1
|
Camargo-Ayala L, Prent-Peñaloza L, Osorio E, Camargo-Ayala PA, Jimenez CA, Zúñiga-Arbalti F, Brito I, Delgado GE, Gutiérrez M, Polo-Cuadrado E. Naphthyl-functionalized acetamide derivatives: Promising agents for cholinesterase inhibition and antioxidant therapy in Alzheimer's disease. Bioorg Chem 2024; 153:107896. [PMID: 39454497 DOI: 10.1016/j.bioorg.2024.107896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
This study presents the synthesis and characterization of a series of 13 novel acetamides. These were subjected to Ellman's assay to determine the efficacy of the AChE and BChE inhibitors. Finally, we report their antioxidant activity as an alternative approach for the search for drugs to treat AD. These studies revealed that compounds 1a-1k and 2l-2m were obtained in moderate yield. Four amides (1h, 1j, 1k, and 2l) were selective for one of the enzymes (BChE); thus, those that inhibited BChE were more active than the positive control (galantamine) and showed better IC50 values (3.30-5.03 µM). The theoretical free binding energies calculated by MM-GBSA indicated that all inhibitors were more stable than rivastigmine, and the inhibition mechanisms involved the entire active site: peripheral anionic site, oxyanion hole, acyl-binding pockets, and catalytic site. We examined the cytotoxicity of compounds 1h, 1j, 1k, and 2l in human dermal cells and found that they did not exhibit any toxic effects under the tested conditions. Additionally, these compounds, which also inhibited BChE, displayed mixed inhibition and did not exhibit hemolytic effects on human erythrocytes. Furthermore, the ABTS and DPPH assays indicated that, although none of the compounds showed activity in the DPPH assay, the EC50 values for radical trapping by the ABTS method showed that compounds 1a, 1d, 1e, and 1g had EC50 values lower than 10 µg/mL, indicating their strong radical scavenging capacity. We also report the crystal structures of compounds 1c, 1d, 1f, and 1g, which are found in monoclinic crystal systems.
Collapse
Affiliation(s)
- Lorena Camargo-Ayala
- Doctorado en Ciencias Mención I + D de Productos Bioactivos, Instituto de Química de Recursos Naturales, Laboratorio de Síntesis Orgánica, Universidad de Talca, Casilla 747, Talca 3460000, Chile.
| | - Luis Prent-Peñaloza
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Quillota 980, Viña del Mar, Chile
| | - Edison Osorio
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22, Calle 67, Ibagué 730001, Colombia
| | - Paola Andrea Camargo-Ayala
- Doctorado en Ciencias Biomédicas, Laboratorio de Patología Molecular, Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile
| | - Claudio A Jimenez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 4130000, Chile
| | - Felipe Zúñiga-Arbalti
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile
| | - Iván Brito
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Avda., Universidad de Antofagasta, Campus Coloso, Antofagasta 02800, Chile
| | - Gerzon E Delgado
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Avda., Universidad de Antofagasta, Campus Coloso, Antofagasta 02800, Chile; Laboratorio de Cristalografía, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Margarita Gutiérrez
- Laboratorio de Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Universidad de Talca, Casilla 747, Talca 3460000, Chile.
| | - Efraín Polo-Cuadrado
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 4130000, Chile.
| |
Collapse
|
2
|
Mezeiova E, Chalupova K, Nepovimova E, Gorecki L, Prchal L, Malinak D, Kuca K, Soukup O, Korabecny J. Donepezil Derivatives Targeting Amyloid-β Cascade in Alzheimer's Disease. Curr Alzheimer Res 2020; 16:772-800. [PMID: 30819078 DOI: 10.2174/1567205016666190228122956] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/04/2019] [Accepted: 01/31/2019] [Indexed: 11/22/2022]
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder with an increasing impact on society. Because currently available therapy has only a short-term effect, a huge number of novel compounds are developed every year exploiting knowledge of the various aspects of AD pathophysiology. To better address the pathological complexity of AD, one of the most extensively pursued strategies by medicinal chemists is based on Multi-target-directed Ligands (MTDLs). Donepezil is one of the currently approved drugs for AD therapy acting as an acetylcholinesterase inhibitor. In this review, we have made an extensive literature survey focusing on donepezil-derived MTDL hybrids primarily targeting on different levels cholinesterases and amyloid beta (Aβ) peptide. The targeting includes direct interaction of the compounds with Aβ, AChE-induced Aβ aggregation, inhibition of BACE-1 enzyme, and modulation of biometal balance thus impeding Aβ assembly.
Collapse
Affiliation(s)
- Eva Mezeiova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.,National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Katarina Chalupova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.,National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Lukas Gorecki
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Lukas Prchal
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - David Malinak
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.,National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.,National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| |
Collapse
|
3
|
Mahmoud WR, Nissan YM, Elsawah MM, Refaey RH, Ragab MF, Amin KM. Neurobehavioral investigation and acetylcholinesterase inhibitory activity study for some new coumarin derivatives. Eur J Med Chem 2019; 182:111651. [DOI: 10.1016/j.ejmech.2019.111651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/19/2019] [Accepted: 08/27/2019] [Indexed: 12/23/2022]
|
4
|
Wang L, Zhang L, Zhao Y, Fu Q, Xiao W, Lu R, Hai L, Guo L, Wu Y. Design, synthesis, and neuroprotective effects of dual-brain targeting naproxen prodrug. Arch Pharm (Weinheim) 2018; 351:e1700382. [PMID: 29566434 DOI: 10.1002/ardp.201700382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/28/2018] [Accepted: 03/06/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Linhui Wang
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| | - Li Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| | - Yi Zhao
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| | - Qiuyi Fu
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| | - Wenjiao Xiao
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| | - Runxin Lu
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| | - Li Hai
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| | - Li Guo
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| | - Yong Wu
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy; Sichuan University; Chengdu P. R. China
| |
Collapse
|
5
|
Vilela AFL, Seidl C, Lima JM, Cardoso CL. An improved immobilized enzyme reactor-mass spectrometry-based label free assay for butyrylcholinesterase ligand screening. Anal Biochem 2018; 549:53-57. [PMID: 29550345 DOI: 10.1016/j.ab.2018.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 02/02/2023]
Abstract
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are key cholinesterase enzymes responsible for the hydrolysis of acetylcholine into choline and acetic acid, an essential process for the restoration of the cholinergic neuron. The loss of cholinergic function in the central nervous system contributes to the cognitive decline associated with advanced age and Alzheimer's disease (AD). Inhibitions assays represent a significant role in the drug discovery process. Herein, we describe an improved label free method to screen and characterize new BChE ligands. The liquid chromatography system uses an immobilized capillary enzyme reactor (ICER) as a low affinity and high selectivity column coupled to a mass spectrometer (MS). The enzyme activity was evaluated by monitoring the choline's precursor ion [M + H]+m/z 104 for a brief period. The method was validated using two known cholinesterase inhibitors tacrine and galanthamine. The IC50 values were 0.03 ± 0.006 μM and 0.88 ± 0.2 for tacrine and galanthamine respectively, and Ki was 0.11 ± 0.2 for galanthamine. The efficient combination of the huBChE-ICER with sensitive enzymatic assay detection such as MS, improved the reliable, fast identification of new ligands. Moreover, specific direct quantitation of the product contributes to the reduction of false positive and negative results.
Collapse
Affiliation(s)
- Adriana Ferreira Lopes Vilela
- Departamento de Química, Grupo de Cromatografia de Bioafinidade e Produtos Naturais, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Cláudia Seidl
- Departamento de Química, Grupo de Cromatografia de Bioafinidade e Produtos Naturais, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Juliana Maria Lima
- Departamento de Química, Grupo de Cromatografia de Bioafinidade e Produtos Naturais, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Carmen Lúcia Cardoso
- Departamento de Química, Grupo de Cromatografia de Bioafinidade e Produtos Naturais, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil.
| |
Collapse
|