1
|
Kumar V, Jangid K, Kumar N, Kumar V, Kumar V. 3D-QSAR-based pharmacophore modelling of quinazoline derivatives for the identification of acetylcholinesterase inhibitors through virtual screening, molecular docking, molecular dynamics and DFT studies. J Biomol Struct Dyn 2024:1-15. [PMID: 38329085 DOI: 10.1080/07391102.2024.2313157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/12/2023] [Indexed: 02/09/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder responsible for the cognitive dysfunction and cognitive impairment in the patients. Acetylcholinesterase inhibitors (AChEIs) are used to treat AD however, these only provided symptomatic relief and more efficient drug molecules are desired for the effective treatment of the disease. In this article, ligand-based drug-designing strategy was used to develop and validate a field-based 3D-QSAR pharmacophore model on quinazoline-based AChEIs reported in the literature. The validated pharmacophore model (AAAHR_1) was used as a prefilter to screen an ASINEX database via virtual screening workflow (VSW). The hits generated were subjected to MM-GBSA to identify potential AChEIs and top three scoring molecules (BAS 05264565, LEG 12727144 and SYN 22339886) were evaluated for thermodynamic stability at the target site using molecular dynamic simulations. Additionally, DFT study was performed to predict the reactivity of lead molecules towards acetylcholinesterase (AChE). Thus, by utilising various computational tools, three molecules were identified as potent AChEIs that can be developed as potential drug candidates for the treatment of AD.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Chemistry, Laboratory of Organic and Medicinal Chemistry, Central University of Punjab, Bathinda, India
| | - Kailash Jangid
- Department of Chemistry, Laboratory of Organic and Medicinal Chemistry, Central University of Punjab, Bathinda, India
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Naveen Kumar
- Department of Chemistry, Laboratory of Organic and Medicinal Chemistry, Central University of Punjab, Bathinda, India
| | - Vinay Kumar
- Department of Chemistry, Laboratory of Organic and Medicinal Chemistry, Central University of Punjab, Bathinda, India
| | - Vinod Kumar
- Department of Chemistry, Laboratory of Organic and Medicinal Chemistry, Central University of Punjab, Bathinda, India
| |
Collapse
|
2
|
Yıldırım A, Atmaca U, Şahin E, Taslimi P, Taskin-Tok T, Çelik M, Gülçin İ. The synthesis, carbonic anhydrase and acetylcholinesterase inhibition effects of sulfonyl chloride moiety containing oxazolidinones using an intramolecular aza-Michael addition. J Biomol Struct Dyn 2023:1-16. [PMID: 38100567 DOI: 10.1080/07391102.2023.2291163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/26/2023] [Indexed: 12/17/2023]
Abstract
Oxazolidinones are used as various potent antibiotics, in organisms it acts as a protein synthesis inhibitor, focusing on an initial stage that encompasses the tRNA binding process. Novel intramolecular aza-Michael reactions devoid of metal catalysts have been introduced in an oxazolidone synthesis pathway, different from α,β-unsaturated ketones. Oxazolidinone derivatives were tested against acetylcholinesterase (AChE), carbonic anhydrase I and II (hCA I and hCA II) enzymes. All the synthesized compounds had potent inhibition effects with Ki values in the range of 13.57 ± 0.98 - 53.60 ± 6.81 µM against hCA I and 9.96 ± 1.02 - 46.35 ± 3.83 µM against hCA II in comparison to the acetazolamide (AZA) (Ki = 50.46 ± 6.17 µM for hCA I) and for hCA II (Ki = 41.31 ± 5.05 µM). Also, most of the compounds demonstrated potent inhibition ability towards AChE enzyme with Ki values 78.67-231.75 nM and compared to tacrine (TAC) as standard clinical inhibitor (Ki = 142.48 nM). Furthermore, ADMET analysis and molecular docking were calculated using the AChE, hCA I and hCA II enzyme proteins to correlate the data with the experimental data. In this work, recent applications of a stereoselective aza-Michael reaction as an efficient tool for of nitrogen-containing heterocyclic scaffolds and their useful to pharmacology analogs are reviewed and summarized.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Alper Yıldırım
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| | - Ufuk Atmaca
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| | - Ertan Şahin
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Sciences, Bartin University, Bartin, Turkey
| | - Tugba Taskin-Tok
- Faculty of Arts and Sciences, Department of Chemistry, Gaziantep University, Gaziantep, Turkey
- Department of Bioinformatics and Computational Biology, Institute of Health Sciences, Gaziantep University, Gaziantep, Turkey
| | - Murat Çelik
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| |
Collapse
|
3
|
Demirci Ö, Tezcan B, Demir Y, Taskin-Tok T, Gök Y, Aktaş A, Güzel B, Gülçin İ. Acetylphenyl-substituted imidazolium salts: synthesis, characterization, in silico studies and inhibitory properties against some metabolic enzymes. Mol Divers 2023; 27:2767-2787. [PMID: 36508118 DOI: 10.1007/s11030-022-10578-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022]
Abstract
Herein, we present how to synthesize thirteen new 1-(4-acetylphenyl)-3-alkylimidazolium salts by reacting 4-(1-H-imidazol-1-yl)acetophenone with a variety of benzyl halides that contain either electron-donating or electron-withdrawing groups. The structures of the new imidazolium salts were conformed using different spectroscopic methods (1H NMR, 13C NMR, 19F NMR, and FTIR) and elemental analysis techniques. Furthermore, these compounds' the carbonic anhydrase (hCAs) and acetylcholinesterase (AChE) enzyme inhibition activities were investigated. They showed a highly potent inhibition effect toward AChE and hCAs with Ki values in the range of 8.30 ± 1.71 to 120.77 ± 8.61 nM for AChE, 16.97 ± 2.04 to 84.45 ± 13.78 nM for hCA I, and 14.09 ± 2.99 to 69.33 ± 17.35 nM for hCA II, respectively. Most of the synthesized imidazolium salts appeared to be more potent than the standard inhibitor of tacrine (TAC) against AChE and Acetazolamide (AZA) against CA. In the meantime, to prospect for potential synthesized imidazolium salt inhibitor(s) against AChE and hCAs, molecular docking and an ADMET-based approach were exerted.
Collapse
Affiliation(s)
- Özlem Demirci
- Department of Chemistry, Faculty of Arts and Science, Inönü University, 44280, Malatya, Turkey
| | - Burcu Tezcan
- Department of Chemistry, Faculty of Arts and Science, Cukurova University, 01330, Adana, Turkey
| | - Yeliz Demir
- Nihat Delibalta Göle Vocational High School, Ardahan University, 75700, Ardahan, Turkey
| | - Tugba Taskin-Tok
- Department of Chemistry, Faculty of Arts and Sciences, Gaziantep University, 27310, Gaziantep, Turkey
- Department of Bioinformatics and Computational Biology, Institute of Health Sciences, Gaziantep University, 27310, Gaziantep, Turkey
| | - Yetkin Gök
- Department of Chemistry, Faculty of Arts and Science, Inönü University, 44280, Malatya, Turkey.
- Organic and Organometallic Chemistry Research Laboratory, Department of Chemistry, Faculty of Arts and Science, Inönü University, 44280, Malatya, Turkey.
| | - Aydın Aktaş
- Vocational School of Health Service, Inonu University, 44280, Malatya,, Turkey
| | - Bilgehan Güzel
- Department of Chemistry, Faculty of Arts and Science, Cukurova University, 01330, Adana, Turkey
| | - İlhami Gülçin
- Faculty of Science, Department of Chemistry, Atatürk University, 25240, Erzurum, Turkey
| |
Collapse
|
4
|
Durmaz L, Kiziltas H, Karagecili H, Alwasel S, Gulcin İ. Potential antioxidant, anticholinergic, antidiabetic and antiglaucoma activities and molecular docking of spiraeoside as a secondary metabolite of onion ( Allium cepa). Saudi Pharm J 2023; 31:101760. [PMID: 37693735 PMCID: PMC10485163 DOI: 10.1016/j.jsps.2023.101760] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/20/2023] [Indexed: 09/12/2023] Open
Abstract
Onion contains many dietary and bioactive components including phenolics and flavonoids. Spiraeoside (quercetin-4-O-β-D-glucoside) is one of the most putative flavonoids in onion. Several antioxidant techniques were used in this investigation to assess the antioxidant capabilities of spiraeoside, including 1,1-diphenyl-2-picrylhydrazyl radical (DPPH·) scavenging, N,N-dimethyl-p-phenylenediamine radical (DMPD•+) scavenging, 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonate) radical (ABTS•+) scavenging activities, cupric ions (Cu2+) reducing and potassium ferric cyanide reduction abilities. In contrast, the water-soluble α-tocopherol analogue trolox and the conventional antioxidants butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), and α-tocopherol were utilized as the standards for evaluation. Spiraeoside scavenged the DPPH radicals an IC50 of 28.51 μg/mL (r2: 0.9705) meanwhile BHA, BHT, trolox, and α-tocopherol displayed IC50 of 10.10 μg/mL (r2: 0.9015), 25.95 μg/mL (r2: 0.9221), 7.059 μg/mL (r2: 0.9614) and 11.31 μg/mL (r2: 0.9642), accordingly. The results exhibited that spiraeoside had effects similar to BHT, but less potent than α-tocopherol, trolox and BHA. Also, inhibitory effects of spiraeoside were evaluated toward some metabolic enzymes including acetylcholinesterase (AChE), butyrylcholinesterase (BChE), carbonic anhydrase II (CA II) and α-glycosidase, which are related to a number of illnesses, such as Alzheimer's disease (AD), diabetes mellitus and glaucoma disorder. Spiraeoside exhibited IC50 values of 4.44 nM (r2: 0.9610), 7.88 nM (r2: 0.9784), 19.42 nM (r2: 0.9673) and 29.17 mM (r2: 0.9209), respectively against these enzymes. Enzyme inhibition abilities were compared to clinical used inhibitors including acetazolamide (for CA II), tacrine (for AChE and BChE) and acarbose (for α-glycosidase). Spiraeoside demonstrated effective antioxidant, anticholinergic, antidiabetic and antiglaucoma activities. With these properties, it has shown that Spiraeoside has the potential to be a medicine for some metabolic diseases.
Collapse
Affiliation(s)
- Lokman Durmaz
- Department of Medical Services and Technology, Cayirli Vocational School, Erzincan Binali Yildirim University, 24500, Cayirli, Erzincan, Turkey
| | - Hatice Kiziltas
- Department of Pharmacy Services, Vocational School of Health Services, Van Yuzuncu Yil University, 65080, Van, Turkey
| | - Hasan Karagecili
- Department of Nursing, Faculty of Health Sciences, Siirt University, 56100, Siirt, Turkey
| | - Saleh Alwasel
- King Saud University, College of Science, Department of Zoology, 11362, Riyadh, Saudi Arabia
| | - İlhami Gulcin
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey
| |
Collapse
|
5
|
Bayrak C, Taslimi P, Kilinc N, Gulcin I, Menzek A. Synthesis and Biological Activity of Some Bromophenols and Their Derivatives Including Natural Products. Chem Biodivers 2023; 20:e202300469. [PMID: 37432096 DOI: 10.1002/cbdv.202300469] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
In addition to the first synthesis of the natural bromophenol butyl 2-(3,5-dibromo-4-hydroxyphenyl)acetate (1), indene derivatives 34 and 35 were synthesized from 3-phenylpropenal derivatives in BBr3 medium. Five known natural bromophenols and some derivatives were synthesized by known methods. Cholinesterase (ChEs) inhibitors reduce the breakdown of acetylcholine and are used in the treatment of Alzheimer's disease (AD) and dementia symptoms. The inhibition effects of all obtained compounds were examined towards acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and α-glycosidase enzymes. All synthesized compounds demonstrated the strong inhibition effects against both cholinergic enzymes. For determination of Ki values of novel bromophenols Lineweaver-Burk graphs were obtained. Ki values were found in the ranging of 0.13-14.74 nM for AChE, 5.11-23.95 nM for BChE, and 63.96-206.78 nM for α-glycosidase, respectively. All bromophenols and their derivatives exhibit effective inhibition profile when compared to positive controls.
Collapse
Affiliation(s)
- Cetin Bayrak
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkiye
- Dogubayazit Ahmed-i Hani Vocational School, Agri Ibrahim Cecen University, 04400, Agri, Turkiye
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100, Bartin, Turkiye
| | - Namik Kilinc
- Department of Medical Services and Techniques, Vocational School of Health Service, Igdir University, 76000, Igdir, Turkiye
| | - Ilhami Gulcin
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkiye
| | - Abdullah Menzek
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkiye
- Department of Emergency Aid and Disaster Management, Faculty of Health Sciences, Ardahan University, 75002, Ardahan, Turkiye
| |
Collapse
|
6
|
Güven L, Erturk A, Miloğlu FD, Alwasel S, Gulcin İ. Screening of Antiglaucoma, Antidiabetic, Anti-Alzheimer, and Antioxidant Activities of Astragalus alopecurus Pall-Analysis of Phenolics Profiles by LC-MS/MS. Pharmaceuticals (Basel) 2023; 16:ph16050659. [PMID: 37242442 DOI: 10.3390/ph16050659] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Astragalus species are traditionally used for diabetes, ulcers, leukemia, wounds, stomachaches, sore throats, abdominal pain, and toothaches. Although the preventive effects of Astragalus species against diseases are known, there is no record of the therapeutic effects of Astragalus alopecurus. In this study, we aimed to evaluate the in vitro antiglaucoma, antidiabetic, anti-Alzheimer's disease, and antioxidant activities of the methanolic (MEAA) and water (WEAA) extracts of the aerial part of A. alopecurus. Additionally, its phenolic compound profiles were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). MEAA and WEAA were evaluated for their inhibition ability on α-glycosidase, α-amylase, acetylcholinesterase (AChE), and human carbonic anhydrase II (hCA II) enzymes. The phenolic compounds of MEAA were analyzed by LC-MS/MS. Furthermore, total phenolic and flavonoid contents were determined. In this context, the antioxidant activity was evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), N,N-dimethyl-p-phenylene diamine (DMPD), ferric reducing antioxidant power (FRAP), cupric ions (Cu2+) reducing antioxidant capacity (CUPRAC), ferric ions (Fe3+) reducing, and ferrous ions (Fe2+) chelating methods. MEAA and WEAA had IC50 values of 9.07 and 2.24 μg/mL for α-glycosidase, 693.15 and 346.58 μg/mL for α-amylase, 1.99 and 2.45 μg/mL for AChE, and 147.7 and 171.7 μg/mL for hCA II. While the total phenolic amounts in MEAA and WEAA were 16.00 and 18.50 μg gallic acid equivalent (GAE)/mg extract, the total flavonoid contents in both extracts were calculated as 66.23 and 33.115 μg quercetin equivalent (QE)/mg, respectively. MEAA and WEAA showed, respectively, variable activities on DPPH radical scavenging (IC50: 99.02 and 115.53 μg/mL), ABTS radical scavenging (IC50: 32.21 and 30.22 µg/mL), DMPD radical scavenging (IC50: 231.05 and 65.22 μg/mL), and Fe2+ chelating (IC50: 46.21 and 33.01 μg/mL). MEAA and WEAA reducing abilities were, respectively, Fe3+ reducing (λ700: 0.308 and 0.284), FRAP (λ593: 0.284 and 0.284), and CUPRAC (λ450: 0.163 and 0.137). A total of 35 phenolics were scanned, and 10 phenolic compounds were determined by LC-MS/MS analysis. LC-MS/MS revealed that MEAA mainly contained isorhamnetin, fumaric acid, and rosmarinic acid derivatives. This is the first report indicating that MEAA and WEAA have α-glycosidase, α-amylase, AChE, hCA II inhibition abilities, and antioxidant activities. These results demonstrate the potential of Astragalus species through antioxidant properties and enzyme inhibitor ability traditionally used in medicine. This work provides the foundation for further research into the establishment of novel therapeutics for diabetes, glaucoma, and Alzheimer's disease.
Collapse
Affiliation(s)
- Leyla Güven
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ataturk University, 25240 Erzurum, Turkey
| | - Adem Erturk
- Department of Pharmacy Services, Hınıs Vocational School, Ataturk University, 25600 Erzurum, Turkey
| | - Fatma Demirkaya Miloğlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ataturk University, 25240 Erzurum, Turkey
| | - Saleh Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh 11362, Saudi Arabia
| | - İlhami Gulcin
- Department of Chemistry, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey
| |
Collapse
|
7
|
Atmaca U, Saglamtas R, Sert Y, Çelik M, Gülçin İ. Metal‐Free Synthesis via Intramolecular Cyclization, Enzyme Inhibition Properties and Molecular Docking of Novel Isoindolinones. ChemistrySelect 2023. [DOI: 10.1002/slct.202204578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Ufuk Atmaca
- Oltu Vocational Collage Atatürk University 25400- Oltu-Erzurum Turkey
- Department of Chemistry Faculty of Science Atatürk University 25240- Erzurum Turkey
| | - Ruya Saglamtas
- Department of Medical Services and Technology Vocational School of Health Services Agri Ibrahim Cecen University 04100- Agri Turkey
| | - Yusuf Sert
- Sorgun Vocational School & Department of Physics Yozgat Bozok University 47800- Yozgat Turkey
| | - Murat Çelik
- Department of Chemistry Faculty of Science Atatürk University 25240- Erzurum Turkey
| | - İlhami Gülçin
- Department of Chemistry Faculty of Science Atatürk University 25240- Erzurum Turkey
| |
Collapse
|
8
|
Şenol H, Çelik Turgut G, Şen A, Sağlamtaş R, Tuncay S, Gülçin İ, Topçu G. Synthesis of nitrogen-containing oleanolic acid derivatives as carbonic anhydrase and acetylcholinesterase inhibitors. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03031-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
9
|
Ragab A, Fouad SA, Ammar YA, Aboul-Magd DS, Abusaif MS. Antibiofilm and Anti-Quorum-Sensing Activities of Novel Pyrazole and Pyrazolo[1,5- a]pyrimidine Derivatives as Carbonic Anhydrase I and II Inhibitors: Design, Synthesis, Radiosterilization, and Molecular Docking Studies. Antibiotics (Basel) 2023; 12:128. [PMID: 36671329 PMCID: PMC9854762 DOI: 10.3390/antibiotics12010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023] Open
Abstract
Nowadays, searching for new anti-infective agents with diverse mechanisms of action has become necessary. In this study, 16 pyrazole and pyrazolo[1,5-a]pyrimidine derivatives were synthesized and assessed for their preliminary antibacterial and antibiofilm activities. All these derivatives were initially screened for their antibacterial activity against six clinically isolated multidrug resistance by agar well-diffusion and broth microdilution methods. The initial screening presented significant antibacterial activity with a bactericidal effect for five compounds, namely 3a, 5a, 6, 9a, and 10a, compared with Erythromycin and Amikacin. These five derivatives were further evaluated for their antibiofilm activity against both S. aureus and P. aeruginosa, which showed strong biofilm-forming activity at their MICs by >60%. The SEM analysis confirmed the biofilm disruption in the presence of these derivatives. Furthermore, anti-QS activity was observed for the five hybrids at their sub-MICs, as indicated by the visible halo zone. In addition, the presence of the most active derivatives reduces the violacein production by CV026, confirming that these compounds yielded anti-QS activity. Furthermore, these compounds showed strong inhibitory action against human carbonic anhydrase (hCA-I and hCA-II) isoforms with IC50 values ranging between 92.34 and 168.84 nM and between 73.2 and 161.22 nM, respectively. Finally, radiosterilization, ADMET, and a docking simulation were performed.
Collapse
Affiliation(s)
- Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Sawsan A. Fouad
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo 11754, Egypt
| | - Yousry A. Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Dina S. Aboul-Magd
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Egypt
| | - Moustafa S. Abusaif
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt
| |
Collapse
|
10
|
Mutlu M, Bingol Z, Uc EM, Köksal E, Goren AC, Alwasel SH, Gulcin İ. Comprehensive Metabolite Profiling of Cinnamon ( Cinnamomum zeylanicum) Leaf Oil Using LC-HR/MS, GC/MS, and GC-FID: Determination of Antiglaucoma, Antioxidant, Anticholinergic, and Antidiabetic Profiles. Life (Basel) 2023; 13:136. [PMID: 36676085 PMCID: PMC9865886 DOI: 10.3390/life13010136] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
In this study, for the first time, the antioxidant and antidiabetic properties of the essential oil from cinnamon (Cinnamomum zeylanicum) leaves were evaluated and investigated using various bioanalytical methods. In addition, the inhibitory effects of cinnamon oil on carbonic anhydrase II (hCA II), acetylcholinesterase (AChE), and α-amylase, which are associated with various metabolic diseases, were determined. Further, the phenolic contents of the essential oil were determined using LC-HRMS chromatography. Twenty-seven phenolic molecules were detected in cinnamon oil. Moreover, the amount and chemical profile of the essential oils present in cinnamon oil was determined using GC/MS and GC-FID analyses. (E)-cinnamaldehyde (72.98%), benzyl benzoate (4.01%), and trans-Cinnamyl acetate (3.36%) were the most common essential oils in cinnamon leaf oil. The radical scavenging activities of cinnamon oil were investigated using 1,1-diphenyl-2-picryl-hydrazil (DPPH•), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), and (ABTS•+) bioanalytical scavenging methods, which revealed its strong radical scavenging abilities (DPPH•, IC50: 4.78 μg/mL; and ABTS•+, IC50: 5.21 μg/mL). Similarly, the reducing capacities for iron (Fe3+), copper (Cu2+), and Fe3+-2,4,6-tri(2-pyridyl)-S-triazine (TPTZ) were investigated. Cinnamon oil also exhibited highly effective inhibition against hCA II (IC50: 243.24 μg/mL), AChE (IC50: 16.03 μg/mL), and α-amylase (IC50: 7.54μg/mL). This multidisciplinary study will be useful and pave the way for further studies for the determination of antioxidant properties and enzyme inhibition profiles of medically and industrially important plants and their oils.
Collapse
Affiliation(s)
- Muzaffer Mutlu
- Vocational School of Applied Sciences, Gelişim University, Istanbul 34315, Turkey
| | - Zeynebe Bingol
- Department of Medical Services and Techniques, Tokat Vocational School of Health Services, Gaziosmanpasa University, Tokat 60250, Turkey
| | - Eda Mehtap Uc
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum 25240, Turkey
| | - Ekrem Köksal
- Department of Chemistry, Faculty of Science and Arts, Erzincan Binali Yildirim University, Erzincan 24100, Turkey
| | - Ahmet C. Goren
- Department Chemistry, Faculty of Sciences, Gebze Technical University, Kocaeli 41400, Turkey
| | - Saleh H. Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh 11362, Saudi Arabia
| | - İlhami Gulcin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum 25240, Turkey
| |
Collapse
|
11
|
Zareei S, Mohammadi-Khanaposhtani M, Adib M, Mahdavi M, Taslimi P. Sulfonamide-phosphonate hybrids as new carbonic anhydrase inhibitors: In vitro enzymatic inhibition, molecular modeling, and ADMET prediction. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
12
|
Synthesis of Novel Bromophenol with Diaryl Methanes—Determination of Their Inhibition Effects on Carbonic Anhydrase and Acetylcholinesterase. Molecules 2022; 27:molecules27217426. [DOI: 10.3390/molecules27217426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
In this work, nine new bromophenol derivatives were designed and synthesized. The alkylation reactions of (2-bromo-4,5-dimethoxyphenyl)methanol (7) with substituted benzenes 8–12 produced new diaryl methanes 13–17. Targeted bromophenol derivatives 18–21 were synthesized via the O-Me demethylation of diaryl methanes with BBr3. Moreover, the synthesized bromophenol compounds were tested with some metabolic enzymes such as acetylcholinesterase (AChE), carbonic anhydrase I (CA I), and II (CA II) isoenzymes. The novel synthesized bromophenol compounds showed Ki values that ranged from 2.53 ± 0.25 to 25.67 ± 4.58 nM against hCA I, from 1.63 ± 0.11 to 15.05 ± 1.07 nM against hCA II, and from 6.54 ± 1.03 to 24.86 ± 5.30 nM against AChE. The studied compounds in this work exhibited effective hCA isoenzyme and AChE enzyme inhibition effects. The results show that they can be used for the treatment of glaucoma, epilepsy, Parkinson’s as well as Alzheimer’s disease (AD) after some imperative pharmacological studies that would reveal their drug potential.
Collapse
|
13
|
Abstract
In this study, aldose reductase (AR) was purified from sheep kidney using chromatographic methods and examined the interactions between some sulfonamides and the enzyme. According to results, sulfonamides display effective inhibitor features for sheep kidney AR with IC50 values in the range of 37.27-87.65 μM and Kis in the range of 25.72 ± 6.45 to 73.56 ± 17.49 μM. The sulfonamides displayed different inhibition mechanisms. It was found that studied all compounds displayed non-competitive inhibition type except for 5-chlorothiophene-2-sulfonamide (1). It showed competitive inhibition. Among these compounds, 2,5-dichlorothiophene-3-sulfonamide compound (2) was showed the most potent AR inhibitor (Ki: 25.72 ± 6.45). These compounds may be useful in the treatment of diabetic complications.
Collapse
Affiliation(s)
- Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Zeynep Köksal
- Department of Chemistry, Faculty of Engineering and Natural Sciences, Istanbul Medeniyet University, Istanbul, Turkey
| |
Collapse
|
14
|
Aggul AG, Uzun N, Kuzu M, Taslimi P, Gulcin I. Some phenolic natural compounds as carbonic anhydrase inhibitors: An in vitro and in silico study. Arch Pharm (Weinheim) 2022; 355:e2100476. [DOI: 10.1002/ardp.202100476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/06/2022]
Affiliation(s)
| | - Naim Uzun
- Department of Biochemistry Agri Ibrahim Cecen University Agri Turkey
| | - Muslum Kuzu
- Department of Nutrition and Dietetics Karabuk University Karabuk Turkey
| | - Parham Taslimi
- Department of Biotechnology Bartin University Bartin Turkey
| | - Ilhami Gulcin
- Department of Chemistry Ataturk University Erzurum Turkey
| |
Collapse
|
15
|
Yiğit M, Celepci DB, Taslimi P, Yiğit B, Çetinkaya E, Özdemir İ, Aygün M, Gülçin İ. Selenourea and thiourea derivatives of chiral and achiral enetetramines: Synthesis, characterization and enzyme inhibitory properties. Bioorg Chem 2021; 120:105566. [PMID: 34974209 DOI: 10.1016/j.bioorg.2021.105566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 01/03/2023]
Abstract
A series of chiral and achiral cyclic seleno- and thiourea compounds bearing benzyl groups on N-atoms were prepared from enetetramines and appropriate Group VI elements in good yields. All the synthesized compounds were characterized by elemental analysis, FT-IR, 1H NMR and 13C NMR spectroscopy, and the molecular and crystal structures of (R,R)-4b and (R,R)-5b were confirmed by the single-crystal X-ray diffraction method. These assayed for their activities against metabolic enzymes acetylcholinesterase, butyrylcholinesterase, and α-glycosidase. These selenourea and thiourea derivatives of chiral and achiral enetetramines effectively inhibit AChE and BChE with IC50 values in the range of 3.32-11.36 and 1.47-9.73 µM, respectively. Also, these compounds inhibited α-glycosidase enzyme with IC50 values varying between 1.37 and 8.53 µM. The results indicated that all the synthesized compounds exhibited excellent inhibitory activities against mentioned enzymes as compared with standard inhibitors. Representatively, the most potent compound against α-glycosidase enzyme, (S,S)-5b, was 12-times more potent than standard inhibitor acarbose; 7b and 8a as most potent compounds against cholinesterase enzymes, were around 5 and 13-times more potent than standard inhibitor tacrine against achethylcholinesterase (AChE) and butyrylcholinesterase (BChE), respectively.
Collapse
Affiliation(s)
- Murat Yiğit
- Department of Chemistry and Chemical Process Technologies, Vocational School of Higher Education, Adiyaman University, 02040 Adıyaman, Turkey.
| | - Duygu Barut Celepci
- Department of Physics, Faculty of Science, Dokuz Eylül University, 35160 İzmir, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100 Bartin, Turkey
| | - Beyhan Yiğit
- Department of Chemistry, Faculty of Science and Art, Adiyaman University, 02040 Adıyaman, Turkey
| | - Engin Çetinkaya
- Department of Chemistry, Faculty of Science, Ege University, 35100 Bornova-İzmir, Turkey
| | - İsmail Özdemir
- Department of Chemistry, Faculty of Science and Art, İnönü University, 44280 Malatya, Turkey; Catalysis Research and Application Center, İnönü University, 44280 Malatya, Turkey; Drug Application and Research Center, İnönü University, 44280 Malatya, Turkey
| | - Muhittin Aygün
- Department of Physics, Faculty of Science, Dokuz Eylül University, 35160 İzmir, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey
| |
Collapse
|
16
|
Gümüş M, Babacan ŞN, Demir Y, Sert Y, Koca İ, Gülçin İ. Discovery of sulfadrug-pyrrole conjugates as carbonic anhydrase and acetylcholinesterase inhibitors. Arch Pharm (Weinheim) 2021; 355:e2100242. [PMID: 34609760 DOI: 10.1002/ardp.202100242] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 01/11/2023]
Abstract
Human carbonic anhydrase (hCA) isoenzymes are zinc ion-containing, widespread metalloenzymes and they classically play a role in pH homeostasis maintenance. CA inhibitors suppress the CA activity and their usage has been clinically established as antiglaucoma agents, antiepileptics, diuretics, and in some other disorders. Alzheimer's disease (AD) is a slowly progressive neurodegenerative disorder and a fatal disease of the brain. An advanced method to cure AD includes the strategy to design acetylcholinesterase (AChE) inhibitors. A novel series of pyrrole-3-one derivatives containing sulfa drugs (5a-i) were determined to be highly potent inhibitors for AChE and hCA I and hCA II (inhibitory constant [Ki ] values are in the range of 6.50 ± 1.02-37.46 ± 4.12 nM, 1.20 ± 0.19-44.21 ± 1.09 nM, and 8.93 ± 1.58-46.86 ± 8.41 nM for AChE, hCA I, and hCA II, respectively). The designed compounds often show a more effective inhibition than the chemicals used as the standard. Among these compounds, 5f was the most effective compound against hCA I, and compound 5e was the most effective compound against hCA II. It was determined that compound 5c was the most effective inhibitor for AChE.
Collapse
Affiliation(s)
- Mehmet Gümüş
- Department of Occupational Health and Safety, Akdagmadeni Health College, Yozgat Bozok University, Yozgat, Turkey
| | - Şemsi N Babacan
- Department of Occupational Health and Safety, Akdagmadeni Health College, Yozgat Bozok University, Yozgat, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Gole Vocational High School, Ardahan University, Ardahan, Turkey
| | - Yusuf Sert
- Department of Physics, Faculty of Art & Sciences, Yozgat Bozok University, Yozgat, Turkey
| | - İrfan Koca
- Department of Chemistry, Faculty of Art & Sciences, Yozgat Bozok University, Yozgat, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
17
|
Akıncıoğlu A, Göksu S, Naderi A, Akıncıoğlu H, Kılınç N, Gülçin İ. Cholinesterases, carbonic anhydrase inhibitory properties and in silico studies of novel substituted benzylamines derived from dihydrochalcones. Comput Biol Chem 2021; 94:107565. [PMID: 34474201 DOI: 10.1016/j.compbiolchem.2021.107565] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A series of novel urea, sulfamide and N,N-dipropargyl substituted benzylamines were synthesized from dihydrochalcones. The synthesized compounds were evaluated for their cholinesterases and carbonic anhydrase inhibitory actions. The known dihydrochalcones were converted into four new benzylamines via reductive amination. N,N-Dipropargylamines, ureas and sulfamides were synthesized following the reactions of benzylamines with propargyl bromide, N,N-dimethyl sulfamoyl chloride and N,N-dimethyl carbamoyl chloride. The novel substituted benzylamines derived from dihydrochalcones were evaluated against some enzymes such as human erythrocyte carbonic anhydrase I and II isoenzymes (hCA I and hCA II), acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The novel substituted benzylamines derived from dihydrochalcones exhibited Ki values in the range of 0.121-1.007 nM on hCA I, and 0.077-0.487 nM on hCA II closely related to several pathological processes. On the other hand, Ki values were found in the range of 0.112-0.558 nM on AChE, 0.061-0.388 nM on BChE. As a result, novel substituted benzylamines derived from dihydrochalcones showed potent inhibitory profiles against indicated metabolic enzymes. In addition, Induced-Fit Docking (IFD) simulations and ADME prediction studies have also been carried out to elucidate the inhibition mechanisms and drug-likeness of the synthesized compounds. Therefore, these results can make significant contributions to the treatment of some global diseases, especially Alzheimer's diseases and glaucoma, and the development of new drugs.
Collapse
Affiliation(s)
- Akın Akıncıoğlu
- Agri Ibrahim Cecen University, Central Researching Laboratory, 04100 Agri, Turkey
| | - Süleyman Göksu
- Atatürk University, Faculty of Science, Department of Chemistry, Erzurum, Turkey.
| | - Ali Naderi
- Atatürk University, Faculty of Science, Department of Chemistry, Erzurum, Turkey
| | - Hülya Akıncıoğlu
- Agri Ibrahim Cecen University, Faculty of Arts and Science, Agri, Turkey
| | - Namık Kılınç
- Igdir University, Vocational School of Health Services, Department of Medical Services and Techniques, Igdir, Turkey
| | - İlhami Gülçin
- Atatürk University, Faculty of Science, Department of Chemistry, Erzurum, Turkey
| |
Collapse
|
18
|
Novel hypervalent iodine catalyzed synthesis of α-sulfonoxy ketones: Biological activity and molecular docking studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130492] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Topal F, Aksu K, Gulcin I, Tümer F, Goksu S. Inhibition Profiles of Some Symmetric Sulfamides Derived from Phenethylamines on Human Carbonic Anhydrase I, and II Isoenzymes. Chem Biodivers 2021; 18:e2100422. [PMID: 34387019 DOI: 10.1002/cbdv.202100422] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/12/2021] [Indexed: 12/21/2022]
Abstract
In this work, the inhibitory effect of some symmetric sulfamides derived from phenethylamines were determined against human carbonic anhydrase (hCA) I, and II isoenzymes, and compared with standard compound acetazolamide. IC50 values were obtained from the Enzyme activity (%)-[Symmetric sulfamides] graphs. Also, Ki values were calculated from the Lineweaver-Burk graphs. Some symmetric sulfamides compounds (11-18) demonstrated excellent inhibition effects against hCA I, and II isoenzymes. These compounds demonstrated effective inhibitory profiles with IC50 values in ranging from 21.66-28.88 nM against hCA I, 14.44-30.13 nM against hCA II. Among these compounds, the best Ki value for hCA I (Ki : 8.34±1.60 nM) and hCA II (Ki : 16.40±1.00 nM) is compound number 11. Besides, the IC50 value of acetazolamide used as a standard was determined as hCA I, hCA II 57.75 nM, 49.50 nM, respectively. Moreover, in silico ADME-Tox study showed that all synthesized compounds (11-18) had good oral bioavailability in light of Jorgensen's rule of three, and of Lipinski's rule of five.
Collapse
Affiliation(s)
- Fevzi Topal
- Department of Chemical and Chemical Processing Technologies, Gümüşhane Vocational School, Gümüşhane University, Gümüşhane, 29100, Turkey
| | - Kadir Aksu
- Department of Chemistry, Faculty of Sciences and Arts, Ordu University, Ordu, 52200, Turkey
| | - Ilhami Gulcin
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, 25240, Turkey
| | - Ferhan Tümer
- Department of Chemistry, Faculty of Sciences and Arts, Sütçü İmam University, Kahramanmaraş, 46100, Turkey
| | - Süleyman Goksu
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, 25240, Turkey
| |
Collapse
|
20
|
Erdoğan M, Polat Köse L, Eşsiz S, Gülçin İ. Synthesis and biological evaluation of some 1-naphthol derivatives as antioxidants, acetylcholinesterase, and carbonic anhydrase inhibitors. Arch Pharm (Weinheim) 2021; 354:e2100113. [PMID: 34080709 DOI: 10.1002/ardp.202100113] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 01/09/2023]
Abstract
A series of some naphthol derivatives 4a-f, 5a,f, 6a, and 7a,b (six novel ones: 4c,d, 5a, 6a, 7a,b) bearing F, Cl, Br, OMe, and dioxole substituents at different positions of the aromatic rings was designed, synthesized, and characterized. The naphthol derivatives were synthesized in three steps, namely the addition reaction of furan via Diels-Alder cycloaddition reaction, copper(II) trifluoromethanesulfonate (Cu(OTf)2 )-catalyzed aromatization reaction, and the bromination reaction, respectively. The structures of the newly obtained compounds (4c,d, 5a, 6a, 7a,b) were characterized by spectroscopic techniques. In addition, some biological activity studies were investigated under in vitro conditions. Inhibition studies of these compounds were performed on human carbonic anhydrase (hCA) I and II isoenzymes purified from human erythrocytes as a biological evaluation. Moreover, their potential antioxidant and antiradical activities were studied by analytical methods like ABTS•+ and DPPH• scavenging, and it was determined that some molecules showed good activity. Also, inhibition of acetylcholinesterase (AChE), which is a marker of many degenerative neurological diseases, was tested and the results were discussed. Excellent enzyme inhibition results were recorded for most of the molecules. These 1-naphthol derivatives were found as effective inhibitors for hCA I, hCA II, and AChE with K i values ranging from 0.034 ± 0.54 to 0.724 ± 0.18 µM for hCA I, 0.172 ± 0.02 to 0.562 ± 0.21 µM for hCA II, and 0.096 ± 0.01 to 0.177 ± 0.02 µM for AChE.
Collapse
Affiliation(s)
- Musa Erdoğan
- Department of Food Engineering, Faculty of Engineering and Architecture, Kafkas University, Kars, Turkey
| | - Leyla Polat Köse
- Department of Pharmacy Services, Vocational School, Beykent University, Istanbul, Turkey
| | - Selçuk Eşsiz
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey.,Department of Chemical Engineering, Faculty of Engineering, Hakkari University, Hakkari, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| |
Collapse
|
21
|
Burmaoglu S, Yilmaz AO, Polat MF, Kaya R, Gulcin İ, Algul O. Synthesis of novel tris-chalcones and determination of their inhibition profiles against some metabolic enzymes. Arch Physiol Biochem 2021; 127:153-161. [PMID: 31172840 DOI: 10.1080/13813455.2019.1623265] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In this study, we report the synthesis of novel tris-chalcones and testing of human carbonic anhydrase I, and II isoenzymes (hCA I, and hCA II), acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and α-glycosidase (α-Gly) inhibitors for the development of novel chalcone structures towards for treatment of some diseases. The compounds demonstrated Ki values between 13.6 ± 1.1 and 50.0 ± 17.1 nM on hCA I, 9.9 ± 0.8 and 39.5 ± 15.1 nM on hCA II, 3.1 ± 0.2 and 20.1 ± 1.9 nM on AChE, 4.9 ± 0.4 and 14.7 ± 5.2 nM on BChE and 3.9 ± 0.2 and 22.4 ± 10.7 nM on α-Gly enzymes. The results revealed that novel tris-chalcones can have promising drug potential for glaucoma, leukaemia, epilepsy; Alzheimer's disease that was associated with the high enzymatic activity of hCA I, hCA II, AChE, and BChE enzymes.
Collapse
Affiliation(s)
- Serdar Burmaoglu
- Tercan Vocational High School, Erzincan Binali Yildirim University, Erzincan, Turkey
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Ali Osman Yilmaz
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - M Fatih Polat
- Department of Pharmaceutical Basic Sciences, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Rüya Kaya
- Central Research and Application Laboratory, Agri Ibrahim Cecen University, Agri, Turkey
| | - İlhami Gulcin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Oztekin Algul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| |
Collapse
|
22
|
Gök N, Akıncıoğlu A, Erümit Binici E, Akıncıoğlu H, Kılınç N, Göksu S. Synthesis of novel sulfonamides with anti-Alzheimer and antioxidant capacities. Arch Pharm (Weinheim) 2021; 354:e2000496. [PMID: 33749025 DOI: 10.1002/ardp.202000496] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/10/2021] [Accepted: 02/27/2021] [Indexed: 11/10/2022]
Abstract
A series of novel dopamine analogs incorporating urea and sulfonamide functional groups was synthesized from 3,4-dimethoxyphenethylamine. The reaction of 3,4-dimethoxyphenethylamine with N,N-dimethylcarbamoyl chloride, followed by the sulfonyl chlorination of the urea derivative, gave benzene-1-sulfonyl chloride 9, which was reacted with NH3 (aq) or N-alkyl amines to give related sulfonamides. The O-demethylation reaction of the subsequent compounds with BBr3 afforded four novel phenolic dopamine analogs including sulfonamide and urea in the same structure. The anticholinergic and antioxidant effects of the synthesized compounds were examined. Compound 13 exhibited inhibition at the micromolar level for both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The IC50 value of 13 was calculated as 298 ± 43 µM for AChE and 321 ± 29 µM for BChE. The antioxidant and antiradical effects of the molecules were investigated by five different methods. Among the synthesized compounds 10-18, the best antioxidant and antiradical activities belong to the phenolic compounds 15-18. Compounds 16 and 18 have a higher reducing power than the standards used, that is, butylated hydroxytoluene, butylated hydroxyanisole, Trolox, and α-tocopherol, for Fe3+ -Fe2+ and Cu2+ -Cu+ reducing activities. For the DPPH• radical scavenging method, compounds 16-18 have a much better scavenging power than the standard molecules. In addition, it has been determined by the induced-fit docking method that compound 13 is well-fitted in the active site of the enzymes. ADME studies reveal that the pharmacokinetic and physicochemical properties of all synthesized compounds are within an acceptable range.
Collapse
Affiliation(s)
- Nihal Gök
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Akın Akıncıoğlu
- Central Researching Laboratory, Agri İbrahim Cecen University, Ağrı, Turkey.,Vocational School, Agri İbrahim Cecen University, Ağrı, Turkey
| | | | - Hülya Akıncıoğlu
- Faculty of Arts and Science, Agri İbrahim Çeçen University, Ağrı, Turkey
| | - Namık Kılınç
- Department of Medical Services and Techniques, Vocational School of Health Services, Igdir University, Igdir, Turkey
| | - Süleyman Göksu
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
23
|
Akıncıoğlu H, Gülçin İ. Potent Acetylcholinesterase Inhibitors: Potential Drugs for Alzheimer's Disease. Mini Rev Med Chem 2020; 20:703-715. [PMID: 31902355 DOI: 10.2174/1389557520666200103100521] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/30/2018] [Accepted: 10/19/2019] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease (AD) is one of the cognitive or memory-related impairments occurring with advancing age. Since its exact mechanism is not known, the full therapy has still not been found. Acetylcholinesterase (AChE) has been reported to be a viable therapeutic target for the treatment of AD and other dementias. To this end, acetylcholinesterase inhibitors (AChEIs) are commonly used. AChE is a member of the hydrolase enzyme family. A hydrolase is an enzyme that catalyzes the hydrolysis of a chemical bond. AChE is useful for the development of novel and mechanism-based inhibitors. It has a role in the breakdown of acetylcholine (ACh) neurotransmitters, such as acetylcholinemediated neurotransmission. AChEIs are the most effective approaches to treat AD. AChE hydrolyzes ACh to acetate and choline, as an important neurotransmitter substance. Recently, Gülçin and his group explored new AChEIs. The most suggested mechanism for AD is the deficiency of ACh, which is an important neurotransmitter. In this regard, AChEIs are commonly used for the symptomatic treatment of AD. They act in different ways, such as by inhibiting AChE, protecting cells from free radical toxicity and β-amyloid-induced injury or inhibiting the release of cytokines from microglia and monocytes. This review focuses on the role of AChEIs in AD using commonly available drugs. Also, the aim of this review is to research and discuss the role of AChEIs in AD using commonly available drugs. Therefore, in our review, related topics like AD and AChEIs are highlighted. Also, the latest work related to AChEIs is compiled. In recent research studies, novel natural and synthetic AChEIs, used for AD, are quite noteworthy. These studies can be very promising in detecting potent drugs against AD.
Collapse
Affiliation(s)
- Hulya Akıncıoğlu
- Faculty of Science and Arts, Agri Ibrahim Cecen University, 04100-Agri, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Ataturk University, 25240-Erzurum, Turkey
| |
Collapse
|
24
|
Biçer A, Kaya R, Anıl B, Turgut Cin G, Gülcin İ, Gültekin MS. Synthesis of novel bis‐sulfone derivatives and their inhibition properties on some metabolic enzymes including carbonic anhydrase, acetylcholinesterase, and butyrylcholinesterase. J Biochem Mol Toxicol 2019; 33:e22401. [DOI: 10.1002/jbt.22401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/05/2019] [Accepted: 09/18/2019] [Indexed: 02/01/2023]
Affiliation(s)
- Abdullah Biçer
- Department of Chemistry, Faculty of ScienceAkdeniz UniversityAntalya Turkey
| | - Rüya Kaya
- Central Research and Application LaboratoryAğrı İbrahim Çeçen UniversityAğrı Turkey
- Department of Chemistry, Faculty of ScienceAtatürk UniversityErzurum Turkey
| | - Barış Anıl
- Department of Chemistry, Faculty of ScienceAtatürk UniversityErzurum Turkey
| | - Günseli Turgut Cin
- Department of Chemistry, Faculty of ScienceAkdeniz UniversityAntalya Turkey
| | - İlhami Gülcin
- Department of Chemistry, Faculty of ScienceAtatürk UniversityErzurum Turkey
| | - Mehmet Serdar Gültekin
- Department of Chemistry, Faculty of ScienceAtatürk UniversityErzurum Turkey
- Faculty of PharmacyAğrı İbrahim Çeçen UniversityAğrı Turkey
| |
Collapse
|
25
|
Bayindir S, Caglayan C, Karaman M, Gülcin İ. The green synthesis and molecular docking of novel N-substituted rhodanines as effective inhibitors for carbonic anhydrase and acetylcholinesterase enzymes. Bioorg Chem 2019; 90:103096. [PMID: 31284100 DOI: 10.1016/j.bioorg.2019.103096] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 12/30/2022]
Abstract
Recently, inhibition effects of enzymes such as acetylcholinesterase (AChE) and carbonic anhydrase (CA) has appeared as a promising approach for pharmacological intervention in a variety of disorders such as epilepsy, Alzheimer's disease and obesity. For this purpose, novel N-substituted rhodanine derivatives (RhAs) were synthesized by a green synthetic approach over one-pot reaction. Following synthesis the novel compounds, RhAs derivatives were tested against AChE and cytosolic carbonic anhydrase I, and II (hCAs I, and II) isoforms. As a result of this study, inhibition constant (Ki) were found in the range of 66.35 ± 8.35 to 141.92 ± 12.63 nM for AChE, 43.55 ± 14.20 to 89.44 ± 24.77 nM for hCA I, and 16.97 ± 1.42 to 64.57 ± 13.27 nM for hCA II, respectively. Binding energies were calculated with docking studies as -5.969, -5.981, and -9.121 kcal/mol for hCA I, hCA II, and AChE, respectively.
Collapse
Affiliation(s)
- Sinan Bayindir
- Department of Chemistry, Faculty of Sciences and Arts, Bingol University, 12000-Bingöl, Turkey.
| | - Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, 12000-Bingöl, Turkey
| | - Muhammet Karaman
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Kilis 7 Aralik University, 79000-Kilis, Turkey
| | - İlhami Gülcin
- Department of Chemistry, Faculty of Sciences, Atatürk University, 25240-Erzurum, Turkey.
| |
Collapse
|
26
|
Tugrak M, Gul HI, Bandow K, Sakagami H, Gulcin I, Ozkay Y, Supuran CT. Synthesis and biological evaluation of some new mono Mannich bases with piperazines as possible anticancer agents and carbonic anhydrase inhibitors. Bioorg Chem 2019; 90:103095. [PMID: 31288135 DOI: 10.1016/j.bioorg.2019.103095] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 05/21/2019] [Accepted: 06/26/2019] [Indexed: 12/19/2022]
Abstract
New mono Mannich bases, (2-(4-hydroxy-3-((4-substituephenylpiperazin-1-yl)methyl)benzylidene)-2,3-dihydro-1H-inden-1-one), were prepared to evaluate their cytotoxic/anticancer properties and also their inhibitory effects on human carbonic anhydrase I and II isoenzymes (hCA I and II). Amine part was changed as [N-phenylpiperazine (1), N-benzylpiperazine (2), 1-(2-fluorophenyl)piperazine (3), 1-(4-fluorophenyl)piperazine (4), 1-(2-methoxyphenyl)piperazine (5)]. The structure of the synthesized compounds was characterized by 1H NMR, 13C NMR and HRMS spectra. Cytotoxicity results of the series pointed out that the compound 4 had the highest tumor selectivity value (TS: 59.4) possibly by inducing necrotic cell death in series. Additionally, all compounds synthesized showed a good inhibition profile towards hCA I and II isoenzymes with the Ki values between 29.6 and 58.4 nM and 38.1-69.7 nM, respectively. These values were lower than the reference compound AZA. However, it seems that the compounds 4 and 2 can be considered as lead compounds of CA studies with the lowest Ki values in series for further designs.
Collapse
Affiliation(s)
- Mehtap Tugrak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Halise Inci Gul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey.
| | - Kenjiro Bandow
- Division of Biochemistry, Meikai University School of Dentistry, Sakado, Saitama, Japan
| | - Hiroshi Sakagami
- Meikai University Research Institute of Odontology (M-RIO), Meikai University School of Dentistry, Sakado, Saitama, Japan
| | - Ilhami Gulcin
- Faculty of Science, Department of Chemistry, Ataturk University, Erzurum, Turkey
| | - Yusuf Ozkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Scienza Farmaceutiche e Nutraceutiche, Universita egli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| |
Collapse
|
27
|
The inhibition effects of some sulfonamides on human serum paraoxonase-1 (hPON1). Pharmacol Rep 2019; 71:545-549. [DOI: 10.1016/j.pharep.2019.02.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 01/17/2023]
|
28
|
Synthesis and characterization of novel bromophenols: Determination of their anticholinergic, antidiabetic and antioxidant activities. Bioorg Chem 2019; 87:91-102. [DOI: 10.1016/j.bioorg.2019.03.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 01/21/2023]
|
29
|
Atmaca U, Kaya R, Karaman HS, Çelik M, Gülçin İ. Synthesis of oxazolidinone from enantiomerically enriched allylic alcohols and determination of their molecular docking and biologic activities. Bioorg Chem 2019; 88:102980. [PMID: 31174010 DOI: 10.1016/j.bioorg.2019.102980] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/01/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022]
Abstract
Enantioselective synthesis of functionalized cyclic allylic alcohols via kinetic resolution in transesterifcation with different lipase enzymes has been developed. The influence of the enzymes and temperature activity was studied. By determination of ideal reaction conditions, byproduct formation is minimized; this made it possible to prepare enantiomerically enriched allylic alcohols in high ee's and good yields. Enantiomerically enriched allylic alcohols were used for enantiomerically enriched oxazolidinone synthesis. Using benzoate as a leaving group means that 1 mol % of potassium osmate is necessary and can be obtained high yields 98%. Inhibitory activities of enantiomerically enriched oxazolidinones (8, 10 and 12) were tested against human carbonic anhydrase I and II isoenzymes (hCA I and hCA II), acetylcholinesterase (AChE), and α-glycosidase (α-Gly) enzymes. These enantiomerically enriched oxazolidinones derivatives had Ki values in the range of 11.6 ± 2.1-66.4 ± 22.7 nM for hCA I, 34.1 ± 6.7-45.2 ± 12.9 nM for hCA II, 16.5 ± 2.9 to 35.6 ± 13.9 for AChE, and 22.3 ± 6.0-70.9 ± 9.9 nM for α-glycosidase enzyme. Moreover, they had high binding affinity with -5.767, -6.568, -9.014, and -8.563 kcal/mol for hCA I, hCA II, AChE and α-glycosidase enzyme, respectively. These results strongly supported the promising nature of the enantiomerically enriched oxazolidinones as selective hCA, AChE, and α-glycosidase inhibitors. Overall, due to these derivatives' inhibitory potential on the tested enzymes, they are promising drug candidates for the treatment of diseases like glaucoma, leukemia, epilepsy; Alzheimer's disease; type-2 diabetes mellitus that are associated with high enzymatic activity of CA, AChE, and α-glycosidase.
Collapse
Affiliation(s)
- Ufuk Atmaca
- Department of Chemistry, Faculty of Sciences, Ataturk University, 25240 Erzurum, Turkey; Oltu Vocational School, Ataturk University, 25400 Oltu-Erzurum, Turkey
| | - Rüya Kaya
- Department of Chemistry, Faculty of Sciences, Ataturk University, 25240 Erzurum, Turkey; Central Research and Application Laboratory, Agri Ibrahim Cecen University, 04100 Agri, Turkey
| | - Halide Sedef Karaman
- Department of Chemistry, Faculty of Sciences, Ataturk University, 25240 Erzurum, Turkey
| | - Murat Çelik
- Department of Chemistry, Faculty of Sciences, Ataturk University, 25240 Erzurum, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Sciences, Ataturk University, 25240 Erzurum, Turkey.
| |
Collapse
|
30
|
Investigation of inhibitory properties of some hydrazone compounds on hCA I, hCA II and AChE enzymes. Bioorg Chem 2019; 86:316-321. [DOI: 10.1016/j.bioorg.2019.02.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/28/2019] [Accepted: 02/03/2019] [Indexed: 01/01/2023]
|
31
|
Aktaş A, Noma SAA, Celepci DB, Erdemir F, Gök Y, Ateş B. New 2-hydroxyethyl substituted N-Heterocyclic carbene precursors: Synthesis, characterization, crystal structure and inhibitory properties against carbonic anhydrase and xanthine oxidase. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.02.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
32
|
Köksal Z. Inhibition effects of selected thiophene-2-sulfonamides on lactoperoxidase. Drug Chem Toxicol 2019; 44:359-364. [PMID: 31010344 DOI: 10.1080/01480545.2019.1600532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Lactoperoxidase (LPO, E.C.1.11.1.7) is a natural antibacterial agent which is secreted from salivary, mammary, and other mucosal glands. It is one of the crucial enzymes in biological systems, so protection of LPO activity is extremely important for the immune system. Within the scope of this study; in vitro effects of some thiophene-2-sulfonamide derivatives (1a-7a) on bovine milk LPO enzymatic activity were investigated. LPO was purified from the Sepharose-4B-L-tyrosine-5-amino-2-methylbenzenesulfonamide column prepared using affinity chromatography technique with a yield of 169.66 EU/mg specific activity in 452.44 times. As a result, 5-(2-thienylthio) thiophene-2-sulfonamide demonstrated the strongest inhibition impact among these compounds. This molecule has shown a competitive inhibition and it was determined that the IC50 value was 3.4 nM and the Ki value was 2 ± 0.6 nM.
Collapse
Affiliation(s)
- Zeynep Köksal
- Department of Chemistry, Faculty of Engineering and Natural Sciences, Istanbul Medeniyet University, Istanbul, Turkey
| |
Collapse
|
33
|
Topal F. Anticholinergic and antidiabetic effects of isoeugenol from clove (Eugenia caryophylata) oil. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1597882] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Fevzi Topal
- Gumushane Vocational School, Department of Chemical and Chemical Processing Technologies, Laboratory Technology Program, Gumushane University, Gumushane, Turkey
| |
Collapse
|
34
|
Synthesis and biological evaluation of novel tris-chalcones as potent carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase and α-glycosidase inhibitors. Bioorg Chem 2019; 85:191-197. [DOI: 10.1016/j.bioorg.2018.12.035] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 12/25/2018] [Accepted: 12/27/2018] [Indexed: 12/18/2022]
|
35
|
Kocyigit UM, Budak Y, Gürdere MB, Dürü N, Taslimi P, Gülçin İ, Ceylan M. Synthesis and investigation of anticancer, antibacterial activities and carbonic anhydrase, acetylcholinesterase inhibition profiles of novel (3aR,4S,7R,7aS)-2-[4-[1-acetyl-5-(aryl/heteroaryl)-4,5-dihydro-1H-pyrazol-3-yl]phenyl]-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3(2H)-diones. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-2350-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
36
|
Köksal Z, Alım Z, Bayrak S, Gülçin İ, Özdemir H. Investigation of the effects of some sulfonamides on acetylcholinesterase and carbonic anhydrase enzymes. J Biochem Mol Toxicol 2019; 33:e22300. [DOI: 10.1002/jbt.22300] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/15/2019] [Accepted: 01/29/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Zeynep Köksal
- Department of ChemistryFaculty of Sciences, Istanbul Medeniyet UniversityIstanbul Turkey
| | - Zuhal Alım
- Department of ChemistryFaculty of Science and Arts, Kırşehir Ahi Evran UniversityKırsehir Turkey
| | - Songül Bayrak
- Department of ChemistryFaculty of Sciences, Atatürk UniversityErzurum Turkey
| | - İlhami Gülçin
- Department of ChemistryFaculty of Sciences, Atatürk UniversityErzurum Turkey
| | - Hasan Özdemir
- Department of ChemistryFaculty of Sciences, Atatürk UniversityErzurum Turkey
| |
Collapse
|
37
|
Synthesis, characterization, crystal structure of novel bis-thiomethylcyclohexanone derivatives and their inhibitory properties against some metabolic enzymes. Bioorg Chem 2019; 82:393-404. [DOI: 10.1016/j.bioorg.2018.11.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/03/2018] [Accepted: 11/01/2018] [Indexed: 12/17/2022]
|
38
|
Güzel E, Koçyiğit ÜM, Arslan BS, Ataş M, Taslimi P, Gökalp F, Nebioğlu M, Şişman İ, Gulçin İ. Aminopyrazole-substituted metallophthalocyanines: Preparation, aggregation behavior, and investigation of metabolic enzymes inhibition properties. Arch Pharm (Weinheim) 2019; 352:e1800292. [DOI: 10.1002/ardp.201800292] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/15/2018] [Accepted: 11/27/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Emre Güzel
- Department of Chemistry; Sakarya University; Serdivan Sakarya Turkey
| | - Ümit M. Koçyiğit
- Vocational School of Health Services; Cumhuriyet University; Sivas Turkey
| | - Barış S. Arslan
- Department of Chemistry; Sakarya University; Serdivan Sakarya Turkey
| | - Mehmet Ataş
- Faculty of Pharmacy, Department of Pharmaceutical Microbiology; Cumhuriyet University; Sivas Turkey
| | - Parham Taslimi
- Faculty of Sciences, Department of Chemistry; Ataturk University; Erzurum Turkey
| | - Faik Gökalp
- Department of Math and Science Education; Kırıkkale University; Kırıkkale Turkey
| | - Mehmet Nebioğlu
- Department of Chemistry; Sakarya University; Serdivan Sakarya Turkey
| | - İlkay Şişman
- Department of Chemistry; Sakarya University; Serdivan Sakarya Turkey
| | - İlhami Gulçin
- Faculty of Sciences, Department of Chemistry; Ataturk University; Erzurum Turkey
| |
Collapse
|
39
|
Synthesis, characterization and crystal structure of 2-(4-hydroxyphenyl)ethyl and 2-(4-nitrophenyl)ethyl Substituted Benzimidazole Bromide Salts: Their inhibitory properties against carbonic anhydrase and acetylcholinesterase. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.05.077] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
40
|
Daryadel S, Atmaca U, Taslimi P, Gülçin İ, Çelik M. Novel sulfamate derivatives of menthol: Synthesis, characterization, and cholinesterases and carbonic anhydrase enzymes inhibition properties. Arch Pharm (Weinheim) 2018; 351:e1800209. [DOI: 10.1002/ardp.201800209] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/13/2018] [Accepted: 09/01/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Shahla Daryadel
- Faculty of Science, Department of Chemistry; Ataturk University; Erzurum Turkey
| | - Ufuk Atmaca
- Faculty of Science, Department of Chemistry; Ataturk University; Erzurum Turkey
- Oltu Vocational School; Ataturk University; Erzurum Turkey
| | - Parham Taslimi
- Faculty of Science, Department of Chemistry; Ataturk University; Erzurum Turkey
| | - İlhami Gülçin
- Faculty of Science, Department of Chemistry; Ataturk University; Erzurum Turkey
| | - Murat Çelik
- Faculty of Science, Department of Chemistry; Ataturk University; Erzurum Turkey
| |
Collapse
|
41
|
Synthesis of novel sulfamides incorporating phenethylamines and determination of their inhibition profiles against some metabolic enzymes. Arch Pharm (Weinheim) 2018; 351:e1800150. [DOI: 10.1002/ardp.201800150] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/25/2018] [Accepted: 06/29/2018] [Indexed: 02/02/2023]
|
42
|
Affiliation(s)
- İlhami Gulçin
- Department of Chemistry, Faculty of Sciences, Ataturk University, Erzurum, Turkey
| | - Parham Taslimi
- Department of Chemistry, Faculty of Sciences, Ataturk University, Erzurum, Turkey
| |
Collapse
|
43
|
KOÇYİĞİT ÜM. Sıçanların Kalp Dokusunda Oksitosin’in Karbonik Anhidraz ve Asetilkolinesteraz Enzimleri Üzerine İnhibisyon Etkisinin Araştırılması. ACTA ACUST UNITED AC 2018. [DOI: 10.21597/jist.407875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Nematollahi D, Namdar A, Momeni S. Cyclic voltammetry-assisted mechanistic evaluation of sulfonamide synthesis. A simple and green method for the synthesis of N-(1-hydroxynaphthalen-2-yl)benzenesulfonamide derivatives. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Kocyigit UM, Taslimi P, Gurses F, Soylu S, Durna Dastan S, Gulcin İ. The effects of wireless electromagnetic fields on the activities of carbonic anhydrase and acetylcholinesterase enzymes in various tissues of rats. J Biochem Mol Toxicol 2018; 32:e22031. [DOI: 10.1002/jbt.22031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/11/2017] [Accepted: 12/16/2017] [Indexed: 01/08/2023]
Affiliation(s)
| | - Parham Taslimi
- Department of Chemistry, Faculty of Sciences; Ataturk University; Erzurum 25240 Turkey
| | - Fatih Gurses
- Department of Management Information Systems, Faculty of Business; Uludağ University; Bursa 16400 Turkey
| | - Sinan Soylu
- Department of General Surgery, Faculty of Medicine; Cumhuriyet University; Sivas 58140 Turkey
| | - Sevgi Durna Dastan
- Division of Biometry and Genetics, Department of Zootechnics and Animal Nutrition, Faculty of Veterinary Medicine; Cumhuriyet University; Sivas 58140 Turkey
| | - İlhami Gulcin
- Department of Chemistry, Faculty of Sciences; Ataturk University; Erzurum 25240 Turkey
| |
Collapse
|
46
|
Taslimi P, Sujayev A, Turkan F, Garibov E, Huyut Z, Farzaliyev V, Mamedova S, Gulçin İ. Synthesis and investigation of the conversion reactions of pyrimidine-thiones with nucleophilic reagent and evaluation of their acetylcholinesterase, carbonic anhydrase inhibition, and antioxidant activities. J Biochem Mol Toxicol 2017; 32. [DOI: 10.1002/jbt.22019] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/21/2017] [Accepted: 11/28/2017] [Indexed: 02/01/2023]
Affiliation(s)
- Parham Taslimi
- Department of Chemistry, Faculty of Sciences; Ataturk University; Erzurum 25240 Turkey
| | - Afsun Sujayev
- Laboratory of Theoretical Bases of Synthesis and Action Mechanism of Additives, Institute of Chemistry of Additives; Azerbaijan National Academy of Sciences; Baku 1029 Azerbaijan
| | - Fikret Turkan
- Health Services Vocational School; Igdır University; Igdır 76000 Turkey
| | - Emin Garibov
- Laboratory of Theoretical Bases of Synthesis and Action Mechanism of Additives, Institute of Chemistry of Additives; Azerbaijan National Academy of Sciences; Baku 1029 Azerbaijan
| | - Zübeyir Huyut
- Department of Biochemistry, Faculty of Medical; Van Yuzuncu Yil University; Van 65090 Turkey
| | - Vagif Farzaliyev
- Laboratory of Theoretical Bases of Synthesis and Action Mechanism of Additives, Institute of Chemistry of Additives; Azerbaijan National Academy of Sciences; Baku 1029 Azerbaijan
| | - Sevgi Mamedova
- Laboratory of Theoretical Bases of Synthesis and Action Mechanism of Additives, Institute of Chemistry of Additives; Azerbaijan National Academy of Sciences; Baku 1029 Azerbaijan
| | - İlhami Gulçin
- Department of Chemistry, Faculty of Sciences; Ataturk University; Erzurum 25240 Turkey
| |
Collapse
|
47
|
Budak Y, Kocyigit UM, Gürdere MB, Özcan K, Taslimi P, Gülçin İ, Ceylan M. Synthesis and investigation of antibacterial activities and carbonic anhydrase and acetyl cholinesterase inhibition profiles of novel 4,5-dihydropyrazol and pyrazolyl-thiazole derivatives containing methanoisoindol-1,3-dion unit. SYNTHETIC COMMUN 2017. [DOI: 10.1080/00397911.2017.1373406] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yakup Budak
- Department of Chemistry, Faculty of Arts and Sciences, Gaziosmanpasa University, Tokat, Turkiye
| | - Umit M. Kocyigit
- Vocational School of Health Services, Cumhuriyet University, Sivas, Turkey
| | - Meliha Burcu Gürdere
- Department of Chemistry, Faculty of Arts and Sciences, Gaziosmanpasa University, Tokat, Turkiye
| | - Kezban Özcan
- Department of Chemistry, Faculty of Arts and Sciences, Gaziosmanpasa University, Tokat, Turkiye
| | - Parham Taslimi
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Mustafa Ceylan
- Department of Chemistry, Faculty of Arts and Sciences, Gaziosmanpasa University, Tokat, Turkiye
| |
Collapse
|
48
|
Gulçin İ, Abbasova M, Taslimi P, Huyut Z, Safarova L, Sujayev A, Farzaliyev V, Beydemir Ş, Alwasel SH, Supuran CT. Synthesis and biological evaluation of aminomethyl and alkoxymethyl derivatives as carbonic anhydrase, acetylcholinesterase and butyrylcholinesterase inhibitors. J Enzyme Inhib Med Chem 2017; 32:1174-1182. [PMID: 28891347 PMCID: PMC6445195 DOI: 10.1080/14756366.2017.1368019] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Compounds containing nitrogen and sulfur atoms can be widely used in various fields such as industry, medicine, biotechnology and chemical technology. Therefore, the reactions of aminomethylation and alkoxymethylation of mercaptobenzothiazole, mercaptobenzoxazole and 2-aminothiazole were developed. Additionally, the alkoxymethyl derivatives of mercaptobenzoxazole and 2-aminothiazole were synthesized by a reaction with hemiformals, which are prepared by the reaction of alcohols and formaldehyde. In this study, the inhibitory effects of these molecules were investigated against acetylcholinesterase (AChE), butyrylcholinesterase (BChE) enzymes and carbonic anhydrase I, and II isoenzymes (hCA I and II). Both hCA isoenzymes were significantly inhibited by the recently synthesized molecules, with Ki values in the range of 58–157 nM for hCA I, and 81–215 nM for hCA II. Additionally, the Ki parameters of these molecules for BChE and AChE were calculated in the ranges 23–88 and 18–78 nM, respectively.
Collapse
Affiliation(s)
- İlhami Gulçin
- a Department of Chemistry, Faculty of Sciences , Ataturk University , Erzurum , Turkey.,b Department of Zoology, College of Science , King Saud University , Riyadh , Saudi Arabia
| | - Malahat Abbasova
- c Laboratory of Theoretical Bases of Synthesis and Action Mechanism of Additives , Institute of Chemistry of Additives, Azerbaijan National Academy of Sciences , Baku , Azerbaijan
| | - Parham Taslimi
- a Department of Chemistry, Faculty of Sciences , Ataturk University , Erzurum , Turkey
| | - Zübeyir Huyut
- d Department of Biochemistry, Faculty of Medical , Yüzüncü Yıl University , Van , Turkey
| | - Leyla Safarova
- c Laboratory of Theoretical Bases of Synthesis and Action Mechanism of Additives , Institute of Chemistry of Additives, Azerbaijan National Academy of Sciences , Baku , Azerbaijan
| | - Afsun Sujayev
- c Laboratory of Theoretical Bases of Synthesis and Action Mechanism of Additives , Institute of Chemistry of Additives, Azerbaijan National Academy of Sciences , Baku , Azerbaijan
| | - Vagif Farzaliyev
- c Laboratory of Theoretical Bases of Synthesis and Action Mechanism of Additives , Institute of Chemistry of Additives, Azerbaijan National Academy of Sciences , Baku , Azerbaijan
| | - Şükrü Beydemir
- e Department of Biochemistry, Faculty of Pharmacy , Anadolu University , Eskişehir , Turkey
| | - Saleh H Alwasel
- b Department of Zoology, College of Science , King Saud University , Riyadh , Saudi Arabia
| | - Claudiu T Supuran
- f Dipartimento di Chimica Ugo Schiff , Universita degli Studi di Firenze , Florence , Italy.,g Neurofarba Department, Section of Pharmaceutical and Nutriceutical Sciences , Universita degli Studi di Firenze , Florence , Italy
| |
Collapse
|
49
|
Akıncıoğlu A, Kocaman E, Akıncıoğlu H, Salmas RE, Durdagi S, Gülçin İ, Supuran CT, Göksu S. The synthesis of novel sulfamides derived from β-benzylphenethylamines as acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase enzymes inhibitors. Bioorg Chem 2017; 74:238-250. [DOI: 10.1016/j.bioorg.2017.08.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 10/19/2022]
|
50
|
Öztaskın N, Taslimi P, Maraş A, Gülcin İ, Göksu S. Novel antioxidant bromophenols with acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase inhibitory actions. Bioorg Chem 2017; 74:104-114. [DOI: 10.1016/j.bioorg.2017.07.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/16/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
|