1
|
Ghoneim MM, Abdelgawad MA, Elkanzi NAA, Parambi DGT, Alsalahat I, Farouk A, Bakr RB. A literature review on pharmacological aspects, docking studies, and synthetic approaches of quinazoline and quinazolinone derivatives. Arch Pharm (Weinheim) 2024; 357:e2400057. [PMID: 38775630 DOI: 10.1002/ardp.202400057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 08/06/2024]
Abstract
Quinazoline and quinazolinone derivatives piqued medicinal chemistry interest in developing novel drug candidates owing to their pharmacological potential. They are important chemicals for the synthesis of a variety of physiologically significant and pharmacologically useful molecules. Quinazoline and quinazolinone derivatives have anticancer, anti-inflammatory, antidiabetic, anticonvulsant, antiviral, and antimicrobial potential. The increased understanding of quinazoline and quinazolinone derivatives in biological activities provides opportunities for new medicinal products. The present review focuses on novel advances in the synthesis of these important scaffolds and other medicinal aspects involving drug design, structure-activity relationship, and action mechanisms of quinazoline and quinazolinone derivatives to help in the development of new quinazoline and quinazolinone derivatives.
Collapse
Affiliation(s)
- Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Nadia A A Elkanzi
- Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia
| | | | - Izzeddin Alsalahat
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff, UK
| | - Amr Farouk
- Flavour and Aroma Chemistry Department, National Research Centre, Cairo, Dokki, Egypt
| | - Rania B Bakr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
2
|
Chandrasekhar S, Raghu MS, Yogesh Kumar K, Alharethy F, Prashanth MK, Jeon BH. Theoretical and experimental investigation of novel quinazoline derivatives: synthesis, photophysical, reactive properties, molecular docking and selective HSA biointeraction. J Biomol Struct Dyn 2024; 42:6772-6787. [PMID: 37477248 DOI: 10.1080/07391102.2023.2237590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
Two new quinazoline derivatives (2a and 2b) were successfully synthesized in this work using the condensation technique in excellent yields. Using spectroscopic techniques and elemental analyses, the compounds were completely characterized. Density functional theory (DFT) computations have been used to examine the title compound's reactive characteristics. Chemical reactivity was predicted using local reactive descriptors and molecule electrostatic potential. Additionally, Time dependent DFT (TD-DFT) simulations were used to examine the impact of solvents on the photophysical characteristics. The affinity of compounds 2a and 2b for human serum albumin (HSA) was further explored using several electronic spectroscopies. Through static mechanisms, both compounds reduce the intrinsic fluorescence of HSA. It is determined that the HSA-2b complex's binding constant is significantly greater than the HSA-2a complex. The fluorescence spectrum measurements proved that the HSA underwent structural changes after interaction with these compounds. It was demonstrated by site marker competitive displacement studies that compounds 2a and 2b preferred to bind to site I in HSA subdomain IIA. Additionally, synchronised fluorescence spectra were utilized to analyze how HSA's conformation changed after interacting with various substances. The molecular docking investigations of these compounds with the three critical HSA binding sites, comprising subdomains IIA, IIIA, and IB, further confirmed the experimental findings. The significant contact between the investigated compounds and HSA was supported by the docking simulations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- S Chandrasekhar
- Department of Physics, B N M Institute of Technology, Bengaluru, India
| | - M S Raghu
- Department of Chemistry, New Horizon College of Engineering, Bengaluru, India
| | - K Yogesh Kumar
- Department of Chemistry, Faculty of Engineering and Technology, Jain University, Ramanagara, India
| | - Fahd Alharethy
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - M K Prashanth
- Department of Chemistry, B N M Institute of Technology, Bengaluru, India
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Raghu MS, Pradeep Kumar CB, Yogesh Kumar K, Prashanth MK, Alharethy F, Jeon BH. Synthesis, biological evaluation and molecular docking study of pyrimidine linked thiazolidinedione derivatives as potential antimicrobial and antitubercular agents. Bioorg Med Chem Lett 2024; 103:129707. [PMID: 38492608 DOI: 10.1016/j.bmcl.2024.129707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/18/2024]
Abstract
The design and development of novel antimicrobial agents are highly desired to combat the emergence of medication resistance against microorganisms that cause infections. A series of new pyrimidine-linked thiazolidinedione derivatives (5a-j) were synthesized, characterized, and their antimicrobial properties assessed in the current investigation. Here, novel pyrimidine-linked thiazolidinedione compounds were designed using the molecular hybridization approach. Elemental and spectral techniques were used to determine the structures of the synthesized hybrids. The majority of compounds showed encouraging antibacterial properties. Among the active compounds, 5g, 5i, and 5j showed 1.85, 1.15, and 1.38 times the activity of streptomycin against S. aureus, respectively, with MIC values of 6.4, 10.3, and 8.6 µM. With MIC values of 10.8, 21.9, and 15.4 µM, respectively, the compounds 5g, 5i, and 5j showed 2.14, 1.05, and 1.50 times the activity of linezolid against the methicillin-resistant S. aureus (MRSA) strain. Furthermore, when compared to the reference medications, compounds 5g, 5i, and 5j demonstrated broad-range antimicrobial efficacy against all tested strains of bacteria and fungus. Out of all the compounds that were investigated, compounds 5g, 5i, and 5j showed noteworthy anti-tubercular activity. 5g is the most effective, 1.59 times more effective than reference drug isoniazid. To anticipate the binding manner, the synthesized potent compounds were subjected to molecular docking into the active binding site of MRSA and the mycobacterial membrane protein large 3 (MmpL3) protein. The compounds 5g, 5i, and 5j may eventually serve as lead compounds in the search for antimicrobial and anti-TB therapeutic agents.
Collapse
Affiliation(s)
- M S Raghu
- Department of Chemistry, New Horizon College of Engineering, Bengaluru 560 103, India
| | - C B Pradeep Kumar
- Department of Chemistry, Malnad College of Engineering, Hassan 573 202, India
| | - K Yogesh Kumar
- Department of Chemistry, Faculty of Engineering and Technology, Jain University, Ramanagara 562 112, India
| | - M K Prashanth
- Department of Chemistry, B N M Institute of Technology, Bengaluru 560 070, India.
| | - Fahd Alharethy
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
4
|
Raghu MS, Yogesh Kumar K, Shamala T, Alharti FA, Prashanth MK, Jeon BH. Synthesis, antitubercular profile and molecular docking studies of quinazolinone-based pyridine derivatives against drug-resistant tuberculosis. J Biomol Struct Dyn 2024; 42:3307-3317. [PMID: 37261798 DOI: 10.1080/07391102.2023.2217928] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/03/2023] [Indexed: 06/02/2023]
Abstract
The promising quinazolinone-based pyridine derivatives (4a-j) were synthesized and subsequently tested for their antimycobacterial activities against the various drug-sensitive and drug-resistant Mycobacterium tuberculosis (Mtb) strains to combat infectious diseases and address growing concerns about the devastating effects of tuberculosis (TB). Utilizing 1H NMR, 13C NMR, and mass spectra, the structural and molecular confirmation of the synthesized compounds were deciphered. With minimum inhibitory concentration (MIC) values ranging from 0.31 to 19.13 μM, the results showed that compounds 4e and 4f showed promise anti-TB action against both drug-sensitive and drug-resistant TB strains. To study the cytotoxicity of synthesized molecules, normal Vero and mouse macrophage (RAW264.7) cell lines were utilized. Remarkably, it was revealed that at the highest concentration tested, none of the newly synthesized molecules were toxic to the Vero cell line. The binding patterns of the potent compounds 4b, 4e and 4f in the active site of the mycobacterial membrane protein Large 3 (MmpL3) protein are also revealed by molecular docking studies, which has contributed to the development of a structural rationale for Mtb inhibition. The physicochemical characteristics of the compounds were then predicted using theoretical calculations. Overall, the molecular docking results, physiochemical properties, and observed antimycobacterial activity all point to compound 4e with trifluoromethyl and compound 4f with nitro moiety as potential quinazolinone linked pyridine-based MmpL3 inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- M S Raghu
- Department of Chemistry, New Horizon College of Engineering, Bengaluru, India
| | - K Yogesh Kumar
- Department of Chemistry, Faculty of Engineering and Technology, Jain University, Ramanagara, India
| | - T Shamala
- Department of Chemistry, B N M Institute of Technology, Bengaluru, India
| | - Fahad A Alharti
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - M K Prashanth
- Department of Chemistry, B N M Institute of Technology, Bengaluru, India
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Raghu M, Swarup H, Shamala T, Prathibha B, Kumar KY, Alharethy F, Prashanth M, Jeon BH. Design, synthesis, anticancer activity and docking studies of novel quinazoline-based thiazole derivatives as EGFR kinase inhibitors. Heliyon 2023; 9:e20300. [PMID: 37809937 PMCID: PMC10560058 DOI: 10.1016/j.heliyon.2023.e20300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 08/26/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023] Open
Abstract
The in vitro anticancer efficacy of a new series of quinazoline-based thiazole derivatives was explored. Three cancer cell lines, MCF-7, HepG2, and A548, as well as the normal Vero cell lines, were tested employing the synthesized quinazoline-based thiazole compounds (4a-j). All of these compounds showed a moderate to significant cytotoxic impact that would have been noticeable and, in some cases, much more pronounced than the widely used drug erlotinib. For the MCF-7, HepG2, and A549 cell lines, respectively, the IC50 values of compound 4i were 2.86, 5.91, and 14.79 μM while those of compound 4j were 3.09, 6.87, and 17.92 μM. For their in vitro inhibitory effects against different EGFR kinases, such as the wild-type, L858R/T790 M, and L858R/T790 M/C797S, all the synthesized compounds were tested. The IC50 values for compound 4f against the wild-type, L858R/T790 M, and L858R/T790 M/C797S mutant EGFR kinases were 2.17, 2.81, and 3.62 nM, respectively. Investigations on the molecular docking of significant molecules indicated potential mechanisms of binding into the EGFR kinase active sites. By using in-silico simulations, compounds' putative drug-like qualities were verified. Finally, it has been shown that the newly synthesized compounds 4i and 4j are good candidates and beneficial for future design, optimization, and research to build more potent and selective EGFR kinase inhibitors with higher anticancer activity.
Collapse
Affiliation(s)
- M.S. Raghu
- Department of Chemistry, New Horizon College of Engineering, Bengaluru, 560 103, India
| | - H.A. Swarup
- Department of Chemistry, B N M Institute of Technology, Bengaluru, 560 070, India
| | - T. Shamala
- Department of Chemistry, B N M Institute of Technology, Bengaluru, 560 070, India
| | - B.S. Prathibha
- Department of Chemistry, B N M Institute of Technology, Bengaluru, 560 070, India
| | - K. Yogesh Kumar
- Department of Chemistry, Faculty of Engineering and Technology, Jain University, Ramanagara, 562 112, India
| | - Fahd Alharethy
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - M.K. Prashanth
- Department of Chemistry, B N M Institute of Technology, Bengaluru, 560 070, India
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| |
Collapse
|
6
|
Raghu M, Swarup H, Prathibha B, Kumar KY, Kumar CBP, Alharti FA, Prashanth M, Jeon BH. Design, synthesis and molecular docking studies of 5,6-difluoro-1H-benzo[d]imidazole derivatives as effective binders to GABAA receptor with potent anticonvulsant activity. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
7
|
Experimental and theoretical examinations of triazole linked saccharin derivatives as organic corrosion inhibitors for mild steel in hydrochloric acid. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Veena K, Raghu M, Yogesh Kumar K, Pradeep Kumar C, Alharti FA, Prashanth M, Jeon BH. Design and synthesis of novel benzimidazole linked thiazole derivatives as promising inhibitors of drug-resistant tuberculosis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
9
|
Synthesis, characterization, antimicrobial and interaction studies of pteridines with human serum albumin: A combined multi-spectroscopic and computational study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
|
11
|
Hou B, Zhou Y, Li W, Liu J, Wang C. Synthesis and evaluation of tryptanthrins as antitumor agents. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Kumar CBP, Raghu MS, Prathibha BS, Prashanth MK, Kanthimathi G, Kumar KY, Parashuram L, Alharthi FA. Discovery of a novel series of substituted quinolines acting as anticancer agents and selective EGFR blocker: Molecular docking study. Bioorg Med Chem Lett 2021; 44:128118. [PMID: 34015505 DOI: 10.1016/j.bmcl.2021.128118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/09/2021] [Accepted: 05/13/2021] [Indexed: 11/18/2022]
Abstract
A Ta2O5-anchored-piperidine-4-carboxylic acid (PPCA) nanoparticle has been synthesized and characterized. It was then used as a highly effective nanocatalyst for the synthesis of quinolin-2(1H)-one derivatives through CO bond functionalization. The special advantage of this heterogeneous solid catalyst is the reusability of the catalyst for up to five cycles without any noticeable reduction in product yields. In comparison, healthy reaction profiles, wide substrate scope, excellent yields and easy workup conditions are the notable highlights of this approach. All the compounds were tested for their anticancer activity against MCF-7 (human breast), HepG2 (human liver), HCT116 (human colorectal), and PC-3 (human prostate) cancer cell lines with the MTT assay. All the compounds were shown to have moderate to good inhibitory effects on tested cancer cell lines. Besides, compounds 5b, 5c and 5d showed good selectivity against epidermal growth factor receptor-tyrosine kinase (EGFR-TK). Molecular docking results showed that active compounds showed a good affinity towards EGFR kinase (PDB ID: 6V6O) by forming two hydrogen bonds with Cys-797 and Tyr-801. All the compounds were screened for computational ADMET and Lipinski analysis.
Collapse
Affiliation(s)
- C B Pradeep Kumar
- Department of Chemistry, Malnad College of Engineering, Hassan 573 202, India
| | - M S Raghu
- Department of Chemistry, New Horizon College of Engineering, Bengaluru 560 103, India
| | - B S Prathibha
- Department of Chemistry, B N M Institute of Technology, Bengaluru 560 070, India
| | - M K Prashanth
- Department of Chemistry, B N M Institute of Technology, Bengaluru 560 070, India.
| | - G Kanthimathi
- Department of Chemistry, Ramco Institute of Technology, Rajapalayam, Tamilnadu, 626117, India
| | - K Yogesh Kumar
- Department of Chemistry, School of Engineering and Technology, Jain University, Ramanagara 562 112, India
| | - L Parashuram
- Department of Chemistry, New Horizon College of Engineering, Bengaluru 560 103, India
| | - Fahad A Alharthi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
13
|
Kumar CBP, Raghu MS, Prasad KNN, Chandrasekhar S, Jayanna BK, Alharthi FA, Prashanth MK, Kumar KY. Investigation of biological activity of 2,3-disubstituted quinazolin-4(1H)-ones against Mycobacterium tuberculosis and DNA via docking, spectroscopy and DFT studies. NEW J CHEM 2021. [DOI: 10.1039/d0nj03800h] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Docking studies, structural data of DNA binding and molecular dynamics simulations of substituted quinazolin-4(1H)-ones.
Collapse
Affiliation(s)
| | - M. S. Raghu
- Department of Chemistry
- New Horizon College of Engineering
- Bengaluru 560 103
- India
| | - K. N. N. Prasad
- Department of Physics
- B N M Institute of Technology
- Bengaluru-560 070
- India
| | - S. Chandrasekhar
- Department of Physics
- B N M Institute of Technology
- Bengaluru-560 070
- India
| | - B. K. Jayanna
- Department of Chemistry
- B N M Institute of Technology
- Bengaluru-560 070
- India
| | - Fahad A. Alharthi
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh
- Saudi Arabia
| | - M. K. Prashanth
- Department of Chemistry
- B N M Institute of Technology
- Bengaluru-560 070
- India
| | - K. Yogesh Kumar
- Department of Chemistry
- School of Engineering and Technology
- Jain University
- Ramanagara
- India
| |
Collapse
|
14
|
Raghu MS, Pradeep Kumar CB, Prashanth MK, Yogesh Kumar K, Prathibha BS, Kanthimathi G, Alissa SA, Alghulikah HA, Osman SM. Novel 1,3,5-triazine-based pyrazole derivatives as potential antitumor agents and EFGR kinase inhibitors: synthesis, cytotoxicity, DNA binding, molecular docking and DFT studies. NEW J CHEM 2021. [DOI: 10.1039/d1nj02419a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of new 1,3,5-triazine-based pyrazole derivatives as effective anticancer agents.
Collapse
Affiliation(s)
- M. S. Raghu
- Department of Chemistry, New Horizon College of Engineering
- Bengaluru 560 103
- India
| | | | - M. K. Prashanth
- Department of Chemistry, B N M Institute of Technology
- Bengaluru 560 070
- India
| | - K. Yogesh Kumar
- Department of Chemistry, School of Engineering and Technology, Jain University
- Ramanagara
- India
| | - B. S. Prathibha
- Department of Chemistry, B N M Institute of Technology
- Bengaluru 560 070
- India
| | - G. Kanthimathi
- Department of Chemistry, Ramco Institute of Technology
- Rajapalayam
- India
| | - Siham Abdulrahman Alissa
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University
- Riyadh 11671
- Saudi Arabia
| | - Hanan Abdulrahman Alghulikah
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University
- Riyadh 11671
- Saudi Arabia
| | - Sameh M. Osman
- Department of Chemistry, College of Science, King Saud University
- Riyadh
- Saudi Arabia
| |
Collapse
|
15
|
Jha M, Alam O, Naim MJ, Sharma V, Bhatia P, Sheikh AA, Nawaz F, Alam P, Manaithiya A, Kumar V, Nazar S, Siddiqui N. Recent advancement in the discovery and development of anti-epileptic biomolecules: An insight into structure activity relationship and Docking. Eur J Pharm Sci 2020; 153:105494. [PMID: 32730845 DOI: 10.1016/j.ejps.2020.105494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022]
Abstract
Although there have been many advancements in scientific research and development, the cause of epilepsy still remains an open challenge. In spite of high throughput research in the field of anti-epileptic drugs, efficacy void is still prevalent before the researchers. Researchers have persistently been exploring all the possibilities to curb undesirable side effects of the anti-epileptic drugs or looking for a more substantial approach to diminish or cure epilepsy. The drug development has shown a hope to medicinal chemists and researchers to carry further research by going through a substantial literature survey. This review article attempts to describe the recent developments in the anti-epileptic agents, pertaining to different molecular scaffolds considering their structure-activity relationship, docking studies and their mechanism of actions.
Collapse
Affiliation(s)
- Mukund Jha
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Ozair Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Mohd Javed Naim
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Vrinda Sharma
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Parth Bhatia
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Aadil Ahmad Sheikh
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Farah Nawaz
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Perwaiz Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Ajay Manaithiya
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Vivek Kumar
- Department of Cardiology, Fortis Heart Institute, New Delhi, 110025, India
| | - Shagufi Nazar
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nadeem Siddiqui
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
16
|
Karaali N. A convenient method for the synthesis of 3,4-dihydroquinazolines from iminoester hydrochlorides via microwave irradiation. JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.1177/1747519819857513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This work presents a simple and practical strategy for the synthesis of 2-substituted-3,4-dihydroquinazolines in which the ring closure reaction of 2-aminobenzylamine with corresponding iminoester hydrochlorides via microwave irradiation allows the formation of the target compounds. Also, the 3,4-quinazoline derivatives were synthesized by conventional heating procedures for comparison in terms of reaction time and yield.
Collapse
Affiliation(s)
- Nesrin Karaali
- Department of Chemistry, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
17
|
Raghu MS, Pradeep Kumar CB, Yogesh Kumar K, Prashanth MK, Jayanna BK. Synthesis, Characterization, and Biological Evaluation of Novel 3‐(4‐Chlorophenyl)‐2‐(substituted)quinazolin‐4(3
H
)‐one Derivatives as Multi‐target Anti‐inflammatory Agents. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3585] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- M. S. Raghu
- Department of ChemistryNew Horizon College of Engineering Bangalore 560 103 India
| | | | - K. Yogesh Kumar
- Department of Chemistry, School of Engineering and TechnologyJain University Ramanagara 562 112 India
| | - M. K. Prashanth
- Department of ChemistryB N M Institute of Technology Bangalore 560 070 India
| | - B. K. Jayanna
- Department of ChemistryB N M Institute of Technology Bangalore 560 070 India
| |
Collapse
|
18
|
Noureldin NA, Kothayer H, Lashine ESM, Baraka MM, El-Eraky W, Awdan SAE. Synthesis, Anticonvulsant Activity, and SAR Study of Novel 4-Quinazolinone Derivatives. Arch Pharm (Weinheim) 2017; 350. [PMID: 28177550 DOI: 10.1002/ardp.201600332] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/21/2016] [Accepted: 01/04/2017] [Indexed: 11/09/2022]
Abstract
Series of N-(4-substitutedphenyl)-4-(1-methyl (or 1,2-dimethyl)-4-oxo-1,2-dihydroquinazolin-3(4H)-yl)-alkanamides (5a-j) and 4-chloro-N'-((1-methyl (or 1,2-dimethyl)-4-oxo-1,2-dihydroquinazolin-3(4H)-yl)-alkaloyl)benzohydrazides (6a-f) were designed based on the previously reported essential structural features for anticonvulsant activity. Several amino acids were incorporated within the synthesized quinazolin-4(3H)-ones to improve their bioavailability and the anticonvulsant activity. Synthesis of the target compounds was accomplished in four steps starting from the reaction between N-methyl isatoic anhydride and the appropriate amino acid. Then, the carboxylic acid group was utilized to synthesize the required final structures. The new quinazolinone derivatives were evaluated for their anticonvulsant activity according to the Anticonvulsant Drug Development (ADD) Program protocol. All the 16 new quinazolinones exhibited good anticonvulsant activity; especially 5f, 5b, and 5c showed superior anticonvulsant activities in comparison to the reference drug, with ED50 values of 28.90, 47.38, and 56.40 mg/kg, respectively.
Collapse
Affiliation(s)
- Nada A Noureldin
- Faculty of Pharmacy, Department of Medicinal Chemistry, Zagazig University, Zagazig, Egypt
| | - Hend Kothayer
- Faculty of Pharmacy, Department of Medicinal Chemistry, Zagazig University, Zagazig, Egypt
| | - El-Sayed M Lashine
- Faculty of Pharmacy, Department of Medicinal Chemistry, Zagazig University, Zagazig, Egypt
| | - Mohamed M Baraka
- Faculty of Pharmacy, Department of Medicinal Chemistry, Zagazig University, Zagazig, Egypt
| | - Wafaa El-Eraky
- Department of Pharmacology, National Research Center, Dokki, Cairo, Egypt
| | - Sally A El Awdan
- Department of Pharmacology, National Research Center, Dokki, Cairo, Egypt
| |
Collapse
|
19
|
Dong S, Wang T, Wang H, Qian K, Zhang Z, Zuo Y, Luo G, Jin Y, Wang Z. Synthesis and Evaluation of 5-(o-Tolyl)-1H-tetrazole Derivatives as Potent Anticonvulsant Agents. Arch Pharm (Weinheim) 2017; 350. [PMID: 28418160 DOI: 10.1002/ardp.201600389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/18/2017] [Accepted: 03/27/2017] [Indexed: 11/11/2022]
Abstract
A series of 5-(o-tolyl)-1H-tetrazole derivatives were synthesized and evaluated for their anticonvulsant activities. 1-(2-Methylbenzyl)-5-(o-tolyl)-1H-tetrazole (3h) showed important anticonvulsant activity against the MES-induced seizures, as well as lower neurotoxicity with an ED50 value of 12.7 mg/kg and a TD50 value of over 500 mg/kg after intraperitoneal injection into mice, providing 3h with a high protective index (TD50 /ED50 ) of over 39.4. The achieved results prove that the distinctive compounds could be valuable as a model for future development, adaptation, and investigation to construct more active analogues.
Collapse
Affiliation(s)
- Shiyang Dong
- College of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, China.,College of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Tiantian Wang
- College of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, China.,The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Nanchang, China
| | - Huayu Wang
- College of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, China
| | - Kun Qian
- College of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, China
| | - Zhongli Zhang
- College of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, China
| | - Yueming Zuo
- College of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, China
| | - Guangming Luo
- College of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, China
| | - Yi Jin
- College of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, China.,The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Nanchang, China
| | - Zengtao Wang
- College of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
20
|
Park B, Nam JH, Kim JH, Kim HJ, Onnis V, Balboni G, Lee KT, Park JH, Catto M, Carotti A, Lee JY. 3,4-Dihydroquinazoline derivatives inhibit the activities of cholinesterase enzymes. Bioorg Med Chem Lett 2017; 27:1179-1185. [DOI: 10.1016/j.bmcl.2017.01.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/07/2017] [Accepted: 01/24/2017] [Indexed: 01/08/2023]
|