1
|
Dascălu AE, Furman C, Lancel S, Lipka E, Liberelle M, Boulanger E, Ghinet A. Ultrasound-Assisted Synthesis of Pyrazoline Derivatives as Potential Antagonists of RAGE-Mediated Pathologies: Insights from SAR Studies and Biological Evaluations. ChemMedChem 2025; 20:e202400527. [PMID: 39289154 DOI: 10.1002/cmdc.202400527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024]
Abstract
In the context of age-related disorders, the receptor of advanced glycation end products (RAGE), plays a pivotal role in the pathogenesis of these conditions by triggering downstream signaling pathways associated with chronic inflammation and oxidative stress. Targeting this inflammaging phenomenon with RAGE antagonists holds promise for interventions with broad implications in healthy aging and the management of age-related conditions. This study explores the structure-activity relationship (SAR) of pyrazoline-based RAGE antagonists synthesized using an ultrasound-assisted green one-pot two-steps methodology. Our investigation identifies phenylurenyl-pyrazoline 2 g as a promising candidate, demonstrating superior efficiency compared to the reference antagonist Azeliragon (IC50=13 μM). Compound 2 g exhibits potent inhibition of the AGE2-BSA/sRAGE interaction (IC50=22 μM) and favorable affinity in Microscale Thermophoresis (MST) assays (Kd=17.1 μM), along with a favorable safety profile, with no apparent cytotoxicity observed in vitro in the MTS assay. These findings underscore the potential of pyrazoline-derived RAGE antagonists as therapeutic agents for addressing age-related disorders.
Collapse
Affiliation(s)
- Anca-Elena Dascălu
- Health and Environment, Laboratory of Sustainable Chemistry and Health, Junia, F-59000, Lille, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
- Faculty of Chemistry, 'Alexandru Ioan Cuza' University of Iasi, Bd. Carol I, Nr. 11, 700506, Iasi, Romania
| | - Christophe Furman
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
- Univ. Lille, UFR Pharmacie, BP 83, F-59006, Lille, France
| | - Steve Lancel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
| | - Emmanuelle Lipka
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
- Univ. Lille, UFR Pharmacie, BP 83, F-59006, Lille, France
| | | | - Eric Boulanger
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
| | - Alina Ghinet
- Health and Environment, Laboratory of Sustainable Chemistry and Health, Junia, F-59000, Lille, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
- Faculty of Chemistry, 'Alexandru Ioan Cuza' University of Iasi, Bd. Carol I, Nr. 11, 700506, Iasi, Romania
| |
Collapse
|
2
|
Poustforoosh A, Faramarz S, Negahdaripour M, Tüzün B, Hashemipour H. Investigation on the mechanisms by which the herbal remedies induce anti-prostate cancer activity: uncovering the most practical natural compound. J Biomol Struct Dyn 2024; 42:3349-3362. [PMID: 37194430 DOI: 10.1080/07391102.2023.2213344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/04/2023] [Indexed: 05/18/2023]
Abstract
Prostate cancer (PCa) is one of the most reported cancers among men worldwide. Targeting the essential proteins associated with PCa could be a promising method for cancer treatment. Traditional and herbal remedies (HRs) are the most practical approaches for PCa treatment. Here, the proteins and enzymes associated with PCa were determined based on the information obtained from the DisGeNET database. The proteins with a gene-disease association (GDA) score greater than 0.7 and the genes that have a disease specificity index (DSI) = 1 were selected as the target proteins. 28 HRs with anti-PCa activity as a traditional treatment for PCa were chosen as potential bioactive compounds. More than 500 compound-protein complexes were screened to find the top-ranked bioactives. The results were further evaluated using the molecular dynamics (MD) simulation and binding free energy calculations. The outcomes revealed that procyanidin B2 3,3'-di-O-gallate (B2G2), the most active ingredient of grape seed extract (GSE), can act as an agonist for PTEN. PTEN has a key role in suppressing PCa cells by applying phosphatase activity and inhibiting cell proliferation. B2G2 exhibited a considerable binding affinity to PTEN (11.643 kcal/mol). The MD results indicated that B2G2 could stabilize the key residues of the phosphatase domain of PTEN and increase its activity. Based on the obtained results, the active ingredient of GSE, B2G2, could play an agonist role and effectively increase the phosphatase activity of PTEN. The grape seed extract is a useful nutrition that can be used in men's diets to inhibit PCa in their bodies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Alireza Poustforoosh
- Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Faramarz
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas, Turkey
| | - Hassan Hashemipour
- Chemical Engineering Department, Faculty of Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
3
|
Zeng J, Pei H, Wu H, Chen W, Du R, He Z. Palmatine attenuates LPS-induced neuroinflammation through the PI3K/Akt/NF-κB pathway. J Biochem Mol Toxicol 2024; 38:e23544. [PMID: 37815058 DOI: 10.1002/jbt.23544] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 08/16/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
To investigate the key molecular mechanisms of palmatine for the treatment of neuroinflammation through modulation of a pathway using molecular docking, molecular dynamics (MD) simulation combined with network pharmacology, and animal experiments. Five alkaloid components were obtained from the traditional Chinese medicine Huangteng through literature mining. Molecular docking and MD simulation with acetylcholinesterase were used to screen palmatine. At the animal level, mice were injected with LPS intracerebrally to cause a neuroinflammatory model, and the Morris water maze experiment was performed to examine the learning memory of mice. Anxiety levels were tested using the autonomous activity behavior experiment with the open field and elevated behavior experiments. HE staining and Niss staining were performed on brain tissue sections to observe morphological lesions and apoptosis; serum was examined for inflammatory factors TNF-α, IL-6, and IL-1β; Western blot was performed to detect the protein expression. The expression of PI3K/AKT/NFkB signaling pathway-related proteins was examined by Western blot. The results of network pharmacology showed that the screening of palmatine activation containing the PI3K/Akt/NFkB signaling pathway exerts antineuroinflammatory effects. Results from behavioral experiments showed that Pal enhanced learning memory in model mice, improved anxiety behavior, and significantly improved brain damage caused by neuroinflammation. The results of HE staining and Niss staining of brain tissue sections showed that palmatine could alleviate morphological lesions and nucleus damage in brain tissue. Palmatine improved the levels of serum inflammatory factors TNF-α, IL-6, and IL-1β. SOD, MDA, CAT, ACH, and ACHE in the hippocampus were improved. Western blot results showed that palmatine administration ameliorated LPS-induced neuroinflammation through the PI3K/Akt/NFkB pathway.
Collapse
Affiliation(s)
- Jianning Zeng
- Department of Agriculture and Rural Affairs of Jilin Province Pharmacy and Pharmaceutical Science and Technology, College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Hongyan Pei
- Department of Agriculture and Rural Affairs of Jilin Province Pharmacy and Pharmaceutical Science and Technology, College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Hong Wu
- Department of Agriculture and Rural Affairs of Jilin Province Pharmacy and Pharmaceutical Science and Technology, College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Weijia Chen
- Department of Agriculture and Rural Affairs of Jilin Province Pharmacy and Pharmaceutical Science and Technology, College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Rui Du
- Department of Science and Technology of Jilin Province, Department of Traditional Chinese Medicine Industry in Xinjiang, Engineering Research Center for High-Efficiency Breeding and Product Development Technology of Sika Deer, Jilin, China
| | - Zhongmei He
- Department of Agriculture and Rural Affairs of Jilin Province Pharmacy and Pharmaceutical Science and Technology, College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
- Department of Science and Technology of Jilin Province, Department of Traditional Chinese Medicine Industry in Xinjiang, Engineering Research Center for High-Efficiency Breeding and Product Development Technology of Sika Deer, Jilin, China
| |
Collapse
|
4
|
Mermer A, Tüzün B, Daştan SD, Koçyiğit ÜM, Çetin FN, Çevik Ö. Piperazin incorporated Schiff Base derivatives: Assessment of in vitro biological activities, metabolic enzyme inhibition properties, and molecular docking calculations. J Biochem Mol Toxicol 2023; 37:e23465. [PMID: 37462216 DOI: 10.1002/jbt.23465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 11/10/2023]
Abstract
The cytotoxic activities of the compounds were determined by the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) method in human breast cancer (MCF-7), human cervical cancer (HeLa), and mouse fibroblast (L929) cell lines. The compounds MAAS-5 and four modified the supercoiled tertiary structure of pBR322 plasmid DNA. MAAS-5 showed the highest cytotoxic activity in HeLa, MCF-7, and L929 cells with IC50 values of 16.76 ± 3.22, 28.83 ± 5.61, and 2.18 ± 1.22 µM, respectively. MAAS-3 was found to have almost the lowest cytotoxic activities with the IC50 values of 93.17 ± 9.28, 181.07 ± 11.54, and 16.86 ± 6.42 µM in HeLa, MCF-7, and L929 cells respectively at 24 h. Moreover, the antiepileptic potentials of these compounds were investigated in this study. To this end, the effect of newly synthesized Schiff base derivatives on the enzyme activities of carbonic anhydrase I and II isozymes (human carbonic anhydrase [hCA] I and hCA II) was evaluated spectrophotometrically. The target compounds demonstrated high inhibitory activities compared with standard inhibitors with Ki values in the range of 4.54 ± 0.86-15.46 ± 8.65 nM for hCA I (Ki value for standard inhibitor = 12.08 ± 2.00 nM), 1.09 ± 0.32-29.94 ± 0.82 nM for hCA II (Ki value for standard inhibitor = 18.22 ± 4.90 nM). Finally, the activities of the compounds were compared with the Gaussian programme in the B3lyp, HF, M062X base sets with 6-31++G (d,p) levels. In addition, the activities of five compounds against various breast cancer proteins and hCA I and II were compared with molecular docking calculations. Also, absorption, distribution, metabolism, excretion, and toxicity analysis was performed to investigate the possibility of using five compounds as drug candidates.
Collapse
Affiliation(s)
- Arif Mermer
- Experimental Medicine Application & Research Center, Validebağ Research Park, University of Health Sciences, Istanbul, Türkiye
- Department of Biotechnology, University of Health Sciences, Istanbul, Türkiye
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas, Turkey
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - Ümit M Koçyiğit
- Department of Basic Pharmaceutical Sciences, Sivas Cumhuriyet University, Sivas, Turkey
| | - Feyza Nur Çetin
- Department of Basic Pharmaceutical Sciences, Sivas Cumhuriyet University, Sivas, Turkey
| | - Özge Çevik
- Department of Biochemistry, Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
5
|
Pasha AR, Khan A, Ullah S, Halim SA, Hussain J, Khalid M, Naseer MM, El-Kott AF, Negm S, Al-Harrasi A, Shafiq Z. Synthesis of new diphenyl urea-clubbed imine analogs and its Implications in diabetic management through in vitro and in silico approaches. Sci Rep 2023; 13:1877. [PMID: 36725861 PMCID: PMC9892044 DOI: 10.1038/s41598-023-28828-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Type II diabetes mellitus (T2DM) is a global health issue with high rate of prevalence. The inhibition of α-glucosidase enzyme has prime importance in the management of T2DM. This study was established to synthesize Schiff bases of 1,3-dipheny urea (3a-y) and to investigate their in vitro anti-diabetic capability via inhibiting α-glucosidase, a key player in the catabolism of carbohydrates. The structures of all compounds were confirmed through various techniques including, Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) and mass-spectrometry (MS) methods. Interestingly all these compounds displayed potent inhibition IC50 values in range of 2.14-115 µM as compared to acarbose used as control. Additionally, all the compounds were docked at the active site of α-glucosidase to predict their mode of binding. The docking results indicates that Glu277 and Asn350 play important role in the stabilization of these compounds in the active site of enzyme. These molecules showed excellent predicted pharmacokinetics, physicochemical and drug-likeness profile. The anti-diabetic potential of these molecules signifies their medical importance and provide insights into prospective therapeutic options for the treatment of T2DM.
Collapse
Affiliation(s)
- Anam Rubbab Pasha
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.,Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Saeed Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman.,International Center for Chemical and Biological Sciences, H. E. J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Javid Hussain
- Department of Biological Sciences and Chemistry, University of Nizwa, Nizwa-616, Nizwa, Oman
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan.,Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | | | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, 61421, Abha, Saudi Arabia.,Department of Zoology, College of Science, Damanhour University, Damanhour, 22511, Egypt
| | - Sally Negm
- Department of Life Sciences, College of Science and Art Mahyel Aseer, King Khalid University, 62529, Abha, Saudi Arabia.,Unit of Food Bacteriology, Central Laboratory of Food Hygiene, Ministry of Health, Branch in Zagazig, Zagazig, 44511, Egypt
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman.
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan. .,Department of Pharmaceutical and Medicinal Chemistry, An der Immenburg 4, 53121, Bonn, Germany.
| |
Collapse
|
6
|
Tukur A, Habila JD, Ayo RGO, Iyun ORA. Synthesis, characterization and antibiotic evaluation of some novel (E)-3-(4-diphenylamino)phenyl)-1-(4′-fluorophenyl)prop-2-en-1-one chalcones and their analogues. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00246-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The increase in resistance of pathogenic organisms to the available chemotherapeutic agents are critical challenges in drug design and development, motivating researchers to look for novel compounds that can combat multidrug-resistant organisms. Recently, chalcones have been proved to be attractive moieties in drug discovery.
Results
Eight novel triphenylamine chalcones with different substitution patterns were successfully synthesized via the conventional Claisen–Schmidt condensation reaction in an alkaline medium at room temperature, and recrystallized using ethanol, the percentage yield of the compounds were between 30 and 92%. The structures of the synthesized chalcones were successfully characterized and confirmed using FT-IR, NMR spectroscopic and GC–MS spectrometric techniques.
Conclusions
The results of the biological studies showed that all the synthesized chalcones possess remarkable activities against the tested microbes, by showing a significant zone of inhibitions relative to that of the standard drugs used. The investigation revealed that 1b showed highest ZOI (30 mm), lowest MIC (12.5 µg/ml) and MBC/MFC (50 µg/ml) on Aspergillus niger. Therefore, displayed better antifungal potential as compared to the rest of the compounds, and can be a potential antifungal drug candidate.
Collapse
|
7
|
Poustforoosh A, Faramarz S, Nematollahi MH, Hashemipour H, Tüzün B, Pardakhty A, Mehrabani M. 3D-QSAR, molecular docking, molecular dynamics, and ADME/T analysis of marketed and newly designed flavonoids as inhibitors of Bcl-2 family proteins for targeting U-87 glioblastoma. J Cell Biochem 2021; 123:390-405. [PMID: 34791695 DOI: 10.1002/jcb.30178] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022]
Abstract
Glioblastoma is the most common and destructive brain tumor with increasing complexity. Flavonoids are versatile natural compounds with the approved anticancer activity, which could be considered as a potential treatment for glioblastoma. A quantitative structure-activity relationship (QSAR) can provide adequate data for understanding the role of flavonoids structure against glioblastoma. The IC50 of various flavonoids for the U-87 cell line was used to prepare an adequate three-dimensional QSAR (3D-QSAR) model. The validation of the model was carried out using some statistical parameters such as R2 and Q2 . Based on the QSAR model, the activities of other marketed and newly designed flavonoids were predicted. Molecular docking study and molecular dynamics (MD) simulation were conducted for better recognition of the interactions between the most active compounds and Bcl-2 family proteins. Moreover, an AMDE/T analysis was performed for the most active flavonoids. A reliable 3D-QSAR was performed with R2 and Q2 of 0.91 and 0.82. The molecular docking study revealed that BCL-XL has a higher binding affinity with the most active compounds, and the MD simulation showed that some residues of the BH3 domain, such as Phe97, Tyr101, Arg102, and Phe105 create remarkable hydrophobic interactions with the ligands. ADME/T analysis also showed the potential of the active compounds for further investigation. 3D-QSAR study is a beneficial method to evaluate and design anticancer compounds. Considering the results of the molecular docking study, MD simulation, and ADME/T analysis, the designed compound 54 could be considered as a potential treatment for glioblastoma.
Collapse
Affiliation(s)
- Alireza Poustforoosh
- Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Sanaz Faramarz
- Department of Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hassan Hashemipour
- Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Burak Tüzün
- Department of Chemistry, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical, Kerman, Iran
| |
Collapse
|
8
|
Gezegen H, Tutar U, Hepokur C, Tüzün G, Atioğlu Z, Akkurt M. Michael/Michael Addition Cascade of 2‐Benzylidene‐1‐indanones with Chalcones: Synthesis and Biological Evaluations of Novel Polycyclic Compounds. ChemistrySelect 2021. [DOI: 10.1002/slct.202102738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hayreddin Gezegen
- Department of Nutrition and Dietetics Faculty of Health Sciences Sivas Cumhuriyet University 58140 Sivas Turkey
| | - Uğur Tutar
- Department of Pharmaceutical Botany Faculty of Pharmacy Sivas Cumhuriyet University 58140 Sivas Turkey
| | - Ceylan Hepokur
- Department of Biochemistry Faculty of Pharmacy Sivas Cumhuriyet University 58140 Sivas Turkey
| | - Gamze Tüzün
- Department of Biochemistry Faculty of Pharmacy Sivas Cumhuriyet University 58140 Sivas Turkey
| | - Zeliha Atioğlu
- Department of Aircraft Electrics and Electronics School of Applied Sciences Cappadocia University, Mustafapaşa 50420 Ürgüp, Nevşehir Turkey
| | - Mehmet Akkurt
- Department of Physics, Faculty of Sciences Erciyes University 38039 Kayseri Turkey
| |
Collapse
|
9
|
Development of novel 2-acetylphenol-O-alkylhydroxyethylamine derivatives as multifunctional agents for Alzheimer’s disease treatment. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
HALIMA SALEM A, MİLOUDİ A. Synthesis of Tricyclic Quinoline Derivatives from 5- and 6-Aminoindazoles and 5-Aminoindole under Conventional Way and Microwave System. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2021. [DOI: 10.18596/jotcsa.904598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
11
|
Computational Study on Temperature Driven Structure-Function Relationship of Polysaccharide Producing Bacterial Glycosyl Transferase Enzyme. Polymers (Basel) 2021; 13:polym13111771. [PMID: 34071348 PMCID: PMC8198650 DOI: 10.3390/polym13111771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
Glycosyltransferase (GTs) is a wide class of enzymes that transfer sugar moiety, playing a key role in the synthesis of bacterial exopolysaccharide (EPS) biopolymer. In recent years, increased demand for bacterial EPSs has been observed in pharmaceutical, food, and other industries. The application of the EPSs largely depends upon their thermal stability, as any industrial application is mainly reliant on slow thermal degradation. Keeping this in context, EPS producing GT enzymes from three different bacterial sources based on growth temperature (mesophile, thermophile, and hyperthermophile) are considered for in silico analysis of the structural–functional relationship. From the present study, it was observed that the structural integrity of GT increases significantly from mesophile to thermophile to hyperthermophile. In contrast, the structural plasticity runs in an opposite direction towards mesophile. This interesting temperature-dependent structural property has directed the GT–UDP-glucose interactions in a way that thermophile has finally demonstrated better binding affinity (−5.57 to −10.70) with an increased number of hydrogen bonds (355) and stabilizing amino acids (Phe, Ala, Glu, Tyr, and Ser). The results from this study may direct utilization of thermophile-origin GT as best for industrial-level bacterial polysaccharide production.
Collapse
|
12
|
Guerrero-Alburquerque N, Zhao S, Rentsch D, Koebel MM, Lattuada M, Malfait WJ. Ureido Functionalization through Amine-Urea Transamidation under Mild Reaction Conditions. Polymers (Basel) 2021; 13:1583. [PMID: 34069157 PMCID: PMC8156039 DOI: 10.3390/polym13101583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 01/24/2023] Open
Abstract
Ureido-functionalized compounds play an indispensable role in important biochemical processes, as well as chemical synthesis and production. Isocyanates, and KOCN in particular, are the preferred reagents for the ureido functionalization of amine-bearing compounds. In this study, we evaluate the potential of urea as a reagent to graft ureido groups onto amines at relatively low temperatures (<100 °C) in aqueous media. Urea is an inexpensive, non-toxic and biocompatible potential alternative to KOCN for ureido functionalization. From as early as 1864, urea was the go-to reagent for polyurea polycondensation, before falling into disuse after the advent of isocyanate chemistry. We systematically re-investigate the advantages and disadvantages of urea for amine transamidation. High ureido-functionalization conversion was obtained for a wide range of substrates, including primary and secondary amines and amino acids. Reaction times are nearly independent of substrate and pH, but excess urea is required for practically feasible reaction rates. Near full conversion of amines into ureido can be achieved within 10 h at 90 °C and within 24 h at 80 °C, and much slower reaction rates were determined at lower temperatures. The importance of the urea/amine ratio and the temperature dependence of the reaction rates indicate that urea decomposition into an isocyanic acid or a carbamate intermediate is the rate-limiting step. The presence of water leads to a modest increase in reaction rates, but the full conversion of amino groups into ureido groups is also possible in the absence of water in neat alcohol, consistent with a reaction mechanism mediated by an isocyanic acid intermediate (where the water assists in the proton transfer). Hence, the reaction with urea avoids the use of toxic isocyanate reagents by in situ generation of the reactive isocyanate intermediate, but the requirement to separate the excess urea from the reaction product remains a major disadvantage.
Collapse
Affiliation(s)
- Natalia Guerrero-Alburquerque
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology, Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland; (N.G.-A.); (S.Z.); (M.M.K.)
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland;
| | - Shanyu Zhao
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology, Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland; (N.G.-A.); (S.Z.); (M.M.K.)
| | - Daniel Rentsch
- Laboratory for Functional Polymers, Swiss Federal Laboratories for Materials Science and Technology, Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland;
| | - Matthias M. Koebel
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology, Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland; (N.G.-A.); (S.Z.); (M.M.K.)
| | - Marco Lattuada
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland;
| | - Wim J. Malfait
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology, Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland; (N.G.-A.); (S.Z.); (M.M.K.)
| |
Collapse
|
13
|
ADME properties, bioactivity and molecular docking studies of 4-amino-chalcone derivatives: new analogues for the treatment of Alzheimer, glaucoma and epileptic diseases. In Silico Pharmacol 2021; 9:34. [PMID: 33968600 DOI: 10.1007/s40203-021-00094-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/23/2021] [Indexed: 10/21/2022] Open
Abstract
In this study, in vitro inhibition effects of (E)-1-(4-aminophenyl)-3-(aryl) prop-2-en-1-one (4-amino-chalcones) derivatives (3a-o) on acetylcholinesterase (AChE) enzyme and human erythrocyte carbonic anhydrase I and II isoenzymes (hCA I- II) were investigated. And also, the biological activities of 4-amino-chalcone derivatives against enzymes which names are acetylcholinesterase (PDB ID: 1OCE), human Carbonic Anhydrase I (PDB ID: 2CAB), human carbonic anhydrase II (PDB ID: 3DC3), were compared. After the results obtained, ADME/T analysis was performed in order to use 4-amino-chalcone derivatives as a drug in the future. Effective inhibitors of carbonic anhydrase I and II isozymes (hCAI and II) and acetylcholinesterase (AChE) enzymes with Ki values in the range of 2.55 ± 0.35-11.75 ± 3.57 nM for hCA I, 4.31 ± 0.78-17.55 ± 5.86 nM for hCA II and 96.01 ± 25.34-1411.41 ± 32.88 nM for AChE, respectively, were the 4-amino-chalcone derivatives (3a-o) molecules. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-021-00094-x.
Collapse
|
14
|
Zhu C, Niu H, Nie A, Bian M. Bioactivity-guided separation of potential α-glycosidase inhibitor from clerodendranthus spicatus based on HSCCC coupled with molecular docking. Sci Rep 2021; 11:6914. [PMID: 33767281 PMCID: PMC7994796 DOI: 10.1038/s41598-021-86379-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/12/2021] [Indexed: 11/15/2022] Open
Abstract
Clerodendranthus Spicatus is a traditional Dais medi-edible plant and it has been proven to have good blood glucose-lowering efficacy. However, the material basis of Clerodendranthus Spicatus has not been clarified yet and therefore needs to be determined. In this paper, the effective ingredients of this medicine were purified by high-speed counter-current chromatography. Alongside, their potential hypoglycemic activity was determined by α-glucosidase inhibitory activities in vitro and molecular docking. Finally, five compounds were purified and identified as 2-caffeoyl-L-tartaric acid (1), N-(E)-caffeoyldopamine (2), rosmarinc acid (3), methyl rosmarinate (4), 6,7,8,3',4'-Pentamethoxyflavone (5). Examination of α-glucosidase inhibitory activity in vitro showed that 2-caffeoyl-L-tartaric acid and rosmarinic acid had a higher inhibitory activity than acarbose. Molecular docking indicated that the affinity energy of the identified compounds ranged from - 7.6 to - 8.6 kcal/mol, a more desirable result than acarbose (- 6.6 kcal/mol). Particularly, rosmarinc acid with the lowest affinity energy of - 8.6 kcal/mol was wrapped with 6 hydrogen bonds. Overall, α-glucosidase inhibitory activities and molecular docking suggested that rosmarinc acid was likely to be a promising hypoglycemic drug.
Collapse
Affiliation(s)
- Chunsheng Zhu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hongjuan Niu
- School of Pharmacy in Minzu University of China, Beijing, 100081, China
| | - Anzheng Nie
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Meng Bian
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
15
|
Affiliation(s)
- Oguz Özbek
- Science and Technology, Application and Research Center, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| | - Meliha Burcu Gürdere
- Department of Chemistry, Faculty of Science and Arts, Tokat Gaziosmanpasa University, Tokat, Turkey
| |
Collapse
|