1
|
Nosova EV, Lipunova GN, Permyakova YV, Charushin VN. Quinazolines annelated at the N(3)-C(4) bond: Synthesis and biological activity. Eur J Med Chem 2024; 271:116411. [PMID: 38669910 DOI: 10.1016/j.ejmech.2024.116411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
This review covers article and patent data obtained mostly within the period 2013-2023 on the synthesis and biological activity of quinazolines [c]-annelated by five- and six-membered heterocycles. Pyrazolo-, benzimidazo-, triazolo- and pyrimido- [c]quinazoline systems have shown multiple potential activities against numerous targets. We highlight that most research efforts are directed to design of anticancer and antibacterial agents of azolo[c]quinazoline nature. This review emphases both on the medicinal chemistry aspects of pyrrolo[c]-, azolo[c]- and azino[c]quinazolines and comprehensive synthetic strategies of quinazolines annelated at N(3)-C(4) bond in the perspective of drug development and discovery.
Collapse
Affiliation(s)
- Emiliya V Nosova
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira st., Ekaterinburg, 620002, Russia; Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya st. /20 Akademicheskaya st., Ekaterinburg, 620137, Russia.
| | - Galina N Lipunova
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya st. /20 Akademicheskaya st., Ekaterinburg, 620137, Russia.
| | - Yulia V Permyakova
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira st., Ekaterinburg, 620002, Russia
| | - Valery N Charushin
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira st., Ekaterinburg, 620002, Russia; Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya st. /20 Akademicheskaya st., Ekaterinburg, 620137, Russia
| |
Collapse
|
2
|
Zhang P, Shi C, Dong T, Song J, Du G. The anticancer therapeutic potential of pyrimidine-sulfonamide hybrids. Future Med Chem 2024; 16:905-924. [PMID: 38624011 PMCID: PMC11249161 DOI: 10.4155/fmc-2024-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/27/2024] [Indexed: 04/17/2024] Open
Abstract
Cancer as a devastating malignancy, seriously threatens human life and health, but most chemotherapeutics have long been criticized for unsatisfactory therapeutic efficacy due to drug resistance and severe off-target toxicity. Pyrimidines, including fused pyrimidines, are privileged scaffolds for various biological cancer targets and are the most important class of metalloenzyme carbonic anhydrase inhibitors. Pyrimidine-sulfonamide hybrids can act on different targets in cancer cells simultaneously and possess potent activity against various cancers, revealing that hybridization of pyrimidine with sulfonamide is a promising approach to generate novel effective anticancer candidates. This review aims to summarize the recent progress of pyrimidine-sulfonamide hybrids with anticancer potential, covering papers published from 2020 to present, to facilitate further rational design of more effective candidates.
Collapse
Affiliation(s)
- Peng Zhang
- Emergency Intensive Care Medicine Department, Zibo 148 Hospital, China RongTong Medical Healthcare Group Co. Ltd, Zibo, Shandong Province, 255000, PR China
| | - Congcong Shi
- Zibo Vocational Institute College of Medical Technology, Zibo, Shandong Province, 255000, PR China
| | - Tongbao Dong
- Zibo Vocational Institute College of Medical Technology, Zibo, Shandong Province, 255000, PR China
| | - Juntao Song
- Hematology & Oncology Department, Zibo 148 Hospital, China RongTong Medical Healthcare Group Co. Ltd, Zibo, Shandong Province, 255000, PR China
| | - Gang Du
- Emergency Intensive Care Medicine Department, Zibo 148 Hospital, China RongTong Medical Healthcare Group Co. Ltd, Zibo, Shandong Province, 255000, PR China
| |
Collapse
|
3
|
Elkaeed EB, Yousef RG, Khalifa MM, Ibrahim A, Mehany ABM, Gobaara IMM, Alsfouk BA, Eldehna WM, Metwaly AM, Eissa IH, El-Zahabi MA. Discovery of New VEGFR-2 Inhibitors: Design, Synthesis, Anti-Proliferative Evaluation, Docking, and MD Simulation Studies. Molecules 2022; 27:6203. [PMID: 36234734 PMCID: PMC9571953 DOI: 10.3390/molecules27196203] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Four new nicotinamide-based derivatives were designed as antiangiogenic VEGFR-2 inhibitors. The congeners were synthesized possessing the pharmacophoric essential features to bind correctly with the VEGFR-2 active pocket. All members were evaluated for their cytotoxic and VEGFR-2 inhibitory potentialities. Compound 6 was the most potent showingIC50 values of 9.3 ± 0.02 and 7.8 ± 0.025 µM against HCT-116 and HepG-2 cells, respectively, and IC50 of 60.83 nM regarding VEGFR-2 enzyme inhibition. Compound 6 arrested the growth of HCT-116 cells at the pre-G1 and G2-M phases. Further, it induced both early and late apoptosis. Additionally, compound 6 caused a significant decrease in TNF-α and IL6 by 66.42% and 57.34%, respectively. The considered compounds had similar docking performances to that of sorafenib against the VEGFR-2 (PDB ID: 2OH4). The correct binding of compound 6 with VEGFR-2 was validated using MD simulations, and MM-GPSA calculations.
Collapse
Affiliation(s)
- Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia
| | - Reda G Yousef
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Mohamed M Khalifa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Albaraa Ibrahim
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed B M Mehany
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ibraheem M M Gobaara
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Bshra A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- School of Biotechnology, Badr University in Cairo, Badr City 11829, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Mohamed Ayman El-Zahabi
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| |
Collapse
|
4
|
Nosova EV, Kopotilova AE, Likhacheva MD, Moshkina TN, Kopchuk DS. Synthesis of Novel Derivatives of 5-Aryl/thienyl-[1,2,4]triazolo[4,3-c]quinazoline. DOKLADY CHEMISTRY 2022. [DOI: 10.1134/s0012500822600298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
5
|
Azab AE, Alesawy MS, Eldehna WM, Elwan A, Eissa IH. New [1,2,4]triazolo[4,3-c]quinazoline derivatives as vascular endothelial growth factor receptor-2 inhibitors and apoptosis inducers: Design, synthesis, docking, and antiproliferative evaluation. Arch Pharm (Weinheim) 2022; 355:e2200133. [PMID: 35822666 DOI: 10.1002/ardp.202200133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022]
Abstract
In continuation of our previous efforts in the field of design and synthesis of vascular endothelial growth factor receptor (VEGFR)-2 inhibitors, a new series of [1,2,4]triazolo[4,3-c]quinazoline derivatives were designed and synthesized as modified analogs of some reported VEGFR-2 inhibitors. The synthesized compounds were designed to have the essential pharmacophoric features of VEGFR-2 inhibitors. Antiproliferative activities of the synthesized compounds were investigated against two tumor cell lines (HepG2 and HCT-116) using sorafenib as a positive control. Compound 10k emerged as the most promising antiproliferative agent with IC50 values of 4.88 and 5.21 µM against HepG2 and HCT-116 cells, respectively. Also, it showed the highest inhibitory activity against VEGFR-2 with an IC50 value of 53.81 nM compared to sorafenib (IC50 = 44.34 nM). Cell cycle analysis revealed that compound 10k can arrest HepG2 cells at both the S and G2/M phases. In addition, this compound produced a tenfold increase in apoptotic cells compared to the control. Furthermore, the effect of compound 10k on the expression level of BAX, Bcl-2, and caspase-3 was assessed. This compound caused a 3.35-fold increase in BAX expression levels and a 1.25-fold reduction in Bcl-2 expression levels. The BAX/Bcl-2 ratio was calculated to be 4.57, indicating a promising apoptotic effect. It also showed a significant increase in the level of caspase-3 (4.12-fold) compared to the control cells. In silico docking, absorption, distribution, metabolism, excretion, and toxicity, and toxicity studies were performed for the synthesized compounds to investigate their binding patterns against the proposed biological target (VEGFR-2) and to assess the drug-likeness characters.
Collapse
Affiliation(s)
- Ahmed E Azab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed S Alesawy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt.,School of Biotechnology, Badr University in Cairo, Cairo, Egypt
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
6
|
Elwan A, Sakr H, El-Helby AGA, El-morsy A, Abdelgawad MA, Ghoneim MM, El-Sherbiny M, El-Adl K. Triazoloquinoxalines-based DNA intercalators-Topo II inhibitors: design, synthesis, docking, ADMET and anti-proliferative evaluations. J Enzyme Inhib Med Chem 2022; 37:1556-1567. [PMID: 35635148 PMCID: PMC9154796 DOI: 10.1080/14756366.2022.2080205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Affiliation(s)
- Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Helmy Sakr
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Abdel-Ghany A. El-Helby
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed El-morsy
- Pharmaceutical Chemistry Department, College of Pharmacy, The Islamic University, Najaf, Iraq
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, Faculty of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Khaled El-Adl
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| |
Collapse
|
7
|
El-Adl K, Sakr HM, Yousef RG, Mehany ABM, Abulkhair HS, Eissa IH. New quinoxalin-2(1H)-one-derived VEGFR-2 inhibitors: Design, synthesis, in vitro anticancer evaluations, in silico ADMET, and docking studies. Arch Pharm (Weinheim) 2022; 355:e2200048. [PMID: 35437829 DOI: 10.1002/ardp.202200048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/31/2022]
Abstract
More than 70% of cancer patients who are treated with chemotherapeutics do not show a durable response. As part of the global plan seeking new effective chemotherapeutics, here, we report the synthesis and in vitro and computational studies of new lenvatinib and sorafenib analog quinoxalines as vascular endothelial growth factor receptor II (VEGFR-2) tyrosine kinase inhibitors. The central quinolone and pyridine moieties of the Food and Drug Administration-approved anticancer agents lenvatinib and sorafenib were replaced with the versatile quinoxaline scaffold that has been exploited for developing potent cytotoxic agents. With some minor structural optimizations, all the other pharmacophoric features of lenvatinib and sorafenib were maintained. Accordingly, three new sets of quinoxalines were synthesized to evaluate their activity against liver, colorectal, and breast malignancies. The results obtained in the in vitro cytotoxicity evaluation study revealed the superior activity of three derivatives (20, 25, and 29) compared with that of doxorubicin and sorafenib. Absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiling and docking of 20, 25, and 29 into the VEGFR-2 receptor were also performed. Results of in silico studies showed the potential of the designed compounds to bind effectively with a number of key residues. The obtained in vitro cytotoxic activity and ADMET profiles of compounds 20, 25, and 29 suggested that they should be subjected to further structural optimizations to develop new candidates in cancer treatment protocols.
Collapse
Affiliation(s)
- Khaled El-Adl
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Helmy M Sakr
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Reda G Yousef
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed B M Mehany
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
8
|
Eissa IH, Ibrahim MK, Alesawy MS, El-Adl K. Antiproliferative evaluations of triazoloquinazolines as classical DNA intercalators: Design, synthesis, ADMET profile, and molecular docking. Arch Pharm (Weinheim) 2022; 355:e2100487. [PMID: 35194810 DOI: 10.1002/ardp.202100487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 01/08/2023]
Abstract
Novel triazoloquinazolines were designed and synthesized and evaluated as anticancer agents against HepG2 and HCT-116 cells. The biological testing data corresponded well to those of the molecular docking studies. The HCT-116 cell line was most affected due to the actions of our derivatives. Derivative 7a was the most potent one against both HepG2 and HCT116 cells, with IC50 = 7.98 and 5.57 µM, respectively. This compound showed anticancer activity that was nearly equipotent to that of doxorubicin against HepG2 cells, but higher than that of doxorubicin against HCT116 cells (IC50 = 7.94 and 8.07 µM, respectively). Compounds 8, 7b , and 6f showed excellent anticancer activities against both the HCT116 and HepG2 cell lines. The highly active compounds 6f , 7a , 7b , and 8 were evaluated for their DNA-binding activities. Compounds 7a and 8 showed the highest binding activities. These derivatives potently intercalate in DNA, at IC50 values of 42.90 and 48.13 µM, respectively. Derivatives 6f and 7b showed good DNA-binding activities, with IC50 values of 54.24 and 50.56 µM, respectively. Furthermore, in silico calculated ADMET profiles were established for our four highly active derivatives, in comparison to doxorubicin. Our derivatives 6f , 7a , 7b , and 8 showed a very good ADMET profile. Compounds 6f , 7a , 7b , and 8 follow Lipinski's rules, while doxorubicin violates three of these rules.
Collapse
Affiliation(s)
- Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed-Kamal Ibrahim
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed S Alesawy
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Khaled El-Adl
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt.,Chemistry Department, Faculty of Pharmacy, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| |
Collapse
|
9
|
Abdelgawad MA, El-Adl K, El-Hddad SSA, Elhady MM, Saleh NM, Khalifa MM, Khedr F, Alswah M, Nayl AA, Ghoneim MM, Abd El-Sattar NEA. Design, Molecular Docking, Synthesis, Anticancer and Anti-Hyperglycemic Assessments of Thiazolidine-2,4-diones Bearing Sulfonylthiourea Moieties as Potent VEGFR-2 Inhibitors and PPARγ Agonists. Pharmaceuticals (Basel) 2022; 15:ph15020226. [PMID: 35215339 PMCID: PMC8880361 DOI: 10.3390/ph15020226] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Newly designed thiazolidine-2,4-diones 3–7a–c were synthesized, and their anticancer activities were screened against three cancer lines. They showed potent activities against HepG2 compared to the other HCT116 and MCF-7 tumor cell lines. Compounds 7c and 6c were detected as highly effective derivatives against MCF-7 (IC50 = 7.78 and 8.15 µM), HCT116 (IC50 = 5.77 and 7.11 µM) and HepG2 (IC50 = 8.82 and 8.99 µM). The highly effective derivatives 6a–c and 7a–c were tested against VERO normal cell lines. All derivatives were evaluated for their VEGFR-2 inhibitory actions and demonstrated high to low activities, with IC50 values varying from 0.08 to 0.93 µM. Moreover, derivatives 5a–c, 6a–c and 7a–c were assessed to verify their in vitro binding affinities to PPARγ and insulin-secreting activities. Finally, docking studies were performed to explore their affinities and binding modes toward both VEGFR-2 and PPARγ receptors.
Collapse
Affiliation(s)
- Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Khaled El-Adl
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt; (M.M.K.); (F.K.)
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo 11785, Egypt
- Correspondence: or or
| | | | - Mostafa M. Elhady
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt;
| | - Nashwa M. Saleh
- Department of Chemistry, Faculty of Science, Al-Azhar University (Girls Branch), Cairo 11754, Egypt;
| | - Mohamed M. Khalifa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt; (M.M.K.); (F.K.)
| | - Fathalla Khedr
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt; (M.M.K.); (F.K.)
| | - Mohamed Alswah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - AbdElAziz A. Nayl
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Nour E. A. Abd El-Sattar
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt;
| |
Collapse
|