1
|
Chen Z, Luo R, Xu T, Wang L, Deng S, Wu J, Wang H, Lin Y, Bu M. Design, synthesis and antitumor effects of lupeol quaternary phosphonium salt derivatives. Bioorg Med Chem 2024; 113:117934. [PMID: 39369566 DOI: 10.1016/j.bmc.2024.117934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
Lupeol is a natural pentacyclic triterpenoid with a wide range of biological activities. To improve the water solubility and targeting of lupeol, in the following study, we synthesized 27 lupeol derivatives in the first series by introducing lipophilic cations with lupeol as the lead compound. Through the screening of different cancer cells, we found that some of the derivatives showed better activity than cisplatin against human non-small cell lung cancer A549 cells, among which compound 6c was found to have an IC50 value of 1.83 μM and a selectivity index of 21.02 (IC50MRC-5/IC50A549) against A549 cells. To further improve the antiproliferative activity of the compounds, we replaced the ester linkage of the linker with a carbamate linkage and synthesized a second series of five lupeol derivatives which were screened for activity, among which compound 14f was found to have an IC50 value of 1.36 μM and a selectivity index of 15.60 (IC50MRC-5/IC50A549) against A549 cells. We further evaluated the bioactivity of compounds 6c and 14f and found that both compounds induced apoptosis in A549 cells, promoted an increase in intracellular reactive oxygen species and decrease in mitochondrial membrane potential, and inhibited the cell cycle in the S phase. Of the compounds, compound 14f showed stronger bioactivity than compound 6c. We then selected compound 14f for molecular-level Western blot evaluation and in vivo evaluation in the zebrafish xenograft A549 tumor cell model. Compound 14f was found to significantly downregulate Bcl-2 protein expression and upregulate Bax, Cyt C, cleaved caspase-9, and cleaved caspase-3 protein expression, and 14f was found to be able to inhibit the proliferation of A549 cells in the zebrafish xenograft model. The above results suggest that compound 14f has great potential in the development of antitumor drugs targeting mitochondria.
Collapse
Affiliation(s)
- Zongxing Chen
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Ran Luo
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Tianci Xu
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Lu Wang
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Siqi Deng
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Jiale Wu
- College of Pharmacy, Hainan University, Haikou 570228, Hainan, PR China
| | - Haijun Wang
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Yu Lin
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Ming Bu
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China.
| |
Collapse
|
2
|
Park YJ, Park DH, Bae JS. Anti-Inflammatory Effects of Lupeol as a Candidate for New Drug Development. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024:1-13. [PMID: 39340528 DOI: 10.1142/s0192415x2450068x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
This study explores the anti-inflammatory properties of lupeol, a notable phytosterol found in various medicinal plants, highlighting its potential as a candidate for new drug development. We examined the effects of lupeol on heme oxygenase (HO)-1, cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-stimulated human umbilical vein endothelial cells (HUVECs), as well as its impact on inflammatory markers in the lung tissues of LPS-challenged mice. Lupeol treatment enhanced HO-1 production, inhibited nuclear factor (NF)-κB activity, and reduced levels of COX-2/prostaglandin E2 (PGE2) and iNOS/nitric oxide (NO). In addition, lupeol decreased the phosphorylation of signal transducer and activator of transcription 1 (STAT-1) and promoted the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2), enhancing its binding to the anti-oxidant response element (ARE) and subsequently reducing interleukin (IL)-1β expression. In vivo, lupeol significantly lowered iNOS expression and tumor necrosis factor (TNF)-α levels in bronchoalveolar lavage fluid from LPS-treated mice. These findings suggest that lupeol exerts its anti-inflammatory effects by modulating key signaling pathways, positioning it as a promising candidate for the development of novel therapeutics targeting pathological inflammation.
Collapse
Affiliation(s)
- Yun Jin Park
- College of Pharmacy, CMRI Research Institute of Pharmaceutical Sciences, Kyungpook, National University, Daegu 41566, Republic of Korea
| | - Dong Ho Park
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI Research Institute of Pharmaceutical Sciences, Kyungpook, National University, Daegu 41566, Republic of Korea
| |
Collapse
|
3
|
Cho S, Park DH, Park EK, Bae JS. The beneficial effects of lupeol on particulate matter-mediated pulmonary inflammation. Food Chem Toxicol 2024; 191:114893. [PMID: 39067743 DOI: 10.1016/j.fct.2024.114893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/07/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Particulate matter (PM) poses significant health risks, especially fine particles (PM2.5) that can cause severe lung injuries. Lupeol, a phytosterol from medicinal plants, has potential anti-cancer properties. This study investigated lupeol's protective effects against PM2.5-induced lung damage. Mice received lupeol following intratracheal PM2.5 exposure. Results showed lupeol reduced lung damage, lowered wet/dry (W/D) weight ratio, and suppressed increased permeability caused by PM2.5. Additionally, lupeol decreased plasma inflammatory cytokines, total protein concentration in bronchoalveolar lavage fluid (BALF), and PM2.5-induced lymphocyte proliferation. Lupeol also reduced expression of toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), and autophagy-related proteins microtubule-associated protein 1 A/1 B-light chain 3 (LC3) II and Beclin 1, while increasing phosphorylated mammalian target of rapamycin (mTOR) phosphorylation. These findings suggest lupeol's potential as a therapeutic agent for PM2.5-induced lung damage via modulation of the TLR4-MyD88 and mTOR-autophagy pathways.
Collapse
Affiliation(s)
- Sanghee Cho
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Dong Ho Park
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, South Korea
| | - Eui Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University, Daegu, 41940, South Korea
| | - Jong-Sup Bae
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
4
|
Mohamed AS, Elmi A, Spina R, Kordofani MAY, Laurain-Mattar D, Nour H, Abchir O, Chtita S. In vitro and in silico analysis for elucidation of antioxidant potential of Djiboutian Avicennia Marina (Forsk.) Vierh. phytochemicals. J Biomol Struct Dyn 2024; 42:3410-3425. [PMID: 37194334 DOI: 10.1080/07391102.2023.2213338] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/06/2023] [Indexed: 05/18/2023]
Abstract
The present work aims to study the phytochemical composition, the antioxidant capacity of the crude extracts, and the fraction of extract giving the best antioxidant activity of Avicennia marina. The leaves contain high TFC compared to other parts of the plant, whereas fruits have the highest amount of TPC. Fat-soluble pigments are strongly present in the leaves of Avicennia marina i.e. β-carotene, lycopene, chlorophyll a, and chlorophyll b. The crude methanolic flower extracts showed strong DPPH and ABTS radical scavenging activity with IC50 values of 0.30 and 0.33 mg/mL respectively compared to the leaf and stem methanolic extracts for the DPPH and ABTS models with a value IC50 greater than 1 mg/mL. The crude fruit extract shows good activity with the ABTS model, unlike the DPPH model whose IC50 values are 0.95 and 0.38 mg/mL, respectively. Fractionation improved the antioxidant effect of crude flower extract. The ethyl acetate fraction exhibits the best antioxidant activity for both DPPH and ABTS methods with IC50 values of 0.125 and 0.16 mg/mL. The HR-LCMS/MS led to the identification of 13 compounds: 6 flavonoids and 7 iridoid glycoside compounds in the different parts of the plant. A bioinformatics study was performed to evaluate the antioxidant activity of the three major Iridoid glycosides towards the target protein Catalase compound II through free binding energy. Out of these three iridoid glycosides, compound C10 does not represent any toxicity, unlike C8 and C9 which showed an irritancy effect. Furthermore, molecular dynamics shows good stability of the C10-2CAG complex. HighlightsExtraction and fractionation of different part (leaf, stem, flower and fruit) of Avicennia marina.Botanical description and phytochemical analysis of crude extract methanolic. Investigation by HR-LCMS characterization of polyphenols and iridoid glycosides.Evaluation the antioxidant activity of crudes extracts methanolics by two methods in vitro DPPH and ABTS.Antioxidant activity of the fraction of the crude flower extracts presenting the best biological response.Evaluate the contribution of three major compounds 2'-Cinnamoylmussaenosidic acid, 10-O-[E-Cinnamoyl]-geniposidic acid and 10-O-[(E)-p-Coumaroyl]-geniposidic acid in the ethyl acetate fraction on the antioxidant activity through docking and dynamic molecular.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ahmed Said Mohamed
- Centre d'Étude et de Recherche de Djibouti, Institut de Recherche Médicinale, Route de l'aéroport, Djibouti, Djibouti
| | - Abdirahman Elmi
- Centre d'Étude et de Recherche de Djibouti, Institut de Recherche Médicinale, Route de l'aéroport, Djibouti, Djibouti
| | | | - Maha A Y Kordofani
- Department of Botany, Faculty of Science, University of Khartoum, Khartoum, Sudan
| | | | - Hassan Nour
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Oussama Abchir
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| |
Collapse
|
5
|
Nakurte I, Berga M, Pastare L, Kienkas L, Senkovs M, Boroduskis M, Ramata-Stunda A. Valorization of Bioactive Compounds from By-Products of Matricaria recutita White Ray Florets. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020396. [PMID: 36679109 PMCID: PMC9861205 DOI: 10.3390/plants12020396] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 05/27/2023]
Abstract
In this research, we have reported the valorization possibilities of Matricaria recutita white ray florets using supercritical fluid extraction (SFE) with CO2. Experiments were conducted at temperatures of 35-55 °C and separation pressures of 5-9 MPa to evaluate their impact on the chemical composition and biological activity of the extracts. The total obtained extraction yields varied from 9.76 to 18.21 g 100 g-1 DW input. The greatest extraction yield obtained was at 9 MPa separation pressure and 55 °C in the separation tank. In all obtained extracts, the contents of total phenols, flavonoids, tannins, and sugars were determined. The influence of the supercritical CO2 extraction conditions on the extract antioxidant capacity was evaluated using the quenching activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH). The chemical composition of the extracts was identified using both gas and liquid chromatography-mass spectrometry methods, whereas analyses of major and minor elements as well as heavy metals by microwave plasma atomic emission spectrometer were provided. Moreover, extracts were compared with respect to their antimicrobial activity, as well as the cytotoxicity and phototoxicity of the extracts. The results revealed a considerable diversity in the phytochemical classes among all extracts investigated in the present study and showed that the Matricaria recutita white ray floret by-product possesses cytotoxic and proliferation-reducing activity in immortalized cell lines, as well as antimicrobial activity. To the best of our knowledge, this is the first paper presenting such comprehensive data on the chemical profile, antioxidant properties, and biological properties of SFE derived from Matricaria recutita white ray florets. For the first time, these effects have been studied in processing by-products, and the results generated in this study provide valuable preconditions for further studies in specific test systems to fully elucidate the mechanisms of action and potential applications, such as potential use in cosmetic formulations.
Collapse
Affiliation(s)
- Ilva Nakurte
- Institute for Environmental Solutions, “Lidlauks”, Priekuli Parish, LV-4126 Cesis, Latvia
| | - Marta Berga
- Institute for Environmental Solutions, “Lidlauks”, Priekuli Parish, LV-4126 Cesis, Latvia
| | - Laura Pastare
- Institute for Environmental Solutions, “Lidlauks”, Priekuli Parish, LV-4126 Cesis, Latvia
| | - Liene Kienkas
- Field and Forest, SIA, 2 Izstades Str., Priekuli Parish, LV-4126 Cesis, Latvia
| | - Maris Senkovs
- Microbial Strain Collection of Latvia, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Riga, Latvia
| | | | | |
Collapse
|
6
|
Natural Products from Mangroves: An Overview of the Anticancer Potential of Avicennia marina. Pharmaceutics 2022; 14:pharmaceutics14122793. [PMID: 36559286 PMCID: PMC9787599 DOI: 10.3390/pharmaceutics14122793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Exploring the potential of natural extracts for pharmaceutical applications in the treatment of different diseases is an emerging field of medical research, owing to the tremendous advantages that they can offer. These include compound sustainability due to the natural origin and virtually unlimited availability. In addition, they contribute to promoting the countries in which they are extracted and manufactured. For this reason, wild active compounds derived from plants are attracting increasing interest due to their beneficial properties. Among them, Avicennia marina has been recently recognized as a potential source of natural substances with therapeutic activities for anti-cancer treatment. A. marina beneficially supplies different chemical compounds, including cyclic triterpenoids, flavonoids, iridoids, naphtaquinones, polyphenols, polysaccharides, and steroids, most of them exhibiting potent antitumor activity. The in vivo and in vitro studies on different models of solid tumors demonstrated its dose-dependent activity. Moreover, the possibility to formulate the A. marina extracted molecules in nanoparticles allowed researchers to ameliorate the therapeutic outcome of treatments exploiting improved selectivity toward cancer cells, thus reducing the side effects due to nonspecific spread.
Collapse
|
7
|
Soliman SSM, El-Labbad EM, Abu-Qiyas A, Fayed B, Hamoda AM, Al-Rawi AM, Dakalbab S, El-Shorbagi ANA, Hamad M, Ibrahim AS, Mohammad MG. Novel Secreted Peptides From Rhizopus arrhizus var. delemar With Immunomodulatory Effects That Enhance Fungal Pathogenesis. Front Microbiol 2022; 13:863133. [PMID: 35387075 PMCID: PMC8977774 DOI: 10.3389/fmicb.2022.863133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
Secreted fungal peptides are known to influence the interactions between the pathogen and host innate immunity. The aim of this study is to screen and evaluate secreted peptides from the fungus Rhizopus arrhizus var. delemar for their immunomodulatory activity. By using mass spectrometry and immuno-informatics analysis, we identified three secreted peptides CesT (S16), Colicin (S17), and Ca2+/calmodulin-dependent protein kinase/ligand (CAMK/CAMKL; S27). Culturing peripheral blood-derived monocytic macrophages (PBMMs) in the presence of S16 or S17 caused cell clumping, while culturing them with S27 resulted in the formation of spindle-shaped cells. S27-treated PBMMs showed cell cycle arrest at G0 phase and exhibited alternatively activated macrophage phenotype with pronounced reduction in scavenger receptors CD163 and CD206. Homology prediction indicated that IL-4/IL-13 is the immunomodulatory target of S27. Confirming this prediction, S27 initiated macrophage activation through phosphorylation of STAT-6; STAT-6 inhibition reversed the activity of S27 and reduced the formation of spindle-shaped PBMMs. Lastly, S27 treatment of PBMMs was associated with altered expression of key iron regulatory genes including hepcidin, ferroportin, transferrin receptor 1, and ferritin in a pattern consistent with increased cellular iron release; a condition known to enhance Rhizopus infection. Collectively, R. arrhizus var. delemar secretes peptides with immunomodulatory activities that support fungal pathogenesis. Targeting the IL-4/IL-13R/STAT-6 axis is a potential therapeutic approach to enhance the PBMM-mediated fungal phagocytosis. This represents a potential new approach to overcome lethal mucormycosis.
Collapse
Affiliation(s)
- Sameh S M Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Eman M El-Labbad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.,Pharmaceutical Sciences Department, College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates
| | - Ameera Abu-Qiyas
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Department of Medical Laboratory Sciences, Collage of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Bahgat Fayed
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Chemistry of Natural and Microbial Product Department, National Research Centre, Cairo, Egypt
| | - Alshaimaa M Hamoda
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Ahmed M Al-Rawi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Department of Medical Laboratory Sciences, Collage of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Salam Dakalbab
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Department of Medical Laboratory Sciences, Collage of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdel-Nasser A El-Shorbagi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates.,Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mawieh Hamad
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Department of Medical Laboratory Sciences, Collage of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Ashraf S Ibrahim
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation, Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, CA, United States.,David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Mohammad G Mohammad
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Department of Medical Laboratory Sciences, Collage of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
8
|
Sohaib M, Al-Barakah FN, Migdadi HM, Husain FM. Comparative study among Avicennia marina, Phragmites australis, and Moringa oleifera based ethanolic-extracts for their antimicrobial, antioxidant, and cytotoxic activities. Saudi J Biol Sci 2022; 29:111-122. [PMID: 36105270 PMCID: PMC9465519 DOI: 10.1016/j.sjbs.2021.08.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/07/2021] [Accepted: 08/19/2021] [Indexed: 12/11/2022] Open
Abstract
Microbial resistance and other emerging health risk problems related to the side effects of synthetic drugs are the major factors that result in the research regarding natural products. Fruits, leaves, seeds, and oils-based phyto-constituents are the most important source of pharmaceutical products. Plant extract chemistry depends largely on species, plant components, solvent utilized, and extraction technique. This study was aimed to compare the ethanolic extracts of a mangrove plant, i.e., Avicennia marina (1E: Lower half of A. marina‘s pneumatophores, 2E: A. marina‘s leaves, 3E: Upper half of A. marina‘s pneumatophores, and 4E: A. marina‘s shoots), with non-mangrove plants, i.e., Phragmites australis (5E: P. australis‘s shoot), and Moringa oleifera (6E: M. oleifera‘s leaves) for their antimicrobial activities, total phenolic contents, antioxidant activity, and cytotoxicity potential. The antimicrobial activity assays were performed on gram-positive bacteria (i.e., Bacillus subtilis and Staphylococcus aureus), gram-negative bacteria (i.e., Escherichia coli, and Pseudomonas aeruginosa), and fungi (i.e., Aspergillus niger, Candida albicans, and Rhizopus spp.). We estimated antioxidant activity by TAC, DPPH, and FRAP assays, and the cytotoxicity was evaluated by MTT assay. The results of antimicrobial activities revealed that B. subtilis was the most sensitive to the tested plant extracts compared to S. aureus, while it only showed sensitivity to 6E and Imipenem. 5E and 6E showed statistically similar results against P. aeruginosa as compared to Ceftazidime. E. coli was the most resistant bacteria against tested plant extracts. Among the tested plant extracts, maximum inhibition activity was observed by 6E against A. niger (22 ± 0.57 mm), which was statistically similar to the response of 6E against C. albicans and 3E against Rhizopus spp. 2E did not show any activity against tested fungi. We found that 6E (208.54 ± 1.92 mg g−1) contains maximum phenolic contents followed by 1E (159.42 ± 3.22 mg g−1), 5E (131.08 ± 3.10 mg g−1), 4E (i.e., 72.41 ± 2.96 mg g−1), 3E (67.41 ± 1.68 mg g−1), and 2E (48.72 ± 1.71 mg g−1). The results depict a significant positive correlation between the phenolic contents and the antioxidant activities. As a result, phenolic content may be a natural antioxidant source.
Collapse
Affiliation(s)
- Muhammad Sohaib
- Soil Science Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Corresponding authors.
| | - Fahad N.I. Al-Barakah
- Soil Science Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Corresponding authors.
| | - Hussein M. Migdadi
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- National Agricultural Research Center, Baqa 19381, Jordan
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
9
|
Investigation of Lupeol as Anti-Melanoma Agent: An In Vitro-In Ovo Perspective. Curr Oncol 2021; 28:5054-5066. [PMID: 34940064 PMCID: PMC8700590 DOI: 10.3390/curroncol28060425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/14/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
Malignant melanoma (MM) represents the most life-threatening skin cancer worldwide, with a narrow and inefficient chemotherapeutic arsenal available in advanced disease stages. Lupeol (LUP) is a triterpenoid-type phytochemical possessing a broad spectrum of pharmacological properties, including a potent anticancer effect against several neoplasms (e.g., colorectal, lung, and liver). However, its potential as an anti-melanoma agent has been investigated to a lesser extent. The current study focused on exploring the impact of LUP against two human MM cell lines (A375 and RPMI-7951) in terms of cell viability, confluence, morphology, cytoskeletal distribution, nuclear aspect, and migration. Additionally, the in ovo antiangiogenic effect has been also examined. The in vitro results indicated concentration-dependent and selective cytotoxicity against both MM cell lines, with estimated IC50 values of 66.59 ± 2.20 for A375, and 45.54 ± 1.48 for RPMI-7951, respectively, accompanied by a reduced cell confluence, apoptosis-specific nuclear features, reorganization of cytoskeletal components, and inhibited cell migration. In ovo, LUP interfered with the process of angiogenesis by reducing the formation of neovascularization. Despite the potential anti-melanoma effect illustrated in our in vitro-in ovo study, further investigations are required to elucidate the underlying LUP-induced effects in A375 and RPMI-7951 MM cells.
Collapse
|