1
|
Hou X, Mao L, Zhang H, Wang L, He B, Guo J, Wang J. Design, synthesis, and anti-inflammatory activity of 2H-1,4-benzoxazin-3(4H)-one derivatives modified with 1,2,3-triazole in LPS-induced BV-2 cells. Front Pharmacol 2025; 15:1509520. [PMID: 39902072 PMCID: PMC11788571 DOI: 10.3389/fphar.2024.1509520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/18/2024] [Indexed: 02/05/2025] Open
Abstract
Given the potent anti-inflammatory properties of the 1,2,3-triazole structure and the wide use of 2H-1,4-benzoxazin-3(4H)-one in developing treatments for neurodegenerative diseases, a series of 2H-1,4-benzoxazin-3(4H)-one derivatives were synthesized by introducing a 1,2,3-triazole moiety. Screening for anti-inflammatory activity in microglial cells revealed that compounds e2, e16, and e20 exhibited the most promising effects without significant cytotoxicity. These compounds effectively reduced LPS-induced NO production and significantly decreased the transcription levels of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α. Furthermore, they downregulated the transcription and protein levels of the inflammation-related enzymes iNOS and COX-2 in response to LPS stimulation. To further investigate the anti-inflammatory mechanisms of these derivatives in microglia, the intracellular ROS levels and the activation of the Nrf2-HO-1 signaling pathway were analyzed. The results indicated that the 2H-1,4-benzoxazin-3(4H)-one derivatives significantly activated the Nrf2-HO-1 pathway, reduced LPS-induced ROS production, and alleviated microglial inflammation. Molecular docking studies suggested that compounds e2, e16, and e20 could interact with Nrf2-related binding sites, preventing its degradation by Keap1. Additionally, acute toxicity tests in mice demonstrated that compound e16 exhibited favorable safety.
Collapse
Affiliation(s)
- Xixi Hou
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Longfei Mao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Huibin Zhang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Lan Wang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Baoyu He
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, China
| | - Jingjing Guo
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, China
| | - Jianji Wang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China
| |
Collapse
|
4
|
Synthesis, Docking, 3-D-Qsar, and Biological Assays of Novel Indole Derivatives Targeting Serotonin Transporter, Dopamine D2 Receptor, and Mao-A Enzyme: In the Pursuit for Potential Multitarget Directed Ligands. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25204614. [PMID: 33050524 PMCID: PMC7594025 DOI: 10.3390/molecules25204614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 12/20/2022]
Abstract
A series of 27 compounds of general structure 2,3-dihydro-benzo[1,4]oxazin-4-yl)-2-{4-[3-(1H-3indolyl)-propyl]-1-piperazinyl}-ethanamides, Series I: 7(a-o) and (2-{4-[3-(1H-3-indolyl)-propyl]-1-piperazinyl}-acetylamine)-N-(2-morfolin-4-yl-ethyl)-fluorinated benzamides Series II: 13(a-l) were synthesized and evaluated as novel multitarget ligands towards dopamine D2 receptor, serotonin transporter (SERT), and monoamine oxidase-A (MAO-A) directed to the management of major depressive disorder (MDD). All the assayed compounds showed affinity for SERT in the nanomolar range, with five of them displaying Ki values from 5 to 10 nM. Compounds 7k, Ki = 5.63 ± 0.82 nM, and 13c, Ki = 6.85 ± 0.19 nM, showed the highest potencies. The affinities for D2 ranged from micro to nanomolar, while MAO-A inhibition was more discrete. Nevertheless, compounds 7m and 7n showed affinities for the D2 receptor in the nanomolar range (7n: Ki = 307 ± 6 nM and 7m: Ki = 593 ± 62 nM). Compound 7n was the only derivative displaying comparable affinities for SERT and D2 receptor (D2/SERT ratio = 3.6) and could be considered as a multitarget lead for further optimization. In addition, docking studies aimed to rationalize the molecular interactions and binding modes of the designed compounds in the most relevant protein targets were carried out. Furthermore, in order to obtain information on the structure-activity relationship of the synthesized series, a 3-D-QSAR CoMFA and CoMSIA study was conducted and validated internally and externally (q2 = 0.625, 0.523 for CoMFA and CoMSIA and r2ncv = 0.967, 0.959 for CoMFA and CoMSIA, respectively).
Collapse
|
5
|
Rodríguez-Lavado J, Gallardo-Garrido C, Mallea M, Bustos V, Osorio R, Hödar-Salazar M, Chung H, Araya-Maturana R, Lorca M, Pessoa-Mahana CD, Mella-Raipán J, Saitz C, Jaque P, Reyes-Parada M, Iturriaga-Vásquez P, Pessoa-Mahana H. Synthesis, in vitro evaluation and molecular docking of a new class of indolylpropyl benzamidopiperazines as dual AChE and SERT ligands for Alzheimer's disease. Eur J Med Chem 2020; 198:112368. [PMID: 32388114 DOI: 10.1016/j.ejmech.2020.112368] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/11/2020] [Accepted: 04/20/2020] [Indexed: 12/22/2022]
Abstract
During the last decade, the one drug-one target strategy has resulted to be inefficient in facing diseases with complex ethiology like Alzheimer's disease and many others. In this context, the multitarget paradigm has emerged as a promising strategy. Based on this consideration, we aim to develop novel molecules as promiscuous ligands acting in two or more targets at the same time. For such purpose, a new series of indolylpropyl-piperazinyl oxoethyl-benzamido piperazines were synthesized and evaluated as multitarget-directed drugs for the serotonin transporter (SERT) and acetylcholinesterase (AChE). The ability to decrease β-amyloid levels as well as cell toxicity of all compounds were also measured. In vitro results showed that at least four compounds displayed promising activity against SERT and AChE. Compounds 18 and 19 (IC50 = 3.4 and 3.6 μM respectively) exhibited AChE inhibition profile in the same order of magnitude as donepezil (DPZ, IC50 = 2.17 μM), also displaying nanomolar affinity in SERT. Moreover, compounds 17 and 24 displayed high SERT affinities (IC50 = 9.2 and 1.9 nM respectively) similar to the antidepressant citalopram, and significant micromolar AChE activity at the same time. All the bioactive compounds showed a low toxicity profile in the range of concentrations studied. Molecular docking allowed us to rationalize the binding mode of the synthesized compounds in both targets. In addition, we also show that compounds 11 and 25 exhibit significant β-amyloid lowering activity in a cell-based assay, 11 (50% inhibition, 10 μM) and 25 (35% inhibition, 10 μM). These results suggest that indolylpropyl benzamidopiperazines based compounds constitute promising leads for a multitargeted approach for Alzheimer's disease.
Collapse
Affiliation(s)
- Julio Rodríguez-Lavado
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos, 1007, Santiago, Chile
| | - Carlos Gallardo-Garrido
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos, 1007, Santiago, Chile
| | - Michael Mallea
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos, 1007, Santiago, Chile
| | - Victor Bustos
- Laboratory of Cellular and Molecular Neuroscience, The Rockefeller University, New York, USA
| | - Rodrigo Osorio
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos, 1007, Santiago, Chile
| | - Martín Hödar-Salazar
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería Ciencias, Universidad de la Frontera, Temuco, Chile
| | - Hery Chung
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Marcos Lorca
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - C David Pessoa-Mahana
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jaime Mella-Raipán
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Centro de Investigación Farmacopea Chilena (CIFAR), Universidad de Valparaíso, Santa Marta, Valparaíso, Chile
| | - Claudio Saitz
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos, 1007, Santiago, Chile
| | - Pablo Jaque
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos, 1007, Santiago, Chile
| | - Miguel Reyes-Parada
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Chile; Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Patricio Iturriaga-Vásquez
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería Ciencias, Universidad de la Frontera, Temuco, Chile; Center of Excellence in Biotechnology Research Applied to the Environment, Universidad de La Frontera, Temuco, Chile.
| | - Hernán Pessoa-Mahana
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos, 1007, Santiago, Chile.
| |
Collapse
|
6
|
Zinad DS, Mahal A, Mohapatra RK, Sarangi AK, Pratama MRF. Medicinal chemistry of oxazines as promising agents in drug discovery. Chem Biol Drug Des 2019; 95:16-47. [DOI: 10.1111/cbdd.13633] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Dhafer S. Zinad
- Applied Science Department University of Technology Baghdad Iraq
| | - Ahmed Mahal
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization and Guangdong Provincial Key Laboratory of Applied Botany South China Botanical Garden Chinese Academy of Sciences Guangzhou China
- Guangzhou HC Pharmaceutical Co., Ltd. Guangzhou China
| | - Ranjan K. Mohapatra
- Department of Chemistry Government College of Engineering Keonjhar Odisha India
| | - Ashish K. Sarangi
- Department of Chemistry Government College of Engineering Keonjhar Odisha India
| | - Mohammad Rizki Fadhil Pratama
- Department of Pharmacy Faculty of Health Sciences Muhammadiyah University of Palangkaraya Palangka Raya Indonesia
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Airlangga University Surabaya Indonesia
| |
Collapse
|
7
|
Gholami HR, Asghari S, Mohseni M. Synthesis, Characterization, and Evaluation of Antibacterial and Antioxidant Activities of Novel Benzoxazinones and Benzoxathiinones. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hamid Reza Gholami
- Department of Organic Chemistry, Faculty of ChemistryUniversity of Mazandaran Babolsar 47416‐95447 Iran
| | - Sakineh Asghari
- Department of Organic Chemistry, Faculty of ChemistryUniversity of Mazandaran Babolsar 47416‐95447 Iran
- Nano and Biotechnology Research GroupUniversity of Mazandaran Babolsar 47416‐95447 Iran
| | - Mojtaba Mohseni
- Nano and Biotechnology Research GroupUniversity of Mazandaran Babolsar 47416‐95447 Iran
- Department of Microbiology, Faculty of ScienceUniversity of Mazandaran Babolsar 47416‐95447 Iran
| |
Collapse
|