1
|
Khadri MJN, Ramu R, Simha NA, Khanum SA. Synthesis, molecular docking, analgesic, anti-inflammatory, and ulcerogenic evaluation of thiophene-pyrazole candidates as COX, 5-LOX, and TNF-α inhibitors. Inflammopharmacology 2024; 32:693-713. [PMID: 37985602 DOI: 10.1007/s10787-023-01364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/02/2023] [Indexed: 11/22/2023]
Abstract
The thiophene bearing pyrazole derivatives (7a-j) were synthesized and examined for their in vitro cyclooxygenase, 5-lipoxygenase, and tumour inducing factor-α inhibitory activities followed by the in vivo analgesic, anti-inflammatory, and ulcerogenic evaluations. The synthesized series (7a-j) were characterized using 1H NMR, 13C NMR, FT-IR, and mass spectral analysis. Initially, the compounds (7a-j) were evaluated for their in vitro cyclooxygenase, 5-lipoxygenase, and tumour inducing factor-α inhibitory activities and the compound (7f) with two phenyl substituents in the pyrazole ring and chloro substituent in the thiophene ring and the compound (7g) with two phenyl substituents in the pyrazole ring and bromo substituent in the thiophene ring were observed as potent compounds among the series. The compounds (7f and 7g) with effective in vitro potentials were further analyzed for analgesic, anti-inflammatory, and ulcerogenic evaluations. Also, to ascertain the binding affinities of compounds (7a-j), docking assessments were carried out and the ligand (7f) with the highest binding affinity was docked to know the interactions of the ligand with amino acids of target proteins.
Collapse
Affiliation(s)
- M J Nagesh Khadri
- Department of Chemistry, Yuvaraja's College (Autonomous), University of Mysore, Mysuru, Karnataka, 570005, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India
| | - N Akshaya Simha
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India
| | - Shaukath Ara Khanum
- Department of Chemistry, Yuvaraja's College (Autonomous), University of Mysore, Mysuru, Karnataka, 570005, India.
| |
Collapse
|
2
|
Ammar YA, Micky JA, Aboul-Magd DS, Abd El-Hafez SMA, Hessein SA, Ali AM, Ragab A. Development and radiosterilization of new hydrazono-quinoline hybrids as DNA gyrase and topoisomerase IV inhibitors: Antimicrobial and hemolytic activities against uropathogenic isolates with molecular docking study. Chem Biol Drug Des 2023; 101:245-270. [PMID: 36305722 DOI: 10.1111/cbdd.14154] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 09/23/2022] [Accepted: 10/09/2022] [Indexed: 01/14/2023]
Abstract
This study aimed to synthesize new potent quinoline derivatives based on hydrazone moieties and evaluate their antimicrobial activity. The newly synthesized hydrazono-quinoline derivatives 2, 5a, 9, and 10b showed the highest antimicrobial activity with MIC values ≤1.0 μg/ml against bacteria and ≤8.0 μg/ml against the fungi. Further, these derivatives exhibited bactericidal and fungicidal effects with MBC/MIC and MFC/MIC ratio ≤4. Surprisingly, the most active compounds displayed good inhibition to biofilm formation with MBEC values ranging between (40.0 ± 10.0 - 230.0 ± 31.0) and (67.0 ± 24.0 - 347.0 ± 15.0) μg/ml against Staphylococcus aureus and Pseudomonas aeruginosa, respectively. The hemolytic assays confirmed that the hydrazono-quinoline derivatives are non-toxic with low % lysis values ranging from 4.62% to 14.4% at a 1.0 mg/ml concentration. Besides, compound 5a exhibited the lowest hemolytic activity value of ~4.62%. Furthermore, the study suggests that the hydrazono-quinoline analogs exert their antibacterial activity as dual inhibitors for DNA gyrase and DNA topoisomerase IV enzymes with IC50 values ranging between (4.56 ± 0.3 - 21.67 ± 0.45) and (6.77 ± 0.4 - 20.41 ± 0.32) μM, respectively. Additionally, the recent work advocated that compound 5a showed the reference SAL at the ɣ-radiation dose of 10.0 kGy in the sterilization process without affecting its chemical structure. Finally, the in silico drug-likeness, toxicity properties, and molecular docking simulation were performed. Besides, the result exhibited good oral-bioavailability, lower toxicity prediction, and lower binding energy with good binding mode rather than the positive control.
Collapse
Affiliation(s)
- Yousry A Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Jehan A Micky
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Dina S Aboul-Magd
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Egypt
| | - Sondos M A Abd El-Hafez
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Sadia A Hessein
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Abeer M Ali
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
3
|
Synthesis, characterization and application of a magnetically separable nanocatalyst for the preparation of 4,4′-(arylmethylene)-bis(3-methyl-1-phenyl-1H-pyrazol-5-ol) derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04854-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Rafiq MA, Shahid M, Jilani K, Aslam MA. Antibacterial, Antibiofilm, and Anti-Quorum Sensing Potential of Novel Synthetic Compounds Against Pathogenic Bacteria Isolated From Chronic Sinusitis Patients. Dose Response 2022; 20:15593258221135731. [PMID: 36311176 PMCID: PMC9597054 DOI: 10.1177/15593258221135731] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/17/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Quorum sensing (QS) is a major controller of virulence and biofilm formation in
pathogenic bacteria. The aim of the research was to screen novel synthetic
compounds (18) from 2 series (Pyrazole and Diene dione) for quorum sensing and
biofilm inhibitory potential against resistant pathogens isolated from patients
with chronic sinusitis. Most of the compounds have documented zone of inhibition
against Gram positive strains Staphylococcus aureus,
Enterococcus faecalis and moderate activity against Gram
negative Klebseilla pneumoniae and Proteus
mirabilis in comparison with standard antibiotic. Compounds Q1 and
Q7 have given the maximum zone of inhibition 18 and 20 mm with MICs 0.312 mg/mL
and .156 mg/mL against S aureus and E
faecalis, respectively. Some compounds were equally potent at
inhibiting the formation of biofilm which later established by phase contrast
microscopy. Regarding quorum sensing inhibition, the tested concentration of
synthetic compound UA3 0.313 mg/mL inhibited violacein production without
decreasing Chromobacterium pseudoviolaceum count which was
significantly lower than determined MIC’s. It was depicted from the results that
selected compounds exhibited low level of cytotoxicity toward human red blood
cells. Hence, these findings revealed that most novel compounds were effective
antibacterial, whereas compound UA3 has shared significant anti-quorum sensing
potential against Chromobacterium pseudoviolaceum.
Collapse
Affiliation(s)
| | - Muhammad Shahid
- Department of Biochemistry, University of
Agriculture, Faisalabad, Pakistan,Muhammad Shahid, Department of
Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan.
| | - Kashif Jilani
- Department of Biochemistry, University of
Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
5
|
Gorbunova IA, Sharavyeva YO, Makhmudov RR, Shipilovskikh DA, Shadrin VM, Pulina NA, Shipilovskikh SA. Synthesis and Antinociceptive Activity of Substituted 2-(3-Cyano-4,5,6,7-tetrahydrobenzo[b]thiophene-2-ylamino)-4-oxobut-2-enoates. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222100048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Desai NC, Jadeja DJ, Khedkar VM. Design, synthesis, antimicrobial activity and in silico molecular docking studies of some sulfur containing pyrazole-pyridine hybrids. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2085271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Nisheeth C. Desai
- Division of Medicinal Chemistry, Department of Chemistry, Mahatma Gandhi Campus, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, India
| | - Dharmpalsinh J. Jadeja
- Division of Medicinal Chemistry, Department of Chemistry, Mahatma Gandhi Campus, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, India
| | | |
Collapse
|
7
|
Auld N, Flood K, Kesharwani T, Cavnar PJ. A study on the cellular and cytotoxic effects of S and Se heterocycles on the myeloid leukemia cell line PLB-985. PHOSPHORUS SULFUR 2022; 197:876-884. [PMID: 36970371 PMCID: PMC10035560 DOI: 10.1080/10426507.2022.2085272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This paper describes the synthesis of several halogenated S and Se heterocycles and tests their biological activity by measuring the effects on the myeloid leukemia cell line, PLB-985 cells. We report that select compounds exhibit significant increases in mitochondria membrane potential and increased oxidative stress in PLB-985 cells. Our results contribute to the foundational knowledge of different S and Se containing compounds and their possible impacts on human cells.
Collapse
Affiliation(s)
- Niccole Auld
- Department of Biology, University of West Florida, Pensacola, FL, USA
| | - Krystal Flood
- Department of Biology, University of West Florida, Pensacola, FL, USA
| | - Tanay Kesharwani
- Department of Chemistry, University of West Florida, Pensacola, FL, USA
| | - Peter J. Cavnar
- Department of Biology, University of West Florida, Pensacola, FL, USA
| |
Collapse
|
8
|
Ebenezer O, Shapi M, Tuszynski JA. A Review of the Recent Development in the Synthesis and Biological Evaluations of Pyrazole Derivatives. Biomedicines 2022; 10:biomedicines10051124. [PMID: 35625859 PMCID: PMC9139179 DOI: 10.3390/biomedicines10051124] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 12/12/2022] Open
Abstract
Pyrazoles are five-membered heterocyclic compounds that contain nitrogen. They are an important class of compounds for drug development; thus, they have attracted much attention. In the meantime, pyrazole derivatives have been synthesized as target structures and have demonstrated numerous biological activities such as antituberculosis, antimicrobial, antifungal, and anti-inflammatory. This review summarizes the results of published research on pyrazole derivatives synthesis and biological activities. The published research works on pyrazole derivatives synthesis and biological activities between January 2018 and December 2021 were retrieved from the Scopus database and reviewed accordingly.
Collapse
Affiliation(s)
- Oluwakemi Ebenezer
- Department of Chemistry, Faculty of Natural Science, Mangosuthu University of Technology, Durban 4026, South Africa; (O.E.); (M.S.)
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Michael Shapi
- Department of Chemistry, Faculty of Natural Science, Mangosuthu University of Technology, Durban 4026, South Africa; (O.E.); (M.S.)
| | - Jack A. Tuszynski
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Department of Mechanical and Aerospace Engineering, (DIMEAS), Politecnico di Torino, 10129 Turin, Italy
- Correspondence:
| |
Collapse
|
9
|
Roman G. Thiophene-containing compounds with antimicrobial activity. Arch Pharm (Weinheim) 2022; 355:e2100462. [PMID: 35289443 DOI: 10.1002/ardp.202100462] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/19/2022]
Abstract
Thiophene, as a member of the group of five-membered heterocycles containing one heteroatom, is one of the simplest heterocyclic systems. Many synthetic strategies allow the accurate positioning of various functionalities onto the thiophene ring. This review provides a comprehensive, systematic and detailed account of the developments in the field of antimicrobial compounds featuring at least one thiophene ring in their structure, over the last decade.
Collapse
Affiliation(s)
- Gheorghe Roman
- Department of Inorganic Polymers, Petru Poni Institute of Macromolecular Chemistry, Iaşi, Romania
| |
Collapse
|
10
|
Ali Mohamed H, Ammar YA, A.M. Elhagali G, A. Eyada H, S. Aboul-Magd D, Ragab A. In Vitro Antimicrobial Evaluation, Single-Point Resistance Study, and Radiosterilization of Novel Pyrazole Incorporating Thiazol-4-one/Thiophene Derivatives as Dual DNA Gyrase and DHFR Inhibitors against MDR Pathogens. ACS OMEGA 2022; 7:4970-4990. [PMID: 35187315 PMCID: PMC8851638 DOI: 10.1021/acsomega.1c05801] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/25/2022] [Indexed: 05/05/2023]
Abstract
A series of thiazol-4-one/thiophene-bearing pyrazole derivatives as pharmacologically attractive cores were initially synthesized using a hybridization approach. All structures were confirmed using spectra analysis techniques (IR, 1H NMR, and 13C NMR). In vitro antimicrobial activities, including the minimum inhibitory concentration (MIC), minimum bactericidal/fungicidal concentration (MBC/MFC), and time-kill assay, were evaluated for the most active derivatives 4a, 5a, 7b, 10, and 13. These derivatives were significantly active against the tested pathogens, with compound 7b as the most active derivative (MIC values range from 0.22 to 0.25 μg/mL). In the MBC and MFC, the active target pyrazole derivatives showed -cidal activities toward the pathogenic isolates. Further, the inhibition of biofilm formation of Staphylococcus aureus and Staphylococcus epidermidis was also carried out. Additionally, these derivatives displayed significant antibiofilm potential with a superior % reduction in the biofilm formation compared with Ciprofloxacin. The target derivatives behaved synergistically with Ciprofloxacin and Ketoconazole, reducing their MICs. Hemolytic results revealed that these derivatives were nontoxic with a significantly low hemolytic activity (%lysis range from 3.23 to 15.22%) compared with Triton X-100 and showed noncytotoxicity activity with IC50 values > 60 μM. In addition, these derivatives proved to be active DNA gyrase and DHFR inhibitors with IC50 ranging between 12.27-31.64 and 0.52-2.67 μM, respectively. Furthermore, compound 7b showed bactericidal activity at different concentrations in the time-kill assay. Moreover, a gamma radiation dose of 10.0 kGy was efficient for sterilizing compound 7b and enhancing its antimicrobial activity. Finally, molecular docking simulation of the most promising derivatives exhibited good binding energy with different interactions.
Collapse
Affiliation(s)
- Hazem Ali Mohamed
- Chemistry
Department, Faculty of Science (Boys), Al-Azhar
University, Nasr City, Cairo 11884, Egypt
| | - Yousry A. Ammar
- Chemistry
Department, Faculty of Science (Boys), Al-Azhar
University, Nasr City, Cairo 11884, Egypt
- ;
| | - Gameel A.M. Elhagali
- Chemistry
Department, Faculty of Science (Boys), Al-Azhar
University, Nasr City, Cairo 11884, Egypt
| | - Hassan A. Eyada
- Chemistry
Department, Faculty of Science (Boys), Al-Azhar
University, Nasr City, Cairo 11884, Egypt
| | - Dina S. Aboul-Magd
- Drug
Radiation Research Department, National Center for Radiation
Research and Technology (NCRRT), Egyptian
Atomic Energy Authority, Cairo, Egypt
| | - Ahmed Ragab
- Chemistry
Department, Faculty of Science (Boys), Al-Azhar
University, Nasr City, Cairo 11884, Egypt
- ; . Tel.: + 20201009341359
| |
Collapse
|
11
|
Priya D, Gopinath P, Dhivya LS, Vijaybabu A, Haritha M, Palaniappan S, Kathiravan MK. Structural Insights into Pyrazoles as Agents against Anti‐inflammatory and Related Disorders. ChemistrySelect 2022. [DOI: 10.1002/slct.202104429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Deivasigamani Priya
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| | | | | | - Anandan Vijaybabu
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| | - Manoharan Haritha
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| | | | - Muthu K. Kathiravan
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
- Dr APJ Abdul Kalam Research Lab Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| |
Collapse
|
12
|
Ramadan M, Aly AA, El-Haleem LEA, Alshammari MB, Bräse S. Substituted Pyrazoles and Their Heteroannulated Analogs-Recent Syntheses and Biological Activities. Molecules 2021; 26:4995. [PMID: 34443583 PMCID: PMC8401439 DOI: 10.3390/molecules26164995] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023] Open
Abstract
Pyrazoles are considered privileged scaffolds in medicinal chemistry. Previous reviews have discussed the importance of pyrazoles and their biological activities; however, few have dealt with the chemistry and the biology of heteroannulated derivatives. Therefore, we focused our attention on recent topics, up until 2020, for the synthesis of pyrazoles, their heteroannulated derivatives, and their applications as biologically active moieties. Moreover, we focused on traditional procedures used in the synthesis of pyrazoles.
Collapse
Affiliation(s)
- Mohamed Ramadan
- Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assuit 71524, Egypt;
| | - Ashraf A. Aly
- Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt;
| | | | - Mohammed B. Alshammari
- Chemistry Department, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, P.O. Box 83, Al-Kharij 11942, Saudi Arabia;
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|