1
|
Rady GS, El Deeb MA, Sarg MTM, Taher AT, Helwa AA. Design, synthesis and biological evaluation of novel morpholinopyrimidine-5-carbonitrile derivatives as dual PI3K/mTOR inhibitors. RSC Med Chem 2024; 15:733-752. [PMID: 38389871 PMCID: PMC10880895 DOI: 10.1039/d3md00693j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/17/2023] [Indexed: 02/24/2024] Open
Abstract
In this study, novel morpholinopyrimidine-5-carbonitriles were designed and synthesized as dual PI3K/mTOR inhibitors and apoptosis inducers. The integration of a heterocycle at position 2, with or without spacers, of the new key intermediate 2-hydrazinyl-6-morpholinopyrimidine-5-carbonitrile (5) yielded compounds 6-10, 11a-c and 12a-h. The National Cancer Institute (USA) tested all compounds for antiproliferative activity. Schiff bases, 12a-h analogs, were the most active ones. The most promising compounds 12b and 12d exhibited excellent antitumor activity against the leukemia SR cell line, which is the most sensitive cell line, with IC50 0.10 ± 0.01 and 0.09 ± 0.01 μM, respectively, along with significant effects on PI3Kα/PI3Kβ/PI3Kδ with IC50 values of 0.17 ± 0.01, 0.13 ± 0.01 and 0.76 ± 0.04 μM, respectively, for 12b and 1.27 ± 0.07, 3.20 ± 0.16 and 1.98 ± 0.11, respectively, for 12d compared to LY294002. Compared to Afinitor, these compounds inhibited mTOR with IC50 values of 0.83 ± 0.05 and 2.85 ± 0.17 μM, respectively. Annexin-V and propidium iodide (PI) double labeling showed that compounds 12b and 12d promote cytotoxic leukemia SR apoptosis. Compounds 12b and 12d also caused a G2/M cell cycle arrest in the leukaemia SR cell line. The findings of this study indicate that the highest effect was observed for 12b, which was supported by western blot and docking analysis.
Collapse
Affiliation(s)
- Ghada S Rady
- Directorate of Health Affairs in Giza, Ministry of Health Egypt
| | - Moshira A El Deeb
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University Cairo Egypt
| | - Marwa T M Sarg
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University Cairo Egypt
| | - Azza T Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, October 6 University (O6U) 6th of October city Giza 12585 Egypt
| | - Amira A Helwa
- Department of Pharmaceutical Organic Chemistry, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST) Al-Motamayez District, P.O. Box: 77, 6th of October city Giza Egypt
| |
Collapse
|
2
|
N JB, Goudgaon N. A comprehensive review on pyrimidine analogs-versatile scaffold with medicinal and biological potential. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131168] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
3
|
Aggarwal R, Sumran G. An insight on medicinal attributes of 1,2,4-triazoles. Eur J Med Chem 2020; 205:112652. [PMID: 32771798 PMCID: PMC7384432 DOI: 10.1016/j.ejmech.2020.112652] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 02/01/2023]
Abstract
The present review aims to summarize the pharmacological profile of 1,2,4-triazole, one of the emerging privileged scaffold, as antifungal, antibacterial, anticancer, anticonvulsant, antituberculosis, antiviral, antiparasitic, analgesic and anti-inflammatory agents, etc. along with structure-activity relationship. The comprehensive compilation of work carried out in the last decade on 1,2,4-triazole nucleus will provide inevitable scope for researchers for the advancement of novel potential drug candidates having better efficacy and selectivity.
Collapse
Affiliation(s)
- Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136 119, India; CSIR-National Institute of Science Technology and Development Studies, New Delhi, India.
| | - Garima Sumran
- Department of Chemistry, D. A. V. College (Lahore), Ambala City, 134 003, Haryana, India.
| |
Collapse
|
4
|
Gazizov DA, Gorbunov EB, Rusinov GL, Ulomsky EN, Charushin VN. A New Family of Fused Azolo[1,5- a]pteridines and Azolo[5,1- b]purines. ACS OMEGA 2020; 5:18226-18233. [PMID: 32743198 PMCID: PMC7391858 DOI: 10.1021/acsomega.0c01849] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/26/2020] [Indexed: 05/02/2023]
Abstract
The nitration of azolo[1,5-a]pyrimidin-7-amines with several nitration agents (such as acetic nitric anhydride, nitronium tetrafluoroborate, and a mixture of concentrated nitric acid and sulfuric acid) has been investigated. It has been shown that, depending on the conditions, the nitration of pyrazolopyrimidin-7-amines bearing electron-withdrawing groups in the pyrazole ring leads to nitration products in the pyrimidine and/or pyrazole ring. The nitration of triazolo[1,5-a]pyrimidin-7-amines with "nitrating mixture" has been optimized, thus allowing us to obtain a series of 6-nitro[1,2,4]triazolo[1,5-a]pyrimidin-7-amines, followed by their reduction into the corresponding [1,2,4]triazolo[1,5-a]pyrimidin-6,7-diamines (yields 86-89%). The latter have been subjected to heterocyclization by a variety of electrophilic compounds (such as CS2, glyoxal, triethyl orthoformate) with the formation of five- or six-membered annulated cycles.
Collapse
Affiliation(s)
- Denis A. Gazizov
- Postovsky
Institute of Organic Synthesis of Ural Branch of Russian Academy of
Sciences, Sofia Kovalevskoy St. 22/20, Ekaterinburg 620108, Russia
| | - Evgeny B. Gorbunov
- Postovsky
Institute of Organic Synthesis of Ural Branch of Russian Academy of
Sciences, Sofia Kovalevskoy St. 22/20, Ekaterinburg 620108, Russia
| | - Gennady L. Rusinov
- Postovsky
Institute of Organic Synthesis of Ural Branch of Russian Academy of
Sciences, Sofia Kovalevskoy St. 22/20, Ekaterinburg 620108, Russia
- Department
of Organic and Biomolecular Chemistry, Ural
Federal University, Mira St. 19, Ekaterinburg 620002, Russia
| | - Evgeny N. Ulomsky
- Postovsky
Institute of Organic Synthesis of Ural Branch of Russian Academy of
Sciences, Sofia Kovalevskoy St. 22/20, Ekaterinburg 620108, Russia
- Department
of Organic and Biomolecular Chemistry, Ural
Federal University, Mira St. 19, Ekaterinburg 620002, Russia
| | - Valery N. Charushin
- Postovsky
Institute of Organic Synthesis of Ural Branch of Russian Academy of
Sciences, Sofia Kovalevskoy St. 22/20, Ekaterinburg 620108, Russia
- Department
of Organic and Biomolecular Chemistry, Ural
Federal University, Mira St. 19, Ekaterinburg 620002, Russia
| |
Collapse
|
5
|
Kamal R, Kumar R, Kumar V, Bhardwaj JK, Saraf P, Kumar A, Pandit K, Kaur S, Chetti P, Beura S. Diacetoxy iodobenzene mediated regioselective synthesis and characterization of novel [1,2,4]triazolo[4,3-a]pyrimidines: apoptosis inducer, antiproliferative activities and molecular docking studies. J Biomol Struct Dyn 2020; 39:4398-4414. [PMID: 32552396 DOI: 10.1080/07391102.2020.1777900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Prompt and regioselective synthesis of eleven novel [1,2,4]triazolo[4,3-a]pyrimidines 2a-2k, via intramolecular oxidative-cyclization of 2-(2-arylidenehydrazinyl)-4-methyl-6-phenylpyrimidine derivatives 1a-1k has been demonstrated here using diacetoxy iodobenzene (DIB) as inexpensive and ecofriendly hypervalent iodine(III) reagent in CH2Cl2 at room temperature. Regiochemistry of final product has been established by developing single crystal and studied X-ray crystallographic data for two derivatives 2c and 2h without any ambiguity. These prominent [1,2,4]triazolo[4,3-a]pyrimidines were evaluated for human osteosarcoma bone cancer (MG-63) and breast cancer (MCF-7) cell lines using MTT assay to find potent antiproliferative agent and also on testicular germ cells to find potent apoptotic inducing activities. All compounds show significant cytotoxicity, particularly 3-(2,4-dichlorophenyl)-5-methyl-7-phenyl-[1,2,4]triazolo[4,3-a]pyrimidine (2g) was found significant apoptotic inducing molecule, as well as the most potent cytotoxic agent against bone cancer (MG-63) and breast cancer (MCF-7) cell lines with GI50 value 148.96 µM and 114.3 µM respectively. Molecular docking studies has been carried out to see the molecular interactions of synthesized compounds with the protein thymidylate synthase (PBD ID: 2G8D).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Raj Kamal
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Ravinder Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Vipan Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | | | - Priyanka Saraf
- Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Ajay Kumar
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Kritika Pandit
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Satwinderjeet Kaur
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Prabhakar Chetti
- Department of Chemistry, National Institute of Technology (NIT), Kurukshetra, Haryana, India
| | - Satyajit Beura
- Department of Chemistry, National Institute of Technology (NIT), Kurukshetra, Haryana, India
| |
Collapse
|
6
|
Abd El-Aleam RH, George RF, Hassan GS, Abdel-Rahman HM. Synthesis of 1,2,4-triazolo[1,5-a]pyrimidine derivatives: Antimicrobial activity, DNA Gyrase inhibition and molecular docking. Bioorg Chem 2020; 94:103411. [DOI: 10.1016/j.bioorg.2019.103411] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 10/25/2022]
|