1
|
Sharma AK, Poddar SM, Chakraborty J, Nayak BS, Kalathil S, Mitra N, Gayathri P, Srinivasan R. A mechanism of salt bridge-mediated resistance to FtsZ inhibitor PC190723 revealed by a cell-based screen. Mol Biol Cell 2023; 34:ar16. [PMID: 36652338 PMCID: PMC10011733 DOI: 10.1091/mbc.e22-12-0538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Bacterial cell division proteins, especially the tubulin homologue FtsZ, have emerged as strong targets for developing new antibiotics. Here, we have utilized the fission yeast heterologous expression system to develop a cell-based assay to screen for small molecules that directly and specifically target the bacterial cell division protein FtsZ. The strategy also allows for simultaneous assessment of the toxicity of the drugs to eukaryotic yeast cells. As a proof-of-concept of the utility of this assay, we demonstrate the effect of the inhibitors sanguinarine, berberine, and PC190723 on FtsZ. Though sanguinarine and berberine affect FtsZ polymerization, they exert a toxic effect on the cells. Further, using this assay system, we show that PC190723 affects Helicobacter pylori FtsZ function and gain new insights into the molecular determinants of resistance to PC190723. On the basis of sequence and structural analysis and site-specific mutations, we demonstrate that the presence of salt bridge interactions between the central H7 helix and β-strands S9 and S10 mediates resistance to PC190723 in FtsZ. The single-step in vivo cell-based assay using fission yeast enabled us to dissect the contribution of sequence-specific features of FtsZ and cell permeability effects associated with bacterial cell envelopes. Thus, our assay serves as a potent tool to rapidly identify novel compounds targeting polymeric bacterial cytoskeletal proteins like FtsZ to understand how they alter polymerization dynamics and address resistance determinants in targets.
Collapse
Affiliation(s)
- Ajay Kumar Sharma
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Homi Bhabha National Institutes, Anushakti Nagar, Mumbai 400094, India
| | - Sakshi Mahesh Poddar
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Homi Bhabha National Institutes, Anushakti Nagar, Mumbai 400094, India
| | - Joyeeta Chakraborty
- Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Bhagyashri Soumya Nayak
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Homi Bhabha National Institutes, Anushakti Nagar, Mumbai 400094, India
| | - Srilakshmi Kalathil
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Homi Bhabha National Institutes, Anushakti Nagar, Mumbai 400094, India
| | - Nivedita Mitra
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Homi Bhabha National Institutes, Anushakti Nagar, Mumbai 400094, India
| | - Pananghat Gayathri
- Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Ramanujam Srinivasan
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Homi Bhabha National Institutes, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
2
|
Dai C, Lin J, Li H, Shen Z, Wang Y, Velkov T, Shen J. The Natural Product Curcumin as an Antibacterial Agent: Current Achievements and Problems. Antioxidants (Basel) 2022; 11:459. [PMID: 35326110 PMCID: PMC8944601 DOI: 10.3390/antiox11030459] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
The rapid spread of antibiotic resistance and lack of effective drugs for treating infections caused by multi-drug resistant bacteria in animal and human medicine have forced us to find new antibacterial strategies. Natural products have served as powerful therapeutics against bacterial infection and are still an important source for the discovery of novel antibacterial drugs. Curcumin, an important constituent of turmeric, is considered safe for oral consumption to treat bacterial infections. Many studies showed that curcumin exhibited antibacterial activities against Gram-negative and Gram-positive bacteria. The antibacterial action of curcumin involves the disruption of the bacterial membrane, inhibition of the production of bacterial virulence factors and biofilm formation, and the induction of oxidative stress. These characteristics also contribute to explain how curcumin acts a broad-spectrum antibacterial adjuvant, which was evidenced by the markedly additive or synergistical effects with various types of conventional antibiotics or non-antibiotic compounds. In this review, we summarize the antibacterial properties, underlying molecular mechanism of curcumin, and discuss its combination use, nano-formulations, safety, and current challenges towards development as an antibacterial agent. We hope that this review provides valuable insight, stimulates broader discussions, and spurs further developments around this promising natural product.
Collapse
Affiliation(s)
- Chongshan Dai
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (J.L.); (Z.S.); (Y.W.)
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiahao Lin
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (J.L.); (Z.S.); (Y.W.)
| | - Hui Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100193, China;
| | - Zhangqi Shen
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (J.L.); (Z.S.); (Y.W.)
| | - Yang Wang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (J.L.); (Z.S.); (Y.W.)
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jianzhong Shen
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (J.L.); (Z.S.); (Y.W.)
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Bushra, Shamim S, Khan KM, Ullah N, Mahdavi M, Faramarzi MA, Larijani B, Salar U, Rafique R, Taha M, Perveen S. Synthesis, in vitro, and in silico evaluation of Indazole Schiff bases as potential α-glucosidase inhibitors. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Shang C, Hou Y, Meng T, Shi M, Cui G. The Anticancer Activity of Indazole Compounds: A Mini Review. Curr Top Med Chem 2021; 21:363-376. [PMID: 33238856 DOI: 10.2174/1568026620999201124154231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 11/22/2022]
Abstract
The incidence and mortality of cancer continue to grow since the current medical treatments often fail to produce a complete and durable tumor response and ultimately give rise to therapy resistance and tumor relapse. Heterocycles with potential therapeutic values are of great pharmacological importance, and among them, indazole moiety is a privileged structure in medicinal chemistry. Indazole compounds possess potential anticancer activity, and indazole-based agents such as, axitinib, lonidamine and pazopanib have already been employed for cancer therapy, demonstrating indazole compounds as useful templates for the development of novel anticancer agents. The aim of this review is to present the main aspects of exploring anticancer properties, such as the structural modifications, the structure-activity relationship and mechanisms of action, making an effort to highlight the importance and therapeutic potential of the indazole compounds in the present anticancer agents.
Collapse
Affiliation(s)
- Congshan Shang
- Medical College, Xi'an Peihua University, Xi'an 710025, Shaanxi, China
| | - Yani Hou
- Medical College, Xi'an Peihua University, Xi'an 710025, Shaanxi, China
| | - Tingting Meng
- Medical College, Xi'an Peihua University, Xi'an 710025, Shaanxi, China
| | - Min Shi
- Medical College, Xi'an Peihua University, Xi'an 710025, Shaanxi, China
| | - Guoyan Cui
- Department of Basic Medicine, Changzhi Medical College, Changzhi 046000, Shaanxi, China
| |
Collapse
|
5
|
Adamczak A, Ożarowski M, Karpiński TM. Curcumin, a Natural Antimicrobial Agent with Strain-Specific Activity. Pharmaceuticals (Basel) 2020; 13:ph13070153. [PMID: 32708619 PMCID: PMC7408453 DOI: 10.3390/ph13070153] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
Curcumin, a principal bioactive substance of turmeric (Curcuma longa L.), is reported as a strong antioxidant, anti-inflammatory, antibacterial, antifungal, and antiviral agent. However, its antimicrobial properties require further detailed investigations into clinical and multidrug-resistant (MDR) isolates. In this work, we tested curcumin's efficacy against over 100 strains of pathogens belonging to 19 species. This activity was determined by the broth microdilution method and by calculating the minimum inhibitory concentration (MIC). Our findings confirmed a much greater sensitivity of Gram-positive than Gram-negative bacteria. This study exhibited a significantly larger variation in the curcumin activity than previous works and suggested that numerous clinical strains of widespread pathogens have a poor sensitivity to curcumin. Similarly, the MICs of the MDR types of Staphylococcus aureus, S. haemolyticus, Escherichia coli, and Proteus mirabilis were high (≥2000 µg/mL). However, curcumin was effective against some species and strains: Streptococcus pyogenes (median MIC = 31.25 µg/mL), methicillin-sensitive S. aureus (250 µg/mL), Acinetobacter lwoffii (250 µg/mL), and individual strains of Enterococcus faecalis and Pseudomonas aeruginosa (62.5 µg/mL). The sensitivity of species was not associated with its affiliation to the genus, and it could differ a lot (e.g., S. pyogenes, S. agalactiae and A. lwoffii, A. baumannii). Hence, curcumin can be considered as a promising antibacterial agent, but with a very selective activity.
Collapse
Affiliation(s)
- Artur Adamczak
- Department of Botany, Breeding and Agricultural Technology of Medicinal Plants, Institute of Natural Fibres and Medicinal Plants, Kolejowa 2, 62-064 Plewiska, Poland;
| | - Marcin Ożarowski
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznań, Poland;
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland
- Correspondence:
| |
Collapse
|
6
|
Kusuma KD, Payne M, Ung AT, Bottomley AL, Harry EJ. FtsZ as an Antibacterial Target: Status and Guidelines for Progressing This Avenue. ACS Infect Dis 2019; 5:1279-1294. [PMID: 31268666 DOI: 10.1021/acsinfecdis.9b00055] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The disturbing increase in the number of bacterial pathogens that are resistant to multiple, or sometimes all, current antibiotics highlights the desperate need to pursue the discovery and development of novel classes of antibacterials. The wealth of knowledge available about the bacterial cell division machinery has aided target-driven approaches to identify new inhibitor compounds. The main division target being pursued is the highly conserved and essential protein FtsZ. Despite very active research on FtsZ inhibitors for several years, this protein is not yet targeted by any commercial antibiotic. Here, we discuss the suitability of FtsZ as an antibacterial target for drug development and review progress achieved in this area. We use hindsight to highlight the gaps that have slowed progress in FtsZ inhibitor development and to suggest guidelines for concluding that FtsZ is actually the target of these molecules, a key missing link in several studies. In moving forward, a multidisciplinary, communicative, and collaborative process, with sharing of research expertise, is critical if we are to succeed.
Collapse
|
7
|
Zhang SG, Liang CG, Zhang WH. Recent Advances in Indazole-Containing Derivatives: Synthesis and Biological Perspectives. Molecules 2018; 23:E2783. [PMID: 30373212 PMCID: PMC6278422 DOI: 10.3390/molecules23112783] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/14/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023] Open
Abstract
Indazole-containing derivatives represent one of the most important heterocycles in drug molecules. Diversely substituted indazole derivatives bear a variety of functional groups and display versatile biological activities; hence, they have gained considerable attention in the field of medicinal chemistry. This review aims to summarize the recent advances in various methods for the synthesis of indazole derivatives. The current developments in the biological activities of indazole-based compounds are also presented.
Collapse
Affiliation(s)
- Shu-Guang Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Chao-Gen Liang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wei-Hua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
8
|
Ballu S, Itteboina R, Sivan SK, Manga V. Structural insights of Staphylococcus aureus FtsZ inhibitors through molecular docking, 3D-QSAR and molecular dynamics simulations. J Recept Signal Transduct Res 2018; 38:61-70. [DOI: 10.1080/10799893.2018.1426607] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Srilata Ballu
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, India
| | - Ramesh Itteboina
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, India
| | - Sree Kanth Sivan
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, India
| | - Vijjulatha Manga
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, India
| |
Collapse
|
9
|
Özel Güven Ö, Türk G, Adler PDF, Coles SJ, Hökelek T. Crystal structure of 2-[2-(2,5-di-chloro-benz-yloxy)-2-(furan-2-yl)eth-yl]-2 H-indazole. Acta Crystallogr E Crystallogr Commun 2016; 72:1377-1379. [PMID: 27746922 PMCID: PMC5050757 DOI: 10.1107/s2056989016013827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/29/2016] [Indexed: 11/29/2022]
Abstract
In the title compound, C20H16Cl2N2O2, the indazole ring system is approximately planar [maximum deviation = 0.033 (1) Å], its mean plane is oriented at dihedral angles of 25.04 (4) and 5.10 (4)° to the furan and benzene rings, respectively. In the crystal, pairs of C-Hind⋯Obo (ind = indazole and bo = benz-yloxy) hydrogen bonds link the mol-ecules into centrosymmetric dimers with graph-set motif R22(12). Weak C-H⋯π inter-actions is also observed. Aromatic π-π stacking between the benzene and the pyrazole rings from neighbouring mol-ecules [centroid-centroid distance = 3.8894 (7) Å] further consolidates the crystal packing.
Collapse
Affiliation(s)
- Özden Özel Güven
- Department of Chemistry, Bülent Ecevit University, 67100 Zonguldak, Turkey
| | - Gökhan Türk
- Department of Chemistry, Bülent Ecevit University, 67100 Zonguldak, Turkey
| | - Philip D. F. Adler
- Department of Chemistry, Southampton University, SO17 1BJ Southampton, England
| | - Simon J. Coles
- Department of Chemistry, Southampton University, SO17 1BJ Southampton, England
| | - Tuncer Hökelek
- Department of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| |
Collapse
|
10
|
Hurley KA, Santos TMA, Nepomuceno GM, Huynh V, Shaw JT, Weibel DB. Targeting the Bacterial Division Protein FtsZ. J Med Chem 2016; 59:6975-98. [DOI: 10.1021/acs.jmedchem.5b01098] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Katherine A. Hurley
- Department of Pharmaceutical Sciences, University of Wisconsin—Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Thiago M. A. Santos
- Department
of Biochemistry, University of Wisconsin—Madison, 440 Henry Mall, Madison, Wisconsin 53706, United States
| | - Gabriella M. Nepomuceno
- Department of Chemistry, University of California—Davis, One Shields Avenue, Davis, California 95616, United States
| | - Valerie Huynh
- Department of Chemistry, University of California—Davis, One Shields Avenue, Davis, California 95616, United States
| | - Jared T. Shaw
- Department of Chemistry, University of California—Davis, One Shields Avenue, Davis, California 95616, United States
| | - Douglas B. Weibel
- Department
of Biochemistry, University of Wisconsin—Madison, 440 Henry Mall, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Department of Biomedical Engineering, University of Wisconsin—Madison, 1550 Engineering Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|