1
|
AbdEl-Raouf K, El-Ganzuri MA, El-Sayed WM. Therapeutic effects of a new bithiophene against aluminum -induced Alzheimer's disease in a rat model: Pathological and ultrastructural approach. Tissue Cell 2024; 90:102529. [PMID: 39181091 DOI: 10.1016/j.tice.2024.102529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Alzheimer's disease (AD) remains of unknown etiology and lacks a cure. This study aimed to evaluate the therapeutic potential of a novel bithiophene derivative at two doses against AlCl3-induced AD in a rat model. Adult male rats (Rattus norvegicus) were divided into six groups (n=6): Group one consisted of naïve animals, group two received bithiophene (1 mg/kg) every other day for 30 days, and groups 3-6 were subjected to AlCl3 (100 mg/kg, equivalent to 20.23 mg Al3+) for 45 consecutive days. Groups four and five received low (0.5 mg/kg) or high (1 mg/kg) doses of bithiophene, respectively. Group six received memantine (20 mg/kg) daily for 30 days. All treatments were administered orally. Aluminum exposure resulted in severe degeneration of both histological and ultrastructural aspects of cells. Administration of the low dose of bithiophene significantly restored the number of CA1 pyramidal cells and the thickness of the stratum granulosum of the dentate gyrus. However, the high dose of bithiophene increased viable CA1 pyramidal cell numbers significantly without restoring the thickness of the stratum granulosum or reducing vacuolization or pyknotic changes. The low dose of bithiophene restored the normal histological and cytological structure of both cortical and hippocampal neurons affected by dementia. Further investigation is required to explore the molecular mechanisms underlying the ameliorative effects on Alzheimer's disease-induced deteriorations in the cortex and hippocampus.
Collapse
Affiliation(s)
- Kholoud AbdEl-Raouf
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Monir A El-Ganzuri
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Wael M El-Sayed
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt.
| |
Collapse
|
2
|
Haneen DSA, Hekal MH, Abou-Elmagd WSI, El-Sayed WM. Novel pyrano[2,3-c]pyrazolopyrimidines as promising anticancer agents: Design, synthesis, and cell cycle arrest of HepG2 cells at S phase. SYNTHETIC COMMUN 2024; 54:655-671. [DOI: 10.1080/00397911.2024.2327047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Indexed: 10/06/2024]
Affiliation(s)
- David S. A. Haneen
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
| | - Mohamed H. Hekal
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
| | - Wael S. I. Abou-Elmagd
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
| | - Wael M. El-Sayed
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
| |
Collapse
|
3
|
AbdEl-Raouf K, Farrag HSH, Rashed R, Ismail MA, El-Ganzuri MA, El-Sayed WM. New bithiophene derivative attenuated Alzheimer's disease induced by aluminum in a rat model via antioxidant activity and restoration of neuronal and synaptic transmission. J Trace Elem Med Biol 2024; 82:127352. [PMID: 38070385 DOI: 10.1016/j.jtemb.2023.127352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND One of the hypotheses that leads to an increased incidence of Alzheimer's disease (AD) is the accumulation of aluminum in the brain's frontal cortex. The present study aimed to evaluate the therapeutic role of a novel bithiophene derivative at two doses against AlCl3-induced AD in a rat model. METHODOLOGY Adult male rats were divided into six groups, 18 rats each. Group 1: naïve animals, group 2: animals received a daily oral administration of bithiophene dissolved in DMSO (1 mg/kg) for 30 days every other day, groups 3-6: animals received a daily oral administration of AlCl3 (100 mg/kg/day) for 45 consecutive days. Groups 4 and 5 received an oral administration of low or high dose of the bithiophene (0.5 or 1 mg/kg, respectively). Group 6; Animals were treated with a daily oral dose of memantine (20 mg/kg) for 30 consecutive days. MAIN FINDINGS Al disturbed the antioxidant milieu, elevated the lipid peroxidation, and depleted the antioxidants. It also disturbed the synaptic neurotransmission by elevating the activities of acetylcholine esterase and monoamine oxidase resulting in the depletion of dopamine and serotonin and accumulation of glutamate and norepinephrine. Al also deteriorated the expression of genes involved in apoptosis and the production of amyloid-β plaques as well as phosphorylation of tau. The new bithiophene at the low dose reversed most of the previous deleterious effects of aluminum in the cerebral cortex and was in many instances superior to the reference drug; memantine. CONCLUSION Taking together, the bithiophene modulated the AD etiology through antioxidant activity, prevention of neuronal and synaptic loss, and probably mitigating the formation of amyloid-β plaques and phosphorylation of tau.
Collapse
Affiliation(s)
- Kholoud AbdEl-Raouf
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566 Cairo, Egypt
| | | | - Rashed Rashed
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566 Cairo, Egypt
| | - Mohamed A Ismail
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Monir A El-Ganzuri
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566 Cairo, Egypt
| | - Wael M El-Sayed
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566 Cairo, Egypt.
| |
Collapse
|
4
|
Hekal MH, Farag PS, Hemdan MM, El-Sayed AA, Hassaballah AI, El-Sayed WM. New 1,3,4-thiadiazoles as potential anticancer agents: pro-apoptotic, cell cycle arrest, molecular modelling, and ADMET profile. RSC Adv 2023; 13:15810-15825. [PMID: 37250214 PMCID: PMC10209631 DOI: 10.1039/d3ra02716c] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/11/2023] [Indexed: 05/31/2023] Open
Abstract
A series of novel 1,3,4-thiadiazoles was synthesized via the reaction of N-(5-(2-cyanoacetamido)-1,3,4-thiadiazol-2-yl)benzamide (3) with different carbon electrophiles and evaluated as potential anticancer agents. The chemical structures of these derivatives were fully elucidated using various spectral and elemental analyses. Out of 24 new thiadiazoles, derivatives 4, 6b, 7a, 7d, and 19 have significant antiproliferative activity. However, derivatives 4, 7a, and 7d were toxic to the normal fibroblasts, and therefore were excluded from further investigations. Derivatives 6b and 19 with IC50 at less than 10 μM and with high selectivity were selected for further studies in breast cells (MCF-7). Derivative 19 arrested the breast cells at G2/M probably through inhibition of CDK1, while 6b significantly increased the sub-G1 percent of cells probably through induction of necrosis. These results were confirmed by the annexin V-PI assay where 6b did not induce apoptosis and increased the necrotic cells to 12.5%, and compound 19 significantly increased the early apoptosis to 15% and increased the necrotic cells to 15%. Molecular docking showed that compound 19 was like FB8, an inhibitor of CDK1, in binding the CDK1 pocket. Therefore, compound 19 could be a potential CDK1 inhibitor. Derivatives 6b and 19 did not violate Lipinski's rule of five. In silico studies showed that these derivatives have a low blood-brain barrier penetration capability and high intestinal absorption. Taken together, derivatives 6b and 19 could serve as potential anticancer agents and merit further investigations.
Collapse
Affiliation(s)
- Mohamed H Hekal
- Department of Chemistry, Faculty of Science, Ain Shams University Abbassia 11566 Cairo Egypt
| | - Paula S Farag
- Department of Chemistry, Faculty of Science, Ain Shams University Abbassia 11566 Cairo Egypt
| | - Magdy M Hemdan
- Department of Chemistry, Faculty of Science, Ain Shams University Abbassia 11566 Cairo Egypt
| | - Amira A El-Sayed
- Department of Chemistry, Faculty of Science, Ain Shams University Abbassia 11566 Cairo Egypt
| | - Aya I Hassaballah
- Department of Chemistry, Faculty of Science, Ain Shams University Abbassia 11566 Cairo Egypt
| | - Wael M El-Sayed
- Department of Zoology, Faculty of Science, Ain Shams University Abbassia 11566 Cairo Egypt +202 2684 2123 +202 2482 1633
| |
Collapse
|
5
|
El-Saudi AM, Altouhamy MA, Shaaban S, Badria FA, Youssef MM, El-Senduny FF. Down regulation of fatty acid synthase via inhibition of PI3K/AKT/mTOR in ovarian cancer cell line by novel organoselenium pseudopeptide. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100134. [PMID: 36568265 PMCID: PMC9780069 DOI: 10.1016/j.crphar.2022.100134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
Ovarian cancer (OC) is the 7th most common cancer in women world-wide and the 3rd most common female cancer. For the treatment of OC, there is no successful therapeutic. The medications that are currently available have significant side effects and a low therapeutic index. This work aimed to evaluate the anticancer activity of organoselenium pseudopeptide compound against OC cell lines. After treatment with 50 μM of compound 4 (CPD 4), the viability was determined. The anticancer activity was further investigated by different methods including cell cycle and apoptosis analysis, colony formation assay, zymography, comet assay and Western blot. In comparison to a positive control, compound 4 showed cytotoxicity toward A2780CP cells rather than A2780 and SKOV-3 cells. Compound 4 was more selective to OC cells rather than HSF cells. Moreover, Compound 4 was able to inhibit cell migration and proliferation. The anticancer effect of compound 4 was found to be partially via cell cycle arrest, overexpression of p27 cell cycle inhibitor and induction of apoptosis through DNA fragmentation and activated production of ROS. Compound 4 had a differential effect on the modulation of PI3K/AKT/mTOR signaling pathway in the OC treated cell lines, also inhibited lipogenesis process via downregulation of FASN expression. Conclusion: This work highlights the unique role of Compound 4 against OC via modulation of oxidative stress, inhibition of survival PI3K/AKT/mTOR pathway. Compound 4 was found to be a promising alternative therapy for the treatment of OC in this investigation.
Collapse
Affiliation(s)
- Abeer M. El-Saudi
- Biochemistry Division, Chemistry Department, Mansoura University, Mansoura 35516, Egypt
| | - Miram A. Altouhamy
- Biochemistry Division, Chemistry Department, Mansoura University, Mansoura 35516, Egypt
- Faculty of Medicine, New Mansoura University, New Mansoura City, Egypt
| | - Saad Shaaban
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa, 31982, Saudi Arabia
- Organic Chemistry Division, Chemistry Department, Mansoura University, Mansoura 35516, Egypt
| | - Farid A. Badria
- Department of Pharmacognosy, Mansoura University, Mansoura, 35516, Egypt
| | - Magdy M. Youssef
- Biochemistry Division, Chemistry Department, Mansoura University, Mansoura 35516, Egypt
| | - Fardous F. El-Senduny
- Biochemistry Division, Chemistry Department, Mansoura University, Mansoura 35516, Egypt
- Department of Pathology & Laboratory Medicine, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, United States
| |
Collapse
|