1
|
Abdallah AE, Eissa IH, Mehany ABM, Celik I, Sakr H, Metwaly KH, El-Adl K, El-Zahabi MA. Discovery of New Immunomodulatory Anticancer Thalidomide Analogs: Design, Synthesis, Biological Evaluation and In Silico Studies. Chem Biodivers 2024:e202401768. [PMID: 39540225 DOI: 10.1002/cbdv.202401768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
New thalidomide analogs have been designed and synthesized by hybridizing the immunomodulatory gutarimide moiety with three antiproliferative nuclei: quinazolinedione, phthalazinedione, and quinoxalinone. The biological results revealed the strong impact of quinazoline derivatives 7 a and 28, and phthalazine based 20 a against HepG-2, MCF-7, PC3, and HCT-116 cell lines, compared to thalidomide. In particular, compound 20 a was the most promising as it had far better biological activity than thalidomide with regard to inhibition of TNF-α, IL-6, caspase 3, COX-I/II, and VEGFR-2, as well as cell cycle arrest, and apoptosis rate enhancement in MCF-7 cells, the most sensitive cell line to the current new molecules. Compound 20 a caused reduction in levels of TNF-α and IL-6 by 75.22 % and 82.51 %, respectively. It elevated the caspase-3 level by 7.21-fold. Furthermore, IC50 against COX-I, COX-II, and VEGFR-2 were 0.65 μM, 0.33 μM, and 232 nM, respectively. In addition, it raised the apoptosis rate from 65.65 % to 99.89 %. Moreover, 20 a was further examined through a docking study and a 200 ns molecular dynamics simulation for its complex with VEGFR-2, along with computational ADME properties. This work suggests the high significance of compounds 20 a, 7 a and 28, as lead compounds for development of new effective immunomodulatory antitumor drugs.
Collapse
Affiliation(s)
- Abdallah E Abdallah
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Ahmed B M Mehany
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey
| | - Helmy Sakr
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - K H Metwaly
- Center of Plasma Technology, Al-Azhar University, 11884, Cairo, Egypt
| | - Khaled El-Adl
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Mohamed Ayman El-Zahabi
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| |
Collapse
|
2
|
Saleh Al Ward MM, Abdallah AE, Zayed MF, Ayyad RR, Abdelghany TM, Bakhotmah DA, El-Zahabi MA. New immunomodulatory anticancer quinazolinone-based thalidomide analogs: design, synthesis and biological evaluation. Future Med Chem 2024; 16:2523-2533. [PMID: 39530517 PMCID: PMC11622738 DOI: 10.1080/17568919.2024.2419361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Aim: The current work is an extension to our previous work for the development of new thalidomide analogs.Materials & methods: Quinazolinone-based molecules carrying a glutarimide moiety have been designed, synthesized and biologically evaluated for immunomodulatory and anticancer activity.Results: Compounds 7d and 12 showed considerable immunomodulatory properties in comparison to thalidomide. 7d and 12 significantly reduced TNF-α levels in HepG-2 cells from 162.5 to 57.4 pg/ml and 49.2 pg/ml, respectively, compared with 53.1 pg/ml reported for thalidomide. Moreover, they caused 69.33 and 77.74% reduction in NF-κB P65, respectively, compared with 60.26% reduction for thalidomide. Similarly, they reduced VEGF from 432.5 to 161.3 pg/ml and 132.8 pg/ml, respectively, in comparison to 153.2 pg/ml reported for thalidomide. The two new derivatives, 7d and 12 also showed about eightfold increases in caspase-8 levels in cells treated with them. These results were slightly better than those of thalidomide. The obtained results revealed that Compound 12 had better immunomodulatory properties than thalidomide, with stronger effects on TNF-α, NF-κB P65, VEGF and caspase-8.Conclusion: This work indicates that compounds 7d and 12 have interesting biological properties that should be further evaluated and modified in order to develop clinically useful thalidomide analogs.
Collapse
Affiliation(s)
- Maged Mohammed Saleh Al Ward
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Abdallah E Abdallah
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Mohamed F Zayed
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
- Pharmaceutical Sciences Department, Fakeeh College for Medical Sciences, Jeddah, 21461, Saudi Arabia
| | - Rezk R Ayyad
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
- College of Pharmacy, University of Hilla, Babylon, Iraq
| | - Tamer M Abdelghany
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, 11785, Egypt
- Pharmacology & Toxicology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | | | - Mohamed Ayman El-Zahabi
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| |
Collapse
|
3
|
Alsulaimany M, El-Hddad SSA, Akrim ZSM, Aljohani AKB, Almohaywi B, Alatawi OM, Almadani SA, Alharbi HY, Aljohani MS, Miski SF, Alghamdi R, El-Adl K. Exploration of cytotoxicity of iodoquinazoline derivatives as inhibitors of both VEGFR-2 and EGFR T790M: Molecular docking, ADMET, design, and syntheses. Arch Pharm (Weinheim) 2024; 357:e2400389. [PMID: 39088827 DOI: 10.1002/ardp.202400389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 08/03/2024]
Abstract
Novel inhibitors of epidermal growth factor receptor (EGFR)T790M/vascular endothelial growth factor receptor-2 (VEGFR-2) were synthesized based on the iodoquinazoline scaffold linked to different heteroaromatic, aromatic, and/or aliphatic moieties. The novel derivatives were in vitro examined for anticancer activities against A549, HCT116, michigan cancer foundation-7 (MCF-7), and HepG2 cells. Molecular modeling was applied to discover their orientation of binding with both VEGFR-2 and EGFR active sites. Compounds 8d, 8c, 6d, and 6c indicated the highest cytotoxicity with IC50 = 6.00, 6.90, 6.12 and 6.24 µM, 7.05, 7.35, 6.80, and 6.80 µM, 5.75, 7.50, 6.90, and 6.95 µM, and 6.55, 7.88, 7.44, and 7.10 µM against the A549, HepG2, HCT116, and MCF-7 cell lines, correspondingly. The cytotoxicity against normal VERO (normal african green monkey kidney cells) of the extremely active eight compounds 6a-d and 8a-d was evaluated. Our compounds exhibited low toxicity concerning normal VERO cells with IC50 = 45.66-51.83 μM. Furthermore, inhibition assays for both the EGFRT790M and VEGFR-2 enzymes were done for all compounds. Remarkable inhibition of EGFRT790M activity was achieved with compounds 6d, 8d, 6c, and 8c at IC50 = 0.35, 0.42, 0.48, and 0.50 µM correspondingly. Moreover, remarkable inhibition of VEGFR-2 activity was achieved with compounds 8d, 8c, 6d, and 6c at IC50 = 0.92, 0.95, 1.00, and 1.20 µM correspondingly. As planned, derivatives 6d, 8d, 6c, and 8c presented exceptional inhibition of both EGFRT790M/VEGFR-2 activities. Finally, in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) studies were made for the highly active four compounds 6c, 6d, 8c, and 8d in comparison with erlotinib and sorafenib as reference standards.
Collapse
Affiliation(s)
- Marwa Alsulaimany
- Department of Pharmacognosy & Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | | | - Zuhir S M Akrim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Omar Almukhtar University Al-Bayda, Libya
| | - Ahmed K B Aljohani
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Basmah Almohaywi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Omar M Alatawi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Sara A Almadani
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - Hussam Y Alharbi
- Department of Chemistry, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | - Majed S Aljohani
- Department of Chemistry, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | - Samar F Miski
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - Read Alghamdi
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Khaled El-Adl
- Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
4
|
Di Martino S, De Rosa M. The Benzoxazole Heterocycle: A Comprehensive Review of the Most Recent Medicinal Chemistry Developments of Antiproliferative, Brain-Penetrant, and Anti-inflammatory Agents. Top Curr Chem (Cham) 2024; 382:33. [PMID: 39432195 DOI: 10.1007/s41061-024-00477-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/21/2024] [Indexed: 10/22/2024]
Abstract
The benzoxazole is one of the most widely exploited heterocycles in drug discovery. Natural occurring and synthetic benzoxazoles show a broad range of biological activities. Many benzoxazoles are available for treating several diseases, and, to date, a few are in clinical trials. Moreover, an ever-increasing number of benzoxazole derivatives are under investigation in the early drug discovery phase and as potential hit or lead compounds. This perspective is an attempt to thoroughly review the rational design, the structure-activity relationship, and the biological activity of the most notable benzoxazoles developed during the past 5 years (period 2019-to date) in cancers, neurological disorders, and inflammation. We also briefly overviewed each target and its role in the disease. The huge amount of work examined suggests the great potential of the scaffold and the high interest of the scientific community in novel biologically active compounds containing the benzoxazole core.
Collapse
Affiliation(s)
- Simona Di Martino
- Medicinal Chemistry Group, Fondazione Ri.MED, via Filippo Marini 14, 90128, Palermo, Italy
| | - Maria De Rosa
- Medicinal Chemistry Group, Fondazione Ri.MED, via Filippo Marini 14, 90128, Palermo, Italy.
| |
Collapse
|
5
|
Xu P, Li Y, Zhuang X, Yue L, Ma Y, Xue W, Ji L, Zhan Y, Ou Y, Qiao T, Wu D, Liu P, Chen H, Cheng Y. Changes in immune subsets during chemotherapy as prognosis biomarkers for multiple myeloma patients by longitudinal monitoring. Immunol Res 2024; 72:1185-1197. [PMID: 39254909 DOI: 10.1007/s12026-024-09521-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/22/2024] [Indexed: 09/11/2024]
Abstract
Multiple myeloma (MM) is a malignancy of plasma cells accompanied by immune dysfunction. This study aimed to provide a comprehensive and dynamic characterization of the peripheral immune environment in MM patients and find its diagnostic and prognostic values for therapy. The peripheral immune profiles of MM inpatients and healthy controls were assessed by flow cytometry. A longitudinal study of immune subsets was observed during cycles of chemotherapy. The diagnostic and prognostic models were established based on immune subsets by the absolute shrinkage and selection operator (LASSO) and multivariate regression. MM patients possessed an impeded immune landscape, including reduced activation of B cells, increased effective T cells and regulatory T cells (Tregs), augmented CD16 expression on monocytes and dendritic cell percentages, decreased CD56dimCD16+ natural killer cells (NKs), and amplified CD56bright and HLA-DR+ natural killer T cells (NKTs). Chemotherapy has different dynamic effects on specific cells, of which 2 cycles is the key turning point. NKT, dendritic cells, naïve Tc and Th cells, HLA-DR+ Tc cells, CD56dim NKTs, CD16++ monocytes, and CD25+ B cells could have the diagnostic value, and a prognostic model including neutrophils, naïve Tc cells, CD56brightCD16dim NKs, and CD16+ dendritic cells was established with acceptable accuracy. Our data showed dynamic and abnormal peripheral immune profiles in MM patients, which had prognostic values and could provide the basis for clinical therapy.
Collapse
Affiliation(s)
- Pengcheng Xu
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Hematology, Zhongshan Hospital QingPu Branch, Fudan University, Shanghai, China
| | - Ying Li
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Xibing Zhuang
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lei Yue
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanna Ma
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Wenjin Xue
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Lili Ji
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanxia Zhan
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Ou
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tiankui Qiao
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Duojiao Wu
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peng Liu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Hao Chen
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Thoracic Surgery, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Yunfeng Cheng
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Faydali N, Erol M, Temiz Arpaci O, Kuyucuklu G, Semih Salan A. Novel Sulfonylamido Benzoxazole Derivatives: Synthesis, Characterisation, Molecular Docking, DFT, and Antimicrobial Activity Investigations. Chem Biodivers 2024:e202402127. [PMID: 39327807 DOI: 10.1002/cbdv.202402127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 09/28/2024]
Abstract
In this work, numerous novel 2-(p-ethyl/fluorophenyl)-5-[(p-substitutedphenyl)sulfonylamido]benzoxazole derivatives were designed, synthesized, and structurally characterized using 1H-NMR, 13C-NMR, mass spectroscopy, and elemental analysis approaches. The antimicrobial activity against several Gram (+) bacteria, Gram (-) bacteria, and fungal species was determined using the in vitro microdilution technique. A molecular docking analysis was performed on all produced compounds utilizing the S. aureus gyrase complex with ciprofloxacin and DNA. Two of the most effective compounds against S. aureus, N4 and N9, have binding energies of -8.7 kcal/mol and -8.6 kcal/mol, respectively, and their interactions have been demonstrated in 2D and 3D. Furthermore, utilizing the 6-311G(d,p) base set and DFT/B3LYP theory, MEP analysis, geometric optimization, and molecular reactivity analysis (HOMO-LUMO) of N4 and N9 were performed, and the results were presented. All compounds' theoretical ADMET profiles were computed as well. With all of this knowledge, this study could be a pioneer in the development of novel anti-S. aureus compounds.
Collapse
Affiliation(s)
- Nagihan Faydali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Selçuk University, Konya, Turkey
| | - Meryem Erol
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Ozlem Temiz Arpaci
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Gulcan Kuyucuklu
- Department of Medical Microbiology, Faculty of Medicine, Kırklareli University, Kırklareli, Turkey
| | - Alparslan Semih Salan
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Trakya University, Edirne, Turkey
| |
Collapse
|
7
|
Bayoumi HH, Ibrahim MK, Dahab MA, Khedr F, El-Adl K. Rationale, in silico docking, ADMET profile, design, synthesis and cytotoxicity evaluations of phthalazine derivatives as VEGFR-2 inhibitors and apoptosis inducers. RSC Adv 2024; 14:27110-27121. [PMID: 39193307 PMCID: PMC11348385 DOI: 10.1039/d4ra04956j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
New phthalazine derivatives as vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitors were synthesized joined to different spacers including pyrazole, α,β-unsaturated ketonic fragment, pyrimidinone and/or pyrimidinthione. A docking study was carried out to explore the suggested binding orientations of the novel derivatives inside the active site of VEGFR-2. The obtained biological data were extremely interrelated to that of the docking study. In particular, compounds 4b and 3e showed the highest activities against Michigan Cancer Foundation-7 (MCF-7) and Hepatocellular carcinoma G2 (HepG2) with half maximal inhibitory concentration (IC50) = 0.06, 0.06 μM and 0.08, 0.19 μM respectively. Our derivatives 3a-e, 4a,b and 5a,b were evaluated for their cytotoxicity against normal VERO cells. Our compounds exhibited low toxicity concerning normal VERO cells with IC50 = 3.00-4.75 μM. In addition, our final derivatives 3a-e, 4a, 4b, 5a and 5b were investigated for their VEGFR-2 inhibitory activities. Derivative 4b exhibited the highest VEGFR-2 inhibitory activities at an IC50 value of 0.09 ± 0.02 μM. Derivatives 3e, 4a and 5b demonstrated good activities with IC50 values = 0.12 ± 0.02, 0.15 ± 0.03 and 0.13 ± 0.03 μM respectively. Furthermore, the activities of 4b were assessed against MCF-7 cancer cells for apoptosis induction, cell cycle distribution and growth inhibition. Compound 4b caused cell growth arrest in growth 2-mitosis (G2-M) phase; accumulation of cells at that phase became 6.92% after being 13.2 in control cells. Moreover, our derivatives 3e, 4b and 5b revealed a good in silico considered absorption, distribution, metabolism, excretion, and toxicity (ADMET) profile in comparison to sorafenib.
Collapse
Affiliation(s)
- Hatem Hussein Bayoumi
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Mohamed-Kamal Ibrahim
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Fathalla Khedr
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Khaled El-Adl
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development Cairo Egypt
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Nasr City 11884 Cairo Egypt
| |
Collapse
|
8
|
Bayoumi HH, Ibrahim MK, Dahab MA, Khedr F, El-Adl K. Exploration of the VEGFR-2 inhibition activity of phthalazine derivatives: design, synthesis, cytotoxicity, ADMET, molecular docking and dynamic simulation. RSC Adv 2024; 14:21668-21681. [PMID: 38979468 PMCID: PMC11229888 DOI: 10.1039/d4ra03459g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024] Open
Abstract
Novel phthalazine derivatives were designed, synthesized and evaluated against Hep G2 and MCF-7 as VEGFR-2 inhibitors. In particular, compounds 2g and 4a were found to be the most potent derivatives among all the tested compounds against MCF-7 and Hep G2 cancer cell lines with IC50 values of 0.15 and 0.12 and 0.18 and 0.09 μM respectively. Moreover, compounds 3a, 3c, 5a and 5b displayed excellent anticancer activities against MCF-7 and Hep G2 cancer cell lines. The highly active derivatives 2g, 3a, 3c, 4a, 5a and 5b were evaluated for their inhibitory activities against VEGFR-2. The tested compounds displayed high to low inhibitory activities with IC50 values ranging from 0.148 to 0.892 μM. Among them, compounds 2g and 4a were found to be the most potent derivatives that inhibited VEGFR-2 with IC50 values of 0.148 and 0.196 μM respectively. Compounds 3a, 3c, 5a and 5b exhibited good activity with IC50 values of 0.375, 0.892, 0.548 and 0.331 μM respectively. Sorafenib was used as a reference drug in this study. Molecular modeling studies were carried out for all compounds against the VEGFR-2 active site. The data obtained from biological testing highly correlated with those obtained from molecular modeling studies. Moreover, MD simulation results indicated the stability of ligand-target interaction. Furthermore, our derivatives 2g and 4a showed a good in silico calculated ADMET profile.
Collapse
Affiliation(s)
- Hatem Hussein Bayoumi
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Mohamed-Kamal Ibrahim
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Fathalla Khedr
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Khaled El-Adl
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development Cairo Egypt
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Nasr City 11884 Cairo Egypt
| |
Collapse
|
9
|
Aljohani AKB, El-Adl K, Almohaywi B, Alatawi OM, Alsulaimany M, El-Morsy A, Almadani SA, Alharbi HY, Aljohani MS, Abdulhaleem M FA, Osman HEM, Mohamady S. Anticancer evaluations of iodoquinazoline substituted with allyl and/or benzyl as dual inhibitors of EGFR WT and EGFR T790M: design, synthesis, ADMET and molecular docking. RSC Adv 2024; 14:7964-7980. [PMID: 38454937 PMCID: PMC10916743 DOI: 10.1039/d4ra00502c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/16/2024] [Indexed: 03/09/2024] Open
Abstract
Fifteen new iodoquinazoline derivatives, 5a,b to 18, are reported in this study and their anticancer evaluation as dual inhibitors of EGFRWT and EGFRT790M. The new derivatives were designed according to the target of structural requirements of receptors. Cytotoxicity of our compounds was evaluated against MCF-7, A549, HCT116 and HepG2 cell lines using MTT assay. Compounds 18, 17 and 14b showed the highest anticancer effects with IC50 = 5.25, 6.46, 5.68 and 5.24 μM, 5.55, 6.85, 5.40 and 5.11 μM and 5.86, 7.03, 6.15 and 5.77 μM against HepG2, MCF-7, HCT116 and A549 cell lines, respectively. The eight highly effective compounds 10, 13, 14a, 14b, 15, 16, 17 and 18 were inspected against VERO normal cell lines to evaluate their cytotoxicity. Our conclusion was that compounds 10, 13, 14a, 14b, 15, 16, 17 and 18 possessed low toxicity against VERO normal cells with IC50 increasing from 43.44 to 52.11 μM. All compounds were additionally assessed for their EGFRWT and EGFRT790M inhibitory activities. Additionally, their ability to bind with EGFRWT and EGFR receptors was confirmed by molecular docking. Compound 17 exhibited the same inhibitory activity as erlotinib. Compounds 10, 13, 14b, 16 and 18 excellently inhibited VEGFR-2 activity with IC50 ranging from 0.17 to 0.50 μM. Moreover, compounds 18, 17, 14b and 16 remarkably inhibited EGFRT790M activity with IC50 = 0.25, 0.30, 0.36 and 0.40 μM respectively. As planned, compounds 18, 17 and 14b showed excellent dual EGFRWT/EGFRT790M inhibitory activities. Finally, our compounds 18, 17 and 14b displayed good in silico ADMET calculated profiles.
Collapse
Affiliation(s)
- Ahmed K B Aljohani
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| | - Khaled El-Adl
- Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development Cairo Egypt
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Basmah Almohaywi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University Abha 61421 Saudi Arabia
| | - Omar M Alatawi
- Department of Chemistry, Faculty of Science, University of Tabuk Tabuk 47512 Saudi Arabia
| | - Marwa Alsulaimany
- Department of Pharmacognosy & Pharmaceutical Chemistry, College of Pharmacy, Taibah University Medina 42353 Saudi Arabia
| | - Ahmed El-Morsy
- Pharmaceutical Chemistry Department, College of Pharmacy, The Islamic University Najaf Iraq
| | - Sara A Almadani
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University Medina 42353 Saudi Arabia
| | - Hussam Y Alharbi
- Department of Chemistry, Faculty of Science, Taibah University Yanbu Saudi Arabia
| | - Majed S Aljohani
- Department of Chemistry, Faculty of Science, Taibah University Yanbu Saudi Arabia
| | | | - Hanan E M Osman
- Biology Department, Faculty of Science, Umm Al-Qura University Makkah 21955 Saudi Arabia
- Botany and Microbiology Department, Al-Azhar University Cairo 11651 Egypt
| | - Samy Mohamady
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt Cairo Egypt
| |
Collapse
|
10
|
Mohamed AA, El-Hddad SSA, Aljohani AKB, Khedr F, Alatawi OM, Keshek DE, Ahmed S, Alsulaimany M, Almadani SA, El-Adl K, Hanafy NS. Iodoquinazoline-derived VEGFR-2 and EGFR T790M dual inhibitors: Design, synthesis, molecular docking and anticancer evaluations. Bioorg Chem 2024; 143:107062. [PMID: 38150938 DOI: 10.1016/j.bioorg.2023.107062] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/20/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
Herein, we report the synthesis of a series of new fourteen iodoquinazoline derivatives 7a-c to 13a-e and their evaluation as potential anticancer agents via dual targeting of EGFRT790M and VEGFR-2. The new derivatives were designed according to the target receptors structural requirements. The compounds were evaluated for their cytotoxicity against HepG2, MCF-7, HCT116 and A549 cancer cell lines using MTT assay. Compound 13e showed the highest anticancer activities with IC50 = 5.70, 7.15, 5.76 and 6.50 µM against HepG2, MCF-7, HCT116 and A549 cell lines correspondingly. Compounds 7c, 9b and 13a-d exhibited very good anticancer effects against the tested cancer cell lines. The highly effective six derivatives 7c, 10, 13b, 13c, 13d and 13e were examined against VERO normal cell lines to estimate their cytotoxic capabilities. Our conclusion revealed that compounds 7c, 10, 13b, 13c, 13d and 13e possessed low toxicity against VERO normal cells with IC50 prolonging from 41.66 to 53.99 μM. Also compounds 7a-c to 13a-e were further evaluated for their inhibitory activity against EGFRT790M and VEGFR-2. Also, their ability to bind with both EGFR and VEGFR-2 receptors was examined by molecular modeling. Compounds 13e, 13d, 7c and 13c excellently inhibited VEGFR-2 activity with IC50 = 0.90, 1.00, 1.25 and 1.50 µM respectively. Moreover, Compounds 13e, 7c, 10 and 13d excellently inhibited EGFRT790M activity with IC50 = 0.30, 0.35, 0.45 and 0.47 µM respectively. Finally, our derivatives 7b, 13d and 13e showed good in silico calculated ADMET profile.
Collapse
Affiliation(s)
- Abeer A Mohamed
- Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt; Egyptian Drug Authority (EDA), 51 Wezaret El-Zeraa St, Dokki, Giza, A. R., Egypt
| | | | - Ahmed K B Aljohani
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia
| | - Fathalla Khedr
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Omar M Alatawi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Doaa E Keshek
- Department of Biology, Jumum College University, Umm Al-Qura University, P.O Box7388, Makkah 21955, Sudia Arabia; Agriculture Genetic Engineering Research Institute (AGERI), Agriculture Research Centre, Giza, Egypt
| | - Sahar Ahmed
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Marwa Alsulaimany
- Department of Pharmacognosy & Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Medina 42353, Saudi Arabia
| | - Sara A Almadani
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Medina 42353, Saudi Arabia
| | - Khaled El-Adl
- Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt; Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt.
| | - Noura S Hanafy
- Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| |
Collapse
|
11
|
Alsulaimany M, El-Adl K, Aljohani AKB, Alharbi HY, Alatawi OM, Aljohani MS, El-Morsy A, Almadani SA, Alsimaree AA, Salama SA, Keshek DE, Mohamed AA. Design, synthesis, docking, ADMET and anticancer evaluations of N-alkyl substituted iodoquinazoline derivatives as dual VEGFR-2 and EGFR inhibitors. RSC Adv 2023; 13:36301-36321. [PMID: 38093733 PMCID: PMC10716637 DOI: 10.1039/d3ra07700d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/01/2023] [Indexed: 11/30/2024] Open
Abstract
Fifteen new 1-alkyl-6-iodoquinazoline derivatives 5a-d to 9a-e were designed and synthesized and their anticancer activities were evaluated against HepG2, MCF-7, HCT116 and A549 cancer cell lines via dual targeting of EGFR and VEGFR-2. The newly synthesized compounds were designed based on the structure requirements of the target receptors and were confirmed using spectral data. Compound 9c showed the highest anticancer activities with EC50 = 5.00, 6.00, 5.17 and 5.25 μM against HepG2, MCF-7, HCT116 and A549 cell lines correspondingly. Moreover, compounds 5d, 8b, 9a, 9b, 9d, and 9e exhibited very good anticancer effects against the tested cancer cell lines. The highly effective seven derivatives 5d, 8b, 9a-e were examined against VERO normal cell lines to estimate their cytotoxic capabilities. Compounds 9c, 9b, 9d, 9a, 9e and 5d excellently inhibited VEGFR-2 activity with IC50 = 0.85, 0.90, 0.90, 1.00, 1.20 and 1.25 μM respectively. Moreover, compounds 9c, 9d, 9e, 5d, 8b and 9b excellently inhibited EGFRT790M activity with IC50 = 0.22, 0.26, 0.30, 0.40, 0.45 and 0.50 μM respectively. Also, compounds 9c, 9d and 9e excellently inhibited EGFRWT activity with IC50 = 0.15, 0.20 and 0.25 μM respectively. As planned, compound 9c showed excellent dual EGFR/VEGFR-2 inhibitory activities. Consonantly, ADMET study was calculated in silico for the supreme three worthwhile compounds 9b, 9c and 9e in contrast to sorafenib and erlotinib as reference drugs. The obtained results concluded that, our compounds might be useful as prototype for design, optimization, adaptation and investigation to have more powerful and selective dual VEGFR-2/EGFRT790M inhibitors with higher antitumor activity.
Collapse
Affiliation(s)
- Marwa Alsulaimany
- Department of Pharmacognosy & Pharmaceutical Chemistry, College of Pharmacy, Taibah University Medina 42353 Saudi Arabia
| | - Khaled El-Adl
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Nasr City 11884 Cairo Egypt
- Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development Cairo Egypt
| | - Ahmed K B Aljohani
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| | - Hussam Y Alharbi
- Department of Chemistry, Faculty of Science, Taibah University Yanbu Saudi Arabia
| | - Omar M Alatawi
- Department of Chemistry, Faculty of Science, University of Tabuk Tabuk 47512 Saudi Arabia
| | - Majed S Aljohani
- Department of Chemistry, Faculty of Science, Taibah University Yanbu Saudi Arabia
| | - Ahmed El-Morsy
- Pharmaceutical Chemistry Department, College of Pharmacy, The Islamic University Najaf Iraq
| | - Sara A Almadani
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University Medina 42353 Saudi Arabia
| | - Abdulrahman A Alsimaree
- Department of Basic Science (Chemistry), College of Science and Humanities, Shaqra University Afif Saudi Arabia
| | - Samir A Salama
- Division of Biochemistry, Department of Pharmacology, College of Pharmacy, Taif University P.O. Box 11099 Taif 21944 Kingdom of Saudi Arabia
| | - Doaa E Keshek
- Department of Biology, Jumum College University, Umm Al-Qura University P.O Box7388 Makkah 21955 Sudia Arabia
- Agriculture Genetic Engineering Research Institute (AGERI), Agriculture Research Centre Giza Egypt
| | - Abeer A Mohamed
- Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development Cairo Egypt
- Egyptian Drug Authority (EDA) 51 Wezaret El-Zeraa St, Dokki Giza, A. R. Egypt
| |
Collapse
|
12
|
Anwer KE, El-Hddad SSA, Abd El-Sattar NEA, El-Morsy A, Khedr F, Mohamady S, Keshek DE, Salama SA, El-Adl K, Hanafy NS. Five and six membered heterocyclic rings endowed with azobenzene as dual EGFR T790M and VEGFR-2 inhibitors: design, synthesis, in silico ADMET profile, molecular docking, dynamic simulation and anticancer evaluations. RSC Adv 2023; 13:35321-35338. [PMID: 38053688 PMCID: PMC10695193 DOI: 10.1039/d3ra06614b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023] Open
Abstract
Novel azobenzene scaffold-joined heterocyclic isoxazole, pyrazole, triazole, and/or triazine moieties have been developed and synthesized utilizing microwave and traditional methods. Our compounds were tested for growth inhibition of A549, MCF-7, HCT-116, and HepG2 tumors by dual targeting the VEGFR-2 and EGFRT790M enzymes. The suggested compound's manner of binding with EGFRT790M and VEGFR-2 active sites was explored through molecular design and MD modeling. The information from the results of the biological screening and the docking studies was highly correlated. The A549 cell line was the one that responded to the novel compound's effects most effectively. Having IC50 values of 5.15, 6.37, 8.44 and 6.23 μM, respectively, 14 was the most effective derivative on the four A549, MCF-7, HCT116 and HepG2 cancer cells. It had greater activity than erlotinib and slightly inferior activities on the tested cell lines than sorafenib, respectively. The cytotoxicity of the most effective derivatives, 5, 6, 10 and 14, was evaluated against typical VERO cell lines. Having IC50 values ranging from 42.32 to 55.20 μM, the results showed that the investigated drugs have modest toxicity against VERO normal cells. Additionally all derivatives were assessed for their dual VEGFR-2 and EGFRT790M inhibitory effects. Among them, derivatives 14, 5 and 10 were established as the greatest inhibitors of VEGFR-2 at IC50 values of 0.95, 1.25 and 1.50 μM correspondingly. As well, derivatives 14, 6, 5 and 10 could inhibit EGFRT790M activity demonstrating strongest effects with IC50 = 0.25, 0.35, 0.40 and 0.50 μM respectively. Furthermore, the ADMET profile was evaluated for compounds 5, 6, 10 and 14 in contrast to reference drugs sorafenib and erlotinib.
Collapse
Affiliation(s)
- Kurls E Anwer
- Department of Chemistry, Faculty of Science, Ain Shams University Abbassia Cairo Egypt
| | | | - Nour E A Abd El-Sattar
- Department of Chemistry, Faculty of Science, Ain Shams University Abbassia Cairo Egypt
- Basic & Medical Sciences Department, Faculty of Dentistry, Alryada University for Science & Technology Egypt
| | - Ahmed El-Morsy
- Pharmaceutical Chemistry Department, College of Pharmacy, The Islamic University Najaf Iraq
| | - Fathalla Khedr
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Samy Mohamady
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt Cairo Egypt
| | - Doaa E Keshek
- Department of Biology, Jumum College University, Umm Al-Qura University P.O. Box 7388 Makkah 21955 Sudia Arabia
- Agriculture Genetic Engineering Research Institute (AGERI), Agriculture Research Centre Giza Egypt
| | - Samir A Salama
- Division of Biochemistry, Department of Pharmacology, College of Pharmacy, Taif University P.O. Box 11099 Taif 21944 Kingdom of Saudi Arabia
| | - Khaled El-Adl
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Nasr City 11884 Cairo Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development Cairo Egypt
| | - Noura S Hanafy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development Cairo Egypt
| |
Collapse
|
13
|
Ghorab MM, Soliman AM, El-Adl K, Hanafy NS. New quinazoline sulfonamide derivatives as potential anticancer agents: Identifying a promising hit with dual EGFR/VEGFR-2 inhibitory and radiosensitizing activity. Bioorg Chem 2023; 140:106791. [PMID: 37611529 DOI: 10.1016/j.bioorg.2023.106791] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/14/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023]
Abstract
Herein, we report the synthesis of a series of new quinazoline sulfonamide conjugates 2-16 and their evaluation as potential anticancer agents via dual targeting of EGFRT790M and VEGFR-2. The newly synthesized compounds were designed based on the structure requirements of the target receptors and were confirmed using spectral data. The compounds were evaluated for their cytotoxicity against four cancer cell lines (HepG2, MCF-7, HCT116 and A549) using MTT assay. The most active compounds were further evaluated for their inhibitory activity against EGFRT790M and VEGFR-2. Compound 15 showed the most significant cytotoxic activity with IC50 = 0.0977 µM against MCF-7 and the most potent inhibitory activity against both EGFR and VEGFR with IC50 = 0.0728 and 0.0523 µM, respectively. Compound 15 was able to induce apoptosis in MCF-7 cells and cell cycle arrest at the G2/M phase. The relative safety profile of 15 was assessed using HEK-293 normal cell line and an ADMET profile was carried out. Radiosensitizing evaluation of 15 proved its significant ability to sensitize the cancer cell to the effect of radiation after being subjected to a single dose of 8 Gy gamma irradiation. Molecular docking studies revealed that 15 could bind to the ATP-binding site of EGF and VEGF receptors, inhibiting their activity.
Collapse
Affiliation(s)
- Mostafa M Ghorab
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt.
| | - Aiten M Soliman
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt.
| | - Khaled El-Adl
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Noura S Hanafy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| |
Collapse
|
14
|
El-Kalyoubi S, El-Sebaey SA, Elfeky SM, AL-Ghulikah HA, El-Zoghbi MS. Novel Aminopyrimidine-2,4-diones, 2-Thiopyrimidine-4-ones, and 6-Arylpteridines as Dual-Target Inhibitors of BRD4/PLK1: Design, Synthesis, Cytotoxicity, and Computational Studies. Pharmaceuticals (Basel) 2023; 16:1303. [PMID: 37765111 PMCID: PMC10535864 DOI: 10.3390/ph16091303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Structural-based drug design and solvent-free synthesis were combined to obtain three novel series of 5-arylethylidene-aminopyrimidine-2,4-diones (4, 5a-c, 6a,b), 5-arylethylidene-amino-2-thiopyrimidine-4-ones (7,8), and 6-arylpteridines (9,10) as dual BRD4 and PLK1 inhibitors. MTT assays of synthesized compounds against breast (MDA-MB-231), colorectal (HT-29), and renal (U-937) cancer cells showed excellent-to-good cytotoxic activity, compared to Methotrexate; MDA-MB-231 were the most sensitive cancer cells. The most active compounds were tested against normal Vero cells. Compounds 4 and 7 significantly inhibited BRD4 and PLK1, with IC50 values of 0.029, 0.042 µM, and 0.094, 0.02 µM, respectively, which are nearly comparable to volasertib (IC50 = 0.017 and 0.025 µM). Compound 7 triggered apoptosis and halted cell growth at the G2/M phase, similarly to volasertib. It also upregulated the BAX and caspase-3 markers while downregulating the Bcl-2 gene. Finally, active compounds fitted the volasertib binding site at BRD4 and PLK1 and showed ideal drug-like properties and pharmacokinetics, making them promising anticancer candidates.
Collapse
Affiliation(s)
- Samar El-Kalyoubi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Port Said University, Port Said 42511, Egypt
| | - Samiha A. El-Sebaey
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Youssef Abbas Street, Cairo 11754, Egypt
| | - Sherin M. Elfeky
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 355516, Egypt;
| | - Hanan A. AL-Ghulikah
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Mona S. El-Zoghbi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Menoufia University, Menoufia, Gamal Abd Al-Nasir Street, Shibin-Elkom 32511, Egypt;
| |
Collapse
|
15
|
Mabrouk RR, Abdallah AE, Mahdy HA, El-Kalyoubi SA, Kamal OJ, Abdelghany TM, Zayed MF, Alshaeri HK, Alasmari MM, El-Zahabi MA. Design, Synthesis, and Biological Evaluation of New Potential Unusual Modified Anticancer Immunomodulators for Possible Non-Teratogenic Quinazoline-Based Thalidomide Analogs. Int J Mol Sci 2023; 24:12416. [PMID: 37569792 PMCID: PMC10418715 DOI: 10.3390/ijms241512416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Sixteen new thalidomide analogs were synthesized. The new candidates showed potent in vitro antiproliferative activities against three human cancer cell lines, namely hepatocellular carcinoma (HepG-2), prostate cancer (PC3), and breast cancer (MCF-7). It was found that compounds XII, XIIIa, XIIIb, XIIIc, XIIId, XIVa, XIVb, and XIVc showed IC50 values ranging from 2.03 to 13.39 µg/mL, exhibiting higher activities than thalidomide against all tested cancer cell lines. Compound XIIIa was the most potent candidate, with an IC50 of 2.03 ± 0.11, 2.51 ± 0.2, and 0.82 ± 0.02 µg/mL compared to 11.26 ± 0.54, 14.58 ± 0.57, and 16.87 ± 0.7 µg/mL for thalidomide against HepG-2, PC3, and MCF-7 cells, respectively. Furthermore, compound XIVc reduced the expression of NFκB P65 levels in HepG-2 cells from 278.1 pg/mL to 63.1 pg/mL compared to 110.5 pg/mL for thalidomide. Moreover, compound XIVc induced an eightfold increase in caspase-8 levels with a simultaneous decrease in TNF-α and VEGF levels in HepG-2 cells. Additionally, compound XIVc induced apoptosis and cell cycle arrest. Our results reveal that the new candidates are potential anticancer candidates, particularly XIIIa and XIVc. Consequently, they should be considered for further evaluation for the development of new anticancer drugs.
Collapse
Affiliation(s)
- Reda R. Mabrouk
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt; (R.R.M.); (A.E.A.); (H.A.M.)
- Directorate of Health Affairs in Buhaira-Clinical Research Department, Ministry of Health and Population, Damanhour 22511, Egypt
| | - Abdallah E. Abdallah
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt; (R.R.M.); (A.E.A.); (H.A.M.)
| | - Hazem A. Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt; (R.R.M.); (A.E.A.); (H.A.M.)
| | - Samar A. El-Kalyoubi
- Department of Pharmaceutical Organic Chemistry, Port Said University, Port Said 42511, Egypt;
| | - Omar Jamal Kamal
- King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21461, Saudi Arabia;
| | - Tamer M. Abdelghany
- Pharmacology & Toxicology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt;
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo 11785, Egypt
| | - Mohamed F. Zayed
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt; (R.R.M.); (A.E.A.); (H.A.M.)
- Pharmaceutical Sciences Department, Fakeeh College for Medical Sciences, Jeddah 21461, Saudi Arabia;
| | - Heba K. Alshaeri
- Pharmaceutical Sciences Department, Fakeeh College for Medical Sciences, Jeddah 21461, Saudi Arabia;
| | - Moudi M. Alasmari
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah 21461, Saudi Arabia;
- King Abdullah International Medical Research Center (KAIMRC), Jeddah 21423, Saudi Arabia
| | - Mohamed Ayman El-Zahabi
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt; (R.R.M.); (A.E.A.); (H.A.M.)
| |
Collapse
|