiwan.
| | - Hui-Min Chen
- Department of Chemistry, Tamkang University, 151, Yingzhuan Road, Danshui Dist., New Taipei City 25137, Taiwan.
| | - Chao-Yuan Chang
- Department of Chemistry, Tamkang University, 151, Yingzhuan Road, Danshui Dist., New Taipei City 25137, Taiwan.
| | - Yun-Hsin Wang
- Department of Chemistry, Tamkang University, 151, Yingzhuan Road, Danshui Dist., New Taipei City 25137, Taiwan.
| | - Ching-Yuh Chern
- Department of Chemistry, Tamkang University, 151, Yingzhuan Road, Danshui Dist., New Taipei City 25137, Taiwan.
| | - Yau-Hung Chen
- Department of Chemistry, Tamkang University, 151, Yingzhuan Road, Danshui Dist., New Taipei City 25137, Taiwan.
| |
Collapse
|
13
|
Yang M, Fang X, Li S, Yang B. Synthesis of novel macrolides-linked chalcone derivatives and recognition ability toward Cu2+. RESEARCH ON CHEMICAL INTERMEDIATES 2013. [DOI: 10.1007/s11164-013-1510-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|