1
|
Wu X, Guo H, Gao H, Li Y, Hu X, Kowalke MA, Li YX, Wei Y, Zhao J, Auger J, Binstadt BA, Pang HB. Peptide targeting improves the delivery and therapeutic index of glucocorticoids to treat rheumatoid arthritis. J Control Release 2024; 368:329-343. [PMID: 38431094 PMCID: PMC11001515 DOI: 10.1016/j.jconrel.2024.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Rheumatoid arthritis (RA) is a prevalent autoimmune disease characterized by excessive inflammation in the joints. Glucocorticoid drugs are used clinically to manage RA symptoms, while their dosage and duration need to be tightly controlled due to severe adverse effects. Using dexamethasone (DEX) as a model drug, we explored here whether peptide-guided delivery could increase the safety and therapeutic index of glucocorticoids for RA treatment. Using multiple murine RA models such as collagen-induced arthritis (CIA), we found that CRV, a macrophage-targeting peptide, can selectively home to the inflammatory synovium of RA joints upon intravenous injection. The expression of the CRV receptor, retinoid X receptor beta (RXRB), was also elevated in the inflammatory synovium, likely being the basis of CRV targeting. CRV-conjugated DEX increased the accumulation of DEX in the inflamed synovium but not in healthy organs of CIA mice. Therefore, CRV-DEX demonstrated a stronger efficacy to suppress synovial inflammation and alleviate cartilage/bone destruction. Meanwhile, CRV conjugation reduced immune-related adverse effects of DEX even after a long-term use. Last, we found that RXRB expression was significantly elevated in human patient samples, demonstrating the potential of clinical translation. Taken together, we provide a novel, peptide-targeted strategy to improve the therapeutic efficacy and safety of glucocorticoids for RA treatment.
Collapse
Affiliation(s)
- Xian Wu
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Hong Guo
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Hui Gao
- Department of Rheumatology and Immunology, Peking University International Hospital, Beijing, China
| | - Yiqin Li
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Xiangxiang Hu
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Mitchell A Kowalke
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Yue-Xuan Li
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Yushuang Wei
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Jiaqi Zhao
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Jennifer Auger
- Center for Immunology and Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, United States
| | - Bryce A Binstadt
- Center for Immunology and Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, United States
| | - Hong-Bo Pang
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
2
|
Nanjaiah H, Moudgil KD. The Utility of Peptide Ligand-Functionalized Liposomes for Subcutaneous Drug Delivery for Arthritis Therapy. Int J Mol Sci 2023; 24:ijms24086883. [PMID: 37108047 PMCID: PMC10138553 DOI: 10.3390/ijms24086883] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/18/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Liposomes and other types of nanoparticles are increasingly being explored for drug delivery in a variety of diseases. There is an impetus in the field to exploit different types of ligands to functionalize nanoparticles to guide them to the diseased site. Most of this work has been conducted in the cancer field, with relatively much less information from autoimmune diseases, such as rheumatoid arthritis (RA). Furthermore, in RA, many drugs are self-administered by patients subcutaneously (SC). In this context, we have examined the attributes of liposomes functionalized with a novel joint-homing peptide (denoted ART-1) for arthritis therapy using the SC route. This peptide was previously identified following phage peptide library screening in the rat adjuvant arthritis (AA) model. Our results show a distinct effect of this peptide ligand on increasing the zeta potential of liposomes. Furthermore, liposomes injected SC into arthritic rats showed preferential homing to arthritic joints, following a migration profile in vivo similar to that of intravenously injected liposomes, except for a less steep decline after the peak. Finally, liposomal dexamethasone administered SC was more effective than the unpackaged (free) drug in suppressing arthritis progression in rats. We suggest that with suitable modifications, this SC liposomal treatment modality can be adapted for human RA therapy.
Collapse
Affiliation(s)
- Hemalatha Nanjaiah
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kamal D Moudgil
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Rheumatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
3
|
Systematic Review: Targeted Molecular Imaging of Angiogenesis and Its Mediators in Rheumatoid Arthritis. Int J Mol Sci 2022; 23:ijms23137071. [PMID: 35806074 PMCID: PMC9267012 DOI: 10.3390/ijms23137071] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 12/14/2022] Open
Abstract
Extensive angiogenesis is a characteristic feature in the synovial tissue of rheumatoid arthritis (RA) from a very early stage of the disease onward and constitutes a crucial event for the development of the proliferative synovium. This process is markedly intensified in patients with prolonged disease duration, high disease activity, disease severity, and significant inflammatory cell infiltration. Angiogenesis is therefore an interesting target for the development of new therapeutic approaches as well as disease monitoring strategies in RA. To this end, nuclear imaging modalities represent valuable non-invasive tools that can selectively target molecular markers of angiogenesis and accurately and quantitatively track molecular changes in multiple joints simultaneously. This systematic review summarizes the imaging markers used for single photon emission computed tomography (SPECT) and/or positron emission tomography (PET) approaches, targeting pathways and mediators involved in synovial neo-angiogenesis in RA.
Collapse
|
4
|
Zhang T, Ouyang X, Gou S, Zhang Y, Yan N, Chang L, Li B, Zhang F, Liu H, Ni J. Novel Synovial Targeting Peptide-Sinomenine Conjugates as a Potential Strategy for the Treatment of Rheumatoid Arthritis. Int J Pharm 2022; 617:121628. [PMID: 35245636 DOI: 10.1016/j.ijpharm.2022.121628] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/19/2022] [Accepted: 02/27/2022] [Indexed: 10/19/2022]
Abstract
Sinomenine (SIN) is an effective anti-inflammatory agent, but its therapeutic efficacy is limited by its short half-life and the high dosage required. Tissue-specific strategies have the potential to overcome these limitations. The synovial homing peptide (CKSTHDRLC) was identified to have high synovial endothelium targeting affinity. In this work, two peptide-drug conjugates (PDCs), conjugate (L) and conjugate (C), were synthesized, in which SIN was covalently connected to the linear and cyclic synovial homing peptide, respectively, via a 6-aminocaproic acid linker. An evaluation of biostability showed that conjugate (C) was more stable in mouse serum and inflammatory joint homogenate than conjugate (L). The two conjugates gradually released free SIN. Interestingly, conjugate (L) self-cyclized via a disulfide bridge in a biological environment, which significantly impacted its biostability. It had an almost equipotent half-life in serum but faster degradation in the inflammatory joint than conjugate (C). Therefore, conjugate (C) exhibited better therapeutic efficacy and tissue targeting. All the results indicated that PDCs particularly in its cyclic form might be more efficient for targeted deliver and represent a potential strategy for the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Tianyue Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xu Ouyang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Sanhu Gou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Na Yan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Linlin Chang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Beibei Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Fangyan Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hui Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Jingman Ni
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao 999078, China.
| |
Collapse
|
5
|
Mancipe Castro LM, García AJ, Guldberg RE. Biomaterial strategies for improved intra-articular drug delivery. J Biomed Mater Res A 2021; 109:426-436. [PMID: 32780515 PMCID: PMC8906235 DOI: 10.1002/jbm.a.37074] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/19/2020] [Accepted: 07/26/2020] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA) is a joint degenerative disease that has become one of the leading causes of disability in the world. It is estimated that OA affects 50 million adults in the United States. Currently, there are no FDA-approved treatments that slow OA progression and its treatment is limited to pain management strategies and life style changes. Despite the discovery of several disease-modifying OA drugs (DMOADs) and promising results in preclinical studies, their clinical translation has been significantly limited because of poor intra-articular (IA) bioavailability and challenges in delivering these compounds to tissues of interest within the joint. Here, we review current OA treatments and their effectiveness at reducing joint pain, as well as novel targets for OA treatment and the challenges related to their clinical translation. Moreover, we discuss intra-articular (IA) drug delivery as a promising route of administration, describe its inherent challenges, and review recent advances in biomaterial-based IA drug delivery for OA treatment. Finally, we highlight the potential of tissue targeting in the development of effective IA drug delivery systems.
Collapse
Affiliation(s)
- Lina María Mancipe Castro
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology 315 Ferst Dr NW, Atlanta, GA 30332, U.S.A
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology. 315 Ferst Dr NW, Atlanta, GA 30332, U.S.A
| | - Andrés J. García
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology 315 Ferst Dr NW, Atlanta, GA 30332, U.S.A
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology. 315 Ferst Dr NW, Atlanta, GA 30332, U.S.A
| | - Robert E. Guldberg
- Phil and Penny Knight Campus for Accelerating Scientific Impact, 6231 University of Oregon, Eugene, OR 97403, U.S.A
| |
Collapse
|
6
|
Mancipe Castro LM, Sequeira A, García AJ, Guldberg RE. Articular Cartilage- and Synoviocyte-Binding Poly(ethylene glycol) Nanocomposite Microgels as Intra-Articular Drug Delivery Vehicles for the Treatment of Osteoarthritis. ACS Biomater Sci Eng 2020; 6:5084-5095. [PMID: 33455260 PMCID: PMC8221079 DOI: 10.1021/acsbiomaterials.0c00960] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Intra-articular (IA) injection is an attractive route of administration for the treatment of osteoarthritis (OA). However, free drugs injected into the joint space are rapidly cleared and many of them can induce adverse off-target effects on different IA tissues. To overcome these limitations, we designed nanocomposite 4-arm-poly(ethylene glycol)-maleimide (PEG-4MAL) microgels, presenting cartilage- or synoviocyte-binding peptides, containing poly(lactic-co-glycolic) acid (PLGA) nanoparticles (NPs) as an IA small molecule drug delivery system. Microgels containing rhodamine B (model drug)-loaded PLGA NPs were synthesized using microfluidics technology and exhibited a sustained, near zero-order release of the fluorophore over 16 days in vitro. PEG-4MAL microgels presenting synoviocyte- or cartilage-targeting peptides specifically bound to rabbit and human synoviocytes or to bovine articular cartilage in vitro, respectively. Finally, using a rat model of post-traumatic knee OA, PEG-4MAL microgels were shown to be retained in the joint space for at least 3 weeks without inducing any joint degenerative changes as measured by EPIC-μCT and histology. Additionally, all microgel formulations were found trapped in the synovial membrane and significantly increased the IA retention time of a model small molecule near-infrared (NIR) dye compared to that of the free dye. These results suggest that peptide-functionalized nanocomposite PEG-4MAL microgels represent a promising intra-articular vehicle for tissue-localized drug delivery and prolonged IA drug retention for the treatment of OA.
Collapse
Affiliation(s)
- Lina María Mancipe Castro
- Parker H. Petit Institute for Bioengineering and
Biosciences, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332,
U.S.A
- George W. Woodruff School of Mechanical Engineering,
Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, U.S.A
| | - Abigail Sequeira
- School of Chemical and Biomolecular Engineering, Georgia
Institute of Technology, 311 Ferst Drive NW, Atlanta, GA 30332, U.S.A
| | - Andrés J. García
- Parker H. Petit Institute for Bioengineering and
Biosciences, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332,
U.S.A
- George W. Woodruff School of Mechanical Engineering,
Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, U.S.A
| | - Robert E. Guldberg
- Phil and Penny Knight Campus for Accelerating Scientific
Impact, University of Oregon, 6231 University of Oregon, Eugene, OR 97403-6231
| |
Collapse
|
7
|
Xu H, Cao B, Li Y, Mao C. Phage nanofibers in nanomedicine: Biopanning for early diagnosis, targeted therapy, and proteomics analysis. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1623. [PMID: 32147974 DOI: 10.1002/wnan.1623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/02/2020] [Accepted: 02/04/2020] [Indexed: 12/16/2022]
Abstract
Display of a peptide or protein of interest on the filamentous phage (also known as bacteriophage), a biological nanofiber, has opened a new route for disease diagnosis and therapy as well as proteomics. Earlier phage display was widely used in protein-protein or antigen-antibody studies. In recent years, its application in nanomedicine is becoming increasingly popular and encouraging. We aim to review the current status in this research direction. For better understanding, we start with a brief introduction of basic biology and structure of the filamentous phage. We present the principle of phage display and library construction method on the basis of the filamentous phage. We summarize the use of the phage displayed peptide library for selecting peptides with high affinity against cells or tissues. We then review the recent applications of the selected cell or tissue targeting peptides in developing new targeting probes and therapeutics to advance the early diagnosis and targeted therapy of different diseases in nanomedicine. We also discuss the integration of antibody phage display and modern proteomics in discovering new biomarkers or target proteins for disease diagnosis and therapy. Finally, we propose an outlook for further advancing the potential impact of phage display on future nanomedicine. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Hong Xu
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Binrui Cao
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Yan Li
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
8
|
Baboci L, Capolla S, Di Cintio F, Colombo F, Mauro P, Dal Bo M, Argenziano M, Cavalli R, Toffoli G, Macor P. The Dual Role of the Liver in Nanomedicine as an Actor in the Elimination of Nanostructures or a Therapeutic Target. JOURNAL OF ONCOLOGY 2020; 2020:4638192. [PMID: 32184825 PMCID: PMC7060440 DOI: 10.1155/2020/4638192] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/16/2020] [Indexed: 02/06/2023]
Abstract
The development of nanostructures for therapeutic purpose is rapidly growing, following the results obtained in vivo in animal models and in the clinical trials. Unfortunately, the potential therapeutic efficacy is not completely exploited, yet. This is mainly due to the fast clearance of the nanostructures in the body. Nanoparticles and the liver have a unique interaction because the liver represents one of the major barriers for drug delivery. This interaction becomes even more relevant and complex when the drug delivery strategies employing nanostructures are proposed for the therapy of liver diseases, such as hepatocellular carcinoma (HCC). In this case, the selective delivery of therapeutic nanoparticles to the tumor microenvironment collides with the tendency of nanostructures to be quickly eliminated by the organ. The design of a new therapeutic approach based on nanoparticles to treat HCC has to particularly take into consideration passive and active mechanisms to avoid or delay liver elimination and to specifically address cancer cells or the cancer microenvironment. This review will analyze the different aspects concerning the dual role of the liver, both as an organ carrying out a clearance activity for the nanostructures and as target for therapeutic strategies for HCC treatment.
Collapse
Affiliation(s)
- Lorena Baboci
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Sara Capolla
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Federica Di Cintio
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Federico Colombo
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Prisca Mauro
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Paolo Macor
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
9
|
Acharya B, Meka RR, Venkatesha SH, Lees JR, Teesalu T, Moudgil KD. A novel CNS-homing peptide for targeting neuroinflammatory lesions in experimental autoimmune encephalomyelitis. Mol Cell Probes 2020; 51:101530. [PMID: 32035108 DOI: 10.1016/j.mcp.2020.101530] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/26/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022]
Abstract
Using phage peptide library screening, we identified peptide-encoding phages that selectively home to the inflamed central nervous system (CNS) of mice with experimental autoimmune encephalomyelitis (EAE), a model of human multiple sclerosis (MS). A phage peptide display library encoding cyclic 9-amino-acid random peptides was first screened ex-vivo for binding to the CNS tissue of EAE mice, followed by in vivo screening in the diseased mice. Phage insert sequences that were present at a higher frequency in the CNS of EAE mice than in the normal (control) mice were identified by DNA sequencing. One of the phages selected in this manner, denoted as MS-1, was shown to selectively recognize CNS tissue in EAE mice. Individually cloned phages with this insert preferentially homed to EAE CNS after an intravenous injection. Similarly, systemically-administered fluorescence-labeled synthetic MS-1 peptide showed selective accumulation in the spinal cord of EAE mice. We suggest that peptide MS-1 might be useful for targeted drug delivery to CNS in EAE/MS.
Collapse
Affiliation(s)
- Bodhraj Acharya
- University of Maryland School of Medicine, Baltimore, MD, USA; Baltimore VA Medical Center, Baltimore, MD, USA
| | - Rakeshchandra R Meka
- University of Maryland School of Medicine, Baltimore, MD, USA; Baltimore VA Medical Center, Baltimore, MD, USA
| | - Shivaprasad H Venkatesha
- University of Maryland School of Medicine, Baltimore, MD, USA; Baltimore VA Medical Center, Baltimore, MD, USA
| | - Jason R Lees
- Uniformed Services University of Health Sciences (USUHS), Bethesda, MD, USA
| | - Tambet Teesalu
- Institute of Biomedicine and Translational Medicine, University of Tartu (UT), Estonia; Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Kamal D Moudgil
- University of Maryland School of Medicine, Baltimore, MD, USA; Baltimore VA Medical Center, Baltimore, MD, USA. https://webmail.umaryland.edu/src/compose.php?send_to=kmoud001%40umaryland.edu
| |
Collapse
|
10
|
Colombo F, Durigutto P, De Maso L, Biffi S, Belmonte B, Tripodo C, Oliva R, Bardini P, Marini GM, Terreno E, Pozzato G, Rampazzo E, Bertrand J, Feuerstein B, Javurek J, Havrankova J, Pitzalis C, Nuñez L, Meroni P, Tedesco F, Sblattero D, Macor P. Targeting CD34+ cells of the inflamed synovial endothelium by guided nanoparticles for the treatment of rheumatoid arthritis. J Autoimmun 2019; 103:102288. [DOI: 10.1016/j.jaut.2019.05.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 11/30/2022]
|
11
|
Schultz C. Targeting the extracellular matrix for delivery of bioactive molecules to sites of arthritis. Br J Pharmacol 2018; 176:26-37. [PMID: 30311636 DOI: 10.1111/bph.14516] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 09/01/2018] [Accepted: 09/05/2018] [Indexed: 12/15/2022] Open
Abstract
Modifications to the extracellular matrix (ECM) can be either causal or consequential of disease processes including arthritis and cancer. In arthritis, the cartilage ECM is adversely affected by the aberrant behaviours of inflammatory cells, synoviocytes and chondrocytes, which secrete a plethora of cytokines and degradative proteases. In cancer, the ECM and stromal cells are linked to disease severity, and metalloproteinases are implicated in metastasis. There have been some successes in the field of targeted therapies, but efficacy depends upon the type and stage of disease. ECM targets are becoming increasingly attractive for drug delivery, owing to changes in ECM structure and composition in the diseased state, and the long in vivo half-life of its components. This review will highlight various strategies for targeting therapeutics to arthritic joints, including antibody and peptide-mediated drug delivery platforms to aid delivery to the ECM and retention at disease sites. LINKED ARTICLES: This article is part of a themed section on Translating the Matrix. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.1/issuetoc.
Collapse
Affiliation(s)
- Christopher Schultz
- Centre for Biochemical Pharmacology, Queen Mary University of London, Charterhouse Square Campus, London, UK
| |
Collapse
|
12
|
Abstract
Schematic illustration of inflammatory microenvironment in inflamed joints and events occurring in rheumatoid arthritis.
Collapse
Affiliation(s)
- Qin Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems
- Ministry of Education
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Xun Sun
- Key Laboratory of Drug Targeting and Drug Delivery Systems
- Ministry of Education
- West China School of Pharmacy
- Sichuan University
- Chengdu
| |
Collapse
|
13
|
Aghebati-Maleki L, Bakhshinejad B, Baradaran B, Motallebnezhad M, Aghebati-Maleki A, Nickho H, Yousefi M, Majidi J. Phage display as a promising approach for vaccine development. J Biomed Sci 2016; 23:66. [PMID: 27680328 PMCID: PMC5041315 DOI: 10.1186/s12929-016-0285-9] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/13/2016] [Indexed: 12/31/2022] Open
Abstract
Bacteriophages are specific antagonists to bacterial hosts. These viral entities have attracted growing interest as optimal vaccine delivery vehicles. Phages are well-matched for vaccine design due to being highly stable under harsh environmental conditions, simple and inexpensive large scale production, and potent adjuvant capacities. Phage vaccines have efficient immunostimulatory effects and present a high safety profile because these viruses have made a constant relationship with the mammalian body during a long-standing evolutionary period. The birth of phage display technology has been a turning point in the development of phage-based vaccines. Phage display vaccines are made by expressing multiple copies of an antigen on the surface of immunogenic phage particles, thereby eliciting a powerful and effective immune response. Also, the ability to produce combinatorial peptide libraries with a highly diverse pool of randomized ligands has transformed phage display into a straightforward, versatile and high throughput screening methodology for the identification of potential vaccine candidates against different diseases in particular microbial infections. These libraries can be conveniently screened through an affinity selection-based strategy called biopanning against a wide variety of targets for the selection of mimotopes with high antigenicity and immunogenicity. Also, they can be panned against the antiserum of convalescent individuals to recognize novel peptidomimetics of pathogen-related epitopes. Phage display has represented enormous promise for finding new strategies of vaccine discovery and production and current breakthroughs promise a brilliant future for the development of different phage-based vaccine platforms.
Collapse
Affiliation(s)
- Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Bakhshinejad
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ali Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical sciences, Tabriz, Iran
| | - Hamid Nickho
- Immunology Research Center, Tabriz University of Medical sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Jafar Majidi
- Immunology Research Center, Tabriz University of Medical sciences, Tabriz, Iran. .,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Hughes C, Nissim A. Progress and clinical potential of antibody-targeted therapy for arthritic damage. Expert Rev Proteomics 2016; 13:539-43. [DOI: 10.1080/14789450.2016.1188008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Onuoha SC, Ferrari M, Sblattero D, Pitzalis C. Rational design of antirheumatic prodrugs specific for sites of inflammation. Arthritis Rheumatol 2016; 67:2661-72. [PMID: 26097196 PMCID: PMC4832285 DOI: 10.1002/art.39232] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 06/04/2015] [Indexed: 12/16/2022]
Abstract
Objective Biologic drugs, such as the anti–tumor necrosis factor (anti‐TNF) antibody adalimumab, have represented a breakthrough in the treatment of rheumatoid arthritis. Yet, concerns remain over their lack of efficacy in a sizable proportion of patients and their potential for systemic side effects such as infection. Improved biologic prodrugs specifically targeted to the site of inflammation have the potential to alleviate current concerns surrounding biologic anticytokine therapies. The purpose of this study was to design, construct, and evaluate in vitro and ex vivo the targeting and antiinflammatory capacity of activatable bispecific antibodies. Methods Activatable dual variable domain (aDVD) antibodies were designed and constructed to target intercellular adhesion molecule 1 (ICAM‐1), which is up‐regulated at sites of inflammation, and anti‐TNF antibodies (adalimumab and infliximab). These bispecific molecules included an external arm that targets ICAM‐1 and an internal arm that comprises the therapeutic domain of an anti‐TNF antibody. Both arms were linked to matrix metalloproteinase (MMP)–cleavable linkers. The constructs were tested for their ability to bind and neutralize both in vitro and ex vivo targets. Results Intact aDVD constructs demonstrated significantly reduced binding and anti‐TNF activity in the prodrug formulation as compared to the parent antibodies. Human synovial fluid and physiologic concentrations of MMP enzyme were capable of cleaving the external domain of the antibody, revealing a fully active molecule. Activated antibodies retained the same binding and anti‐TNF inhibitory capacities as the parent molecules. Conclusion The design of a biologic prodrug with enhanced specificity for sites of inflammation (synovium) and reduced specificity for off‐target TNF is described. This construct has the potential to form a platform technology that is capable of enhancing the therapeutic index of drugs for the treatment of RA and other inflammatory diseases.
Collapse
Affiliation(s)
- Shimobi C Onuoha
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, and Queen Mary University of London, London, UK
| | - Mathieu Ferrari
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, and Queen Mary University of London, London, UK
| | | | - Costantino Pitzalis
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, and Queen Mary University of London, London, UK
| |
Collapse
|
16
|
Kenngott EE, Cole S, Hein WR, Hoffmann U, Lauer U, Maass D, Moore L, Pfeil J, Rosanowski S, Shoemaker CB, Umair S, Volkmer R, Hamann A, Pernthaner A. Identification of Targeting Peptides for Mucosal Delivery in Sheep and Mice. Mol Pharm 2015; 13:202-10. [DOI: 10.1021/acs.molpharmaceut.5b00635] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | - Sally Cole
- AgResearch Ltd., Hamilton 3240, New Zealand
| | | | - Ute Hoffmann
- Deutsches Rheuma-Forschungszentrum, 10117 Berlin, Germany
| | - Uta Lauer
- Deutsches Rheuma-Forschungszentrum, 10117 Berlin, Germany
| | - David Maass
- AgResearch Ltd., Hamilton 3240, New Zealand
- Charité Universitätsmedizin, 10117 Berlin, Germany
| | | | - Jennifer Pfeil
- Deutsches Rheuma-Forschungszentrum, 10117 Berlin, Germany
| | | | | | | | | | - Alf Hamann
- Deutsches Rheuma-Forschungszentrum, 10117 Berlin, Germany
- Charité Universitätsmedizin, 10117 Berlin, Germany
| | | |
Collapse
|
17
|
Ferrari M, Onuoha SC, Pitzalis C. Going with the flow: harnessing the power of the vasculature for targeted therapy in rheumatoid arthritis. Drug Discov Today 2015; 21:172-179. [PMID: 26523772 DOI: 10.1016/j.drudis.2015.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/30/2015] [Accepted: 10/16/2015] [Indexed: 12/17/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic, autoimmune disease that leads to excessive joint inflammation and is associated with significant morbidity and mortality. Although much is still to be learned about the aetiology RA, a growing body of evidence suggests that an altered vascular environment is an important aspect of its pathophysiology. In this context, RA shares many similarities with cancer, and it is expected that several angiogenic targets in cancer might be relevant to the treatment of RA. Here, we discuss how these targets can be combined with advances in drug development to generate the next generation of RA therapeutics.
Collapse
Affiliation(s)
- Mathieu Ferrari
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Shimobi C Onuoha
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Costantino Pitzalis
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
18
|
Ferrari M, Onuoha SC, Pitzalis C. Trojan horses and guided missiles: targeted therapies in the war on arthritis. Nat Rev Rheumatol 2015; 11:328-37. [DOI: 10.1038/nrrheum.2015.17] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Systemic Manifestations of Mucosal Diseases. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00090-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Lv PC, Zhu HL. EGFR-binding peptide: a patent evaluation of WO2014002836. Expert Opin Ther Pat 2014; 24:1409-11. [PMID: 25407285 DOI: 10.1517/13543776.2014.964686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Peptide ligands have many desirable features enabling them to act as drug molecules and are valuable in the drug discovery processes because of their fewer side effects and great potential to cure diseases. In this patent, three kinds of peptide ligands with 12-50 amino acid residues were identified by phase display technology. Some of them not only could be used as potential therapeutic agents for the treatment of EGFR-overexpressed cancers, but also show promising application in detecting cancer tissue or cancer cells that express the EGFR.
Collapse
Affiliation(s)
- Peng-Cheng Lv
- Nanjing University, State Key Laboratory of Pharmaceutical Biotechnology , Nanjing 210093 , People's Republic of China +86 25 8359 2672 ; +86 25 8359 2672 ; ;
| | | |
Collapse
|
21
|
Cheung CS, Lui JC, Baron J. Identification of chondrocyte-binding peptides by phage display. J Orthop Res 2013; 31:1053-8. [PMID: 23440926 PMCID: PMC4803314 DOI: 10.1002/jor.22325] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 01/23/2013] [Indexed: 02/04/2023]
Abstract
As an initial step toward targeting cartilage tissue for potential therapeutic applications, we sought cartilage-binding peptides using phage display, a powerful technology for selection of peptides that bind to molecules of interest. A library of phage displaying random 12-amino acid peptides was iteratively incubated with cultured chondrocytes to select phage that bind cartilage. The resulting phage clones demonstrated increased affinity to chondrocytes by ELISA, when compared to a wild-type, insertless phage. Furthermore, the selected phage showed little preferential binding to other cell types, including primary skin fibroblast, myocyte and hepatocyte cultures, suggesting a tissue-specific interaction. Immunohistochemical staining revealed that the selected phage bound chondrocytes themselves and the surrounding extracellular matrix. FITC-tagged peptides were synthesized based on the sequence of cartilage-binding phage clones. These peptides, but not a random peptide, bound cultured chondrocytes, and extracelluar matrix. In conclusion, using phage display, we identified peptide sequences that specifically target chondrocytes. We anticipate that such peptides may be coupled to therapeutic molecules to provide targeted treatment for cartilage disorders.
Collapse
Affiliation(s)
- Crystal S.F. Cheung
- Developmental Endocrinology Branch, Program in Developmental Endocrinology and Genetics; Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda; Maryland
| | - Julian C. Lui
- Developmental Endocrinology Branch, Program in Developmental Endocrinology and Genetics; Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda; Maryland
| | - Jeffrey Baron
- Developmental Endocrinology Branch, Program in Developmental Endocrinology and Genetics; Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda; Maryland
| |
Collapse
|
22
|
Macor P, Durigutto P, De Maso L, Garrovo C, Biffi S, Cortini A, Fischetti F, Sblattero D, Pitzalis C, Marzari R, Tedesco F. Treatment of experimental arthritis by targeting synovial endothelium with a neutralizing recombinant antibody to C5. ACTA ACUST UNITED AC 2012; 64:2559-67. [PMID: 22334275 DOI: 10.1002/art.34430] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To show that a new recombinant protein (MT07) obtained by fusing a synovial-homing peptide to a neutralizing antibody to C5 can be selectively delivered to inflamed synovium and can effectively control joint inflammation in experimental models of arthritis. METHODS Binding of MT07 to human, rat, and mouse synovial tissue was evaluated in vitro by immunofluorescence, and selective localization in the inflamed joints of rats was documented in vivo using time-domain optical imaging. The antiinflammatory effect of MT07 was tested in a rat model of antigen-induced arthritis (AIA) and in a mouse model of collagen antibody-induced arthritis (CAIA). RESULTS MT07 was able to bind to samples of inflamed synovium from humans, mice, and rats while failing to recognize uninflamed synovium as well as inflamed mouse lung or rat kidney. In vivo analysis of the biodistribution of MT07 confirmed its preferential homing to inflamed joints, with negligible inhibition of circulating C5 levels. MT07 prevented and resolved established inflammation in a rat model of AIA, as demonstrated by changes in joint swelling, polymorphonuclear cell counts in synovial washes, release of interleukin-6 and tumor necrosis factor α, and tissue damage. A similar therapeutic effect was obtained testing MT07 in a CAIA model. CONCLUSION Our findings show that the novel recombinant molecule MT07 has the unique ability to selectively target inflamed joints and to exert local control of the inflammatory process by neutralizing the complement system without interfering with circulating C5 levels. We believe that this approach can be extended to other antiinflammatory drugs currently used to treat patients with rheumatoid arthritis.
Collapse
|
23
|
Lee NK, Kim HS, Kim KH, Kim EB, Cho CS, Kang SK, Choi YJ. Identification of a novel peptide ligand targeting visceral adipose tissue via transdermal route by in vivo phage display. J Drug Target 2012; 19:805-13. [PMID: 21999821 DOI: 10.3109/1061186x.2011.572974] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To find novel peptide ligands targeting visceral adipose tissue (visceral fat) via transdermal route, in vivo phage display screening was conducted by dermal administration of a phage-peptide library to rats and a peptide sequence, CGLHPAFQC (designated as TDA1), was identified as a targeting ligand to visceral adipose tissue through the consecutive transdermal biopannings. Adipocyte-specific affinity and transdermal activity of the TDA1 were validated in vitro and targeting ability of the dermally administered TDA1 to visceral adipose tissue was also confirmed in vivo. TDA1 was effectively translocated into systemic circulation after dermal administration and selectively targeted visceral adipose tissue without any preference to other organs tested. Fluorescent microscopic analysis revealed that the TDA1 could be specifically localized in the hair follicles of the skin, as well as in the visceral adipose tissue. Thus, we inferred that dermally administered TDA1 would first access systemic circulation via hair follicles as its transdermal route and then could target visceral fat effectively. The overall results suggest that the TDA1 peptide could be potentially applied as a homing moiety for delivery of anti-obesity therapeutics to visceral fat through the convenient transdermal pathway.
Collapse
Affiliation(s)
- Nam Kyung Lee
- Laboratory of Animal Cell Biotechnology, Department of Agricultural Biotechnology, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
24
|
Wythe SE, DiCara D, Taher TEI, Finucane CM, Jones R, Bombardieri M, Man YKS, Nissim A, Mather SJ, Chernajovsky Y, Pitzalis C. Targeted delivery of cytokine therapy to rheumatoid tissue by a synovial targeting peptide. Ann Rheum Dis 2012; 72:129-35. [PMID: 22843486 PMCID: PMC3551226 DOI: 10.1136/annrheumdis-2012-201457] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objectives The synovial endothelium targeting peptide (SyETP) CKSTHDRLC has been identified previously and was shown to preferentially localise to synovial xenografts in the human/severe combined immunodeficient (SCID) mouse chimera model of rheumatoid arthritis (RA). The objective of the current work was to generate SyETP-anti-inflammatory-cytokine fusion proteins that would deliver bioactive cytokines specifically to human synovial tissue. Methods Fusion proteins consisting of human interleukin (IL)-4 linked via a matrix metalloproteinase (MMP)-cleavable sequence to multiple copies of either SyETP or scrambled control peptide were expressed in insect cells, purified by Ni-chelate chromatography and bioactivity tested in vitro. The ability of SyETP to retain bioactive cytokine in synovial but not control skin xenografts in SCID mice was determined by in vivo imaging using nano-single-photon emission computed tomography-computed tomography (nano-SPECT-CT) and measuring signal transducer and activator of transcription 6 (STAT6) phosphorylation in synovial grafts following intravenous administration of the fusion protein. Results In vitro assays confirmed that IL-4 and the MMP-cleavable sequence were functional. IL-4-SyETP augmented production of IL-1 receptor antagonist (IL-1ra) by fibroblast-like synoviocytes (FLS) stimulated with IL-1β in a dose-dependent manner. In vivo imaging showed that IL-4-SyETP was retained in synovial but not in skin tissue grafts and the period of retention was significantly enhanced through increasing the number of SyETP copies from one to three. Finally, retention correlated with increased bioactivity of the cytokine as quantified by STAT6 phosphorylation in synovial grafts. Conclusions The present work demonstrates that SyETP specifically delivers fused IL-4 to human rheumatoid synovium transplanted into SCID mice, thus providing a proof of concept for peptide-targeted tissue-specific immunotherapy in RA. This technology is potentially applicable to other biological treatments providing enhanced potency to inflammatory sites and reducing systemic toxicity.
Collapse
Affiliation(s)
- Sarah E Wythe
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kamperidis P, Kamalati T, Ferrari M, Jones M, Garrood T, Smith MD, Diez-Posada S, Hughes C, Finucane C, Mather S, Nissim A, George AJT, Pitzalis C. Development of a novel recombinant biotherapeutic with applications in targeted therapy of human arthritis. ACTA ACUST UNITED AC 2012; 63:3758-67. [PMID: 21953304 DOI: 10.1002/art.30650] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To isolate recombinant antibodies with specificity for human arthritic synovium and to develop targeting reagents with joint-specific delivery capacity for therapeutic and/or diagnostic applications. METHODS In vivo single-chain Fv (scFv) antibody phage display screening using a human synovial xenograft model was used to isolate antibodies specific to the microvasculature of human arthritic synovium. Single-chain Fv antibody tissue-specific reactivity was assessed by immunostaining of synovial tissues from normal controls and from patients with rheumatoid arthritis and osteoarthritis, normal human tissue arrays, and tissues from other patients with inflammatory diseases displaying neovasculogenesis. In vivo scFv antibody tissue-specific targeting capacity was examined in the human synovial xenograft model using both (125)I-labeled and biotinylated antibody. RESULTS We isolated a novel recombinant human antibody, scFv A7, with specificity for the microvasculature of human arthritic synovium. We showed that in vivo, this antibody could efficiently target human synovial microvasculature in SCID mice transplanted with human arthritic synovial xenografts. Our results demonstrated that scFv A7 antibody had no reactivity with the microvasculature or with other cellular components found in a comprehensive range of normal human tissues including normal human synovium. Further, we showed that the reactivity of the scFv A7 antibody was not a common feature of neovasculogenesis associated with chronic inflammatory conditions. CONCLUSION Here we report for the first time the identification of an scFv antibody, A7, that specifically recognizes an epitope expressed in the microvasculature of human arthritic synovium and that has the potential to be developed as a joint-specific pharmaceutical.
Collapse
Affiliation(s)
- Panagiotis Kamperidis
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Peptides targeting inflamed synovial vasculature attenuate autoimmune arthritis. Proc Natl Acad Sci U S A 2011; 108:12857-62. [PMID: 21768392 DOI: 10.1073/pnas.1103569108] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Autoimmune diseases, such as rheumatoid arthritis, frequently target one major tissue/organ despite the systemic nature of the immune response. This is particularly perplexing in the case of ubiquitously distributed antigens invoked in arthritis induction. We reasoned that selective targeting of the synovial joints in autoimmune arthritis might be due in part to the unique attributes of the joint vasculature. We examined this proposition using the adjuvant-induced arthritis model of human rheumatoid arthritis, and profiled the synovial vasculature using ex vivo and in vivo screening of a defined phage peptide-display library. We identified phage that preferentially homed to the inflamed joints. The corresponding synthetic peptides showed binding to the joint-derived endothelial cells, as well as specificity in inhibiting binding of the respective phage to the synovial vasculature. Intriguingly, the treatment of arthritic rats with one such peptide resulted in efficient inhibition of the progression of arthritis. The suppression of arthritis was attributable in part to the peptide-induced reduction of T-cell trafficking into the joints and the inhibition of angiogenesis. This peptide differed in sequence, in receptor binding specificity, and in angiogenesis/inflammation-related cell signaling from the previously characterized arginine-glycine-aspartic acid-containing peptide. Thus, our study reveals joint-homing peptides that can be further exploited for the selective delivery of antiarthritic agents into the inflamed joints to enhance their efficacy while reducing systemic toxicity, and also for examining intricacies of the pathogenesis of arthritis. This approach can be customized for application to other organ-specific autoimmune diseases as well.
Collapse
|
27
|
Gompels LL, Paleolog EM. A window on disease pathogenesis and potential therapeutic strategies: molecular imaging for arthritis. Arthritis Res Ther 2011; 13:201. [PMID: 21345267 PMCID: PMC3157632 DOI: 10.1186/ar3197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Novel molecular imaging techniques are at the forefront of both preclinical and clinical imaging strategies. They have significant potential to offer visualisation and quantification of molecular and cellular changes in health and disease. This will help to shed light on pathobiology and underlying disease processes and provide further information about the mechanisms of action of novel therapeutic strategies. This review explores currently available molecular imaging techniques that are available for preclinical studies with a focus on optical imaging techniques and discusses how current and future advances will enable translation into the clinic for patients with arthritis.
Collapse
Affiliation(s)
- Luke L Gompels
- Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College, Charing Cross Hospital Campus, 65 Aspenlea Road, London W68LH, UK.
| | | |
Collapse
|
28
|
Lee NK, Kim MK, Choi JH, Kim EB, Lee HG, Kang SK, Choi YJ. Identification of a peptide sequence targeting mammary vasculature via RPLP0 during lactation. Peptides 2010; 31:2247-54. [PMID: 20863866 DOI: 10.1016/j.peptides.2010.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 09/13/2010] [Accepted: 09/13/2010] [Indexed: 11/20/2022]
Abstract
To find novel targeting moieties to lactating mammary gland, in vivo phage display screening was conducted with lactating rats and a peptide ligand, CLHQHNQMC (designated as MG1), which specifically homes to the mammary tissue during lactation, was identified through the consecutive in vivo biopannings. MG1 peptide ligand showed specific binding affinity to lactating mammary tissue without any preference to other organs tested in ex vivo and in vivo validation, and microscopy analysis revealed that systemically introduced MG1 could be specifically localized in the lactating mammary gland associated with mammary epithelia and alveolar vasculature. Based on the observation that binding of MG1-encoding phage to lactating mammary gland was competitively inhibited by synthetic MG1 peptide ligand, we attempted to identify a counterpart molecule corresponding to specific recognition of the MG1 and the acidic Ribosomal Protein Large P0 (RPLP0) was selected as a candidate receptor for MG1 by peptide affinity pull-down assay with protein extracts from lactating mammary tissue. We demonstrated specific expression of RPLP0 in mammary tissue, especially during lactation, by immunoblotting assays and also demonstrated that MG1 peptide ligand could be bound to, and internalized into, the cells effectively via specific interaction with RPLP0 by analysis using an in vitro endothelial cell model. The overall results suggest that the MG1 has a specific affinity with RPLP0 which are dominantly expressed on the mammary vasculature during lactation and this specific affinity enables the MG1 would be served as an effective homing ligand to deliver functional molecules to the lactating mammary gland.
Collapse
Affiliation(s)
- Nam Kyung Lee
- Laboratory of Animal Cell Biotechnology, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
29
|
Prakken BJ, Albani S. Using biology of disease to understand and guide therapy of JIA. Best Pract Res Clin Rheumatol 2009; 23:599-608. [DOI: 10.1016/j.berh.2009.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Garrood T, Blades M, Haskard DO, Mather S, Pitzalis C. A novel model for the pre-clinical imaging of inflamed human synovial vasculature. Rheumatology (Oxford) 2009; 48:926-31. [DOI: 10.1093/rheumatology/kep117] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
Fierabracci A. Unravelling autoimmune pathogenesis by screening random peptide libraries with human sera. Immunol Lett 2009; 124:35-43. [PMID: 19375456 DOI: 10.1016/j.imlet.2009.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 04/01/2009] [Accepted: 04/04/2009] [Indexed: 12/20/2022]
Abstract
The incidence of autoimmunity is increasing worldwide. The long preclinical period of autoimmune disorders is characterised by an enhanced exposure over time of autoreactive T cells to an increased number of autoantigenic determinants and autoantibodies production. The discovery of novel autoimmune-disease related epitopes is a task that remains extremely challenging in order to establish predictive and preventive strategies of the disease onset. In this Opinion article we highlight the contribution of screening combinatorial random peptide libraries with patients sera in unravelling the etiopathogenesis of autoimmunity.
Collapse
Affiliation(s)
- Alessandra Fierabracci
- Autoimmunity and Organ Regeneration Laboratory, Ospedale Pediatrico Bambino Gesu', Research Institute, Piazza S. Onofrio 4, 00165 Rome, Italy.
| |
Collapse
|
32
|
Ectopic lymphoid structures support ongoing production of class-switched autoantibodies in rheumatoid synovium. PLoS Med 2009. [PMID: 19143467 DOI: 10.1371/journal.pmed.006000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Follicular structures resembling germinal centres (GCs) that are characterized by follicular dendritic cell (FDC) networks have long been recognized in chronically inflamed tissues in autoimmune diseases, including the synovium of rheumatoid arthritis (RA). However, it is debated whether these ectopic structures promote autoimmunity and chronic inflammation driving the production of pathogenic autoantibodies. Anti-citrullinated protein/peptide antibodies (ACPA) are highly specific markers of RA, predict a poor prognosis, and have been suggested to be pathogenic. Therefore, the main study objectives were to determine whether ectopic lymphoid structures in RA synovium: (i) express activation-induced cytidine deaminase (AID), the enzyme required for somatic hypermutation and class-switch recombination (CSR) of Ig genes; (ii) support ongoing CSR and ACPA production; and (iii) remain functional in a RA/severe combined immunodeficiency (SCID) chimera model devoid of new immune cell influx into the synovium. METHODS AND FINDINGS Using immunohistochemistry (IHC) and quantitative Taqman real-time PCR (QT-PCR) in synovial tissue from 55 patients with RA, we demonstrated that FDC+ structures invariably expressed AID with a distribution resembling secondary lymphoid organs. Further, AID+/CD21+ follicular structures were surrounded by ACPA+/CD138+ plasma cells, as demonstrated by immune reactivity to citrullinated fibrinogen. Moreover, we identified a novel subset of synovial AID+/CD20+ B cells outside GCs resembling interfollicular large B cells. In order to gain direct functional evidence that AID+ structures support CSR and in situ manufacturing of class-switched ACPA, 34 SCID mice were transplanted with RA synovium and humanely killed at 4 wk for harvesting of transplants and sera. Persistent expression of AID and Igamma-Cmu circular transcripts (identifying ongoing IgM-IgG class-switching) was observed in synovial grafts expressing FDCs/CD21L. Furthermore, synovial mRNA levels of AID were closely associated with circulating human IgG ACPA in mouse sera. Finally, the survival and proliferation of functional B cell niches was associated with persistent overexpression of genes regulating ectopic lymphoneogenesis. CONCLUSIONS Our demonstration that FDC+ follicular units invariably express AID and are surrounded by ACPA-producing plasma cells provides strong evidence that ectopic lymphoid structures in the RA synovium are functional and support autoantibody production. This concept is further confirmed by evidence of sustained AID expression, B cell proliferation, ongoing CSR, and production of human IgG ACPA from GC+ synovial tissue transplanted into SCID mice, independently of new B cell influx from the systemic circulation. These data identify AID as a potential therapeutic target in RA and suggest that survival of functional synovial B cell niches may profoundly influence chronic inflammation, autoimmunity, and response to B cell-depleting therapies.
Collapse
|
33
|
Humby F, Bombardieri M, Manzo A, Kelly S, Blades MC, Kirkham B, Spencer J, Pitzalis C. Ectopic lymphoid structures support ongoing production of class-switched autoantibodies in rheumatoid synovium. PLoS Med 2009; 6:e1. [PMID: 19143467 PMCID: PMC2621263 DOI: 10.1371/journal.pmed.0060001] [Citation(s) in RCA: 353] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 11/04/2008] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Follicular structures resembling germinal centres (GCs) that are characterized by follicular dendritic cell (FDC) networks have long been recognized in chronically inflamed tissues in autoimmune diseases, including the synovium of rheumatoid arthritis (RA). However, it is debated whether these ectopic structures promote autoimmunity and chronic inflammation driving the production of pathogenic autoantibodies. Anti-citrullinated protein/peptide antibodies (ACPA) are highly specific markers of RA, predict a poor prognosis, and have been suggested to be pathogenic. Therefore, the main study objectives were to determine whether ectopic lymphoid structures in RA synovium: (i) express activation-induced cytidine deaminase (AID), the enzyme required for somatic hypermutation and class-switch recombination (CSR) of Ig genes; (ii) support ongoing CSR and ACPA production; and (iii) remain functional in a RA/severe combined immunodeficiency (SCID) chimera model devoid of new immune cell influx into the synovium. METHODS AND FINDINGS Using immunohistochemistry (IHC) and quantitative Taqman real-time PCR (QT-PCR) in synovial tissue from 55 patients with RA, we demonstrated that FDC+ structures invariably expressed AID with a distribution resembling secondary lymphoid organs. Further, AID+/CD21+ follicular structures were surrounded by ACPA+/CD138+ plasma cells, as demonstrated by immune reactivity to citrullinated fibrinogen. Moreover, we identified a novel subset of synovial AID+/CD20+ B cells outside GCs resembling interfollicular large B cells. In order to gain direct functional evidence that AID+ structures support CSR and in situ manufacturing of class-switched ACPA, 34 SCID mice were transplanted with RA synovium and humanely killed at 4 wk for harvesting of transplants and sera. Persistent expression of AID and Igamma-Cmu circular transcripts (identifying ongoing IgM-IgG class-switching) was observed in synovial grafts expressing FDCs/CD21L. Furthermore, synovial mRNA levels of AID were closely associated with circulating human IgG ACPA in mouse sera. Finally, the survival and proliferation of functional B cell niches was associated with persistent overexpression of genes regulating ectopic lymphoneogenesis. CONCLUSIONS Our demonstration that FDC+ follicular units invariably express AID and are surrounded by ACPA-producing plasma cells provides strong evidence that ectopic lymphoid structures in the RA synovium are functional and support autoantibody production. This concept is further confirmed by evidence of sustained AID expression, B cell proliferation, ongoing CSR, and production of human IgG ACPA from GC+ synovial tissue transplanted into SCID mice, independently of new B cell influx from the systemic circulation. These data identify AID as a potential therapeutic target in RA and suggest that survival of functional synovial B cell niches may profoundly influence chronic inflammation, autoimmunity, and response to B cell-depleting therapies.
Collapse
Affiliation(s)
- Frances Humby
- William Harvey Research Institute, Barts and the London School of Medicine, Charterhouse Square, London, United Kingdom
| | - Michele Bombardieri
- William Harvey Research Institute, Barts and the London School of Medicine, Charterhouse Square, London, United Kingdom
| | - Antonio Manzo
- William Harvey Research Institute, Barts and the London School of Medicine, Charterhouse Square, London, United Kingdom
| | - Stephen Kelly
- William Harvey Research Institute, Barts and the London School of Medicine, Charterhouse Square, London, United Kingdom
| | - Mark C Blades
- William Harvey Research Institute, Barts and the London School of Medicine, Charterhouse Square, London, United Kingdom
| | - Bruce Kirkham
- Department of Rheumatology, Kings College London, Guy's Hospital, St Thomas Street, London, United Kingdom
| | - Jo Spencer
- Division of Infection, Immunity and Inflammatory Diseases, Kings College London, Guy's Hospital, St Thomas Street, London, United Kingdom
| | - Costantino Pitzalis
- William Harvey Research Institute, Barts and the London School of Medicine, Charterhouse Square, London, United Kingdom
| |
Collapse
|
34
|
Deambrosis I, Lamorte S, Giaretta F, Tei L, Biancone L, Bussolati B, Camussi G. Inhibition of CD40-CD154 costimulatory pathway by a cyclic peptide targeting CD154. J Mol Med (Berl) 2008; 87:181-97. [PMID: 18985310 DOI: 10.1007/s00109-008-0416-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 09/11/2008] [Accepted: 10/20/2008] [Indexed: 01/26/2023]
Abstract
Disruption of the CD40-CD154 interaction was found to be effective in the prevention and treatment of several immune-mediated diseases. The antibody-based strategy of inhibition was in humans limited by platelet activation leading to thrombotic effects. Other strategies different from antibody technology may be useful to create tools to interfere with CD40-CD154 pathway. In the present study, we selected and characterized from a phage display library, cyclic hepta-peptides specific for human CD154 through biopanning against plate-immobilized recombinant hCD154-muCD8. Nine phage clones were selected for the ability to bind CD154 expressed on the surface of J558L cells transfected with human CD154. From the nine selected phage clones, we obtained seven different amino acidic sequences, and the corresponding hepta-peptides rendered cyclic by two cysteines were synthesized. All the peptides specifically bound CD154 expressed on J558L. However, only the peptide 4.10 (CLPTRHMAC) was found to recognize the active binding site of CD154, as it competed with the blocking anti-CD154 antibody. When changes in the amino acid composition were introduced in the sequence of 4.10 peptide, the binding to CD154 was abrogated, suggesting that the amino acid sequence was critical for its specificity. This peptide was found to inhibit the CD40-CD154 interaction, preventing CD40-dependent activation of B lymphocytes in vitro as it was able, as the blocking anti-human CD154 mAb, to prevent the expression of CD80 and CD86 costimulatory molecules and switching of Ig isotype induced by CD154. Moreover, the peptide 4.10 inhibited the in vitro endothelial cell motility and organization into capillary-like structures, and the in vivo angiogenesis of human umbilical cord-derived endothelial cells implanted in Matrigel in severe combined immunodeficiency mice. In vitro studies on platelet activation demonstrated that the 4.10 peptide, at variance of the anti-CD154 mAb, was unable to prime human platelet activation and aggregation. In conclusion, we identify a cyclic hepta-peptide able to displace the binding of human CD154 to CD40 expressed on cell surface and to abrogate some biological effects related to the CD40 stimulation, such as B cell activation and endothelial triggered angiogenesis.
Collapse
Affiliation(s)
- Ilaria Deambrosis
- Cattedra di Nefrologia, Dipartimento di Medicina Interna and Centro Ricerca Medicina Sperimentale (CeRMS), Università di Torino, Turin, Italy
| | | | | | | | | | | | | |
Collapse
|
35
|
Tarner IH, Müller-Ladner U. Drug delivery systems for the treatment of rheumatoid arthritis. Expert Opin Drug Deliv 2008; 5:1027-37. [PMID: 18754751 DOI: 10.1517/17425247.5.9.1027] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Rheumatoid arthritis (RA) is a severe immune-mediated disease characterized by chronically progressive inflammation and destruction of joints and associated structures. Significant advances in our understanding of its pathophysiology and early diagnosis have led to improved therapy and better outcome. Nevertheless, a number of details in the pathogenesis of RA are still unknown and thus the disease cannot be cured at present. Therefore, current therapy aims at accomplishing complete and long-lasting remission. However, this goal is only achieved in a small proportion of patients, and partial remission and frequent relapses are a common problem. A significant number of patients still do not respond at all to available treatments. In addition, all antirheumatic and immune-modulating drugs developed so far carry a considerable risk of adverse effects, some of which can be severe or even life threatening. This is due, at least in part, to a lack of specificity of most drugs for the target tissue, and to a high volume of distribution for systemic application, which, together with rapid clearance of most drugs, requires frequent application of high dosages. Targeted drug delivery and prolongation of bioavailability would alleviate this issue significantly. This article, therefore, reviews a selection of studies that report promising strategies for joint specific delivery of antiarthritic drugs.
Collapse
Affiliation(s)
- Ingo H Tarner
- Department of Internal Medicine and Rheumatology, Division of Rheumatology and Clinical Immunology, Justus-Liebig-University of Giessen, D-61231 Bad Nauheim, Germany
| | | |
Collapse
|
36
|
Vanniasinghe AS, Bender V, Manolios N. The potential of liposomal drug delivery for the treatment of inflammatory arthritis. Semin Arthritis Rheum 2008; 39:182-96. [PMID: 18926560 DOI: 10.1016/j.semarthrit.2008.08.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 07/23/2008] [Accepted: 08/09/2008] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To review the use of liposomes as a delivery agent in inflammatory arthritis. METHODS The literature on liposomes and liposomal drug delivery for the treatment of inflammatory arthritis was reviewed. A PubMed search of articles in the English-language journals from 1965 to 2007 was performed. The index words used were as follows: "rheumatoid arthritis," "liposomes," and "targeted delivery." Papers identified were reviewed, abstracted, and summarized. RESULTS Liposomes have the capacity to be used as delivery and targeting agents for the administration of antirheumatic drugs at lower doses with reduced toxicity. In other areas of medicine, the pace of progress has been rapid. In the case of infectious diseases and cancer, liposomal drug delivery has progressed and developed into commercially viable therapeutic options for the treatment of fungal infections (amphotericin B), or metastatic breast cancer and Kaposi sarcoma (doxorubicin, daunorubicin), respectively. In arthritis, the efficacy of prednisolone-loaded long-circulating liposomes is currently being evaluated in a phase II clinical trial. Liposome's application to arthritis is still in its infancy but appears promising as new patents are filed. With improvements in liposomal formulation and targeted synovial delivery, liposomes offer increased therapeutic activity and improvement in the risk-benefit ratio. CONCLUSION Recent research into synovial targets and improved liposomal formulations continues to improve our capacity to use liposomes for targeted delivery. With time, this approach has the potential to improve drug delivery and reduce systemic complications.
Collapse
Affiliation(s)
- Anne S Vanniasinghe
- University of Sydney, Department of Rheumatology, Westmead Hospital, Westmead, Australia
| | | | | |
Collapse
|
37
|
The use of phage display peptide libraries for basic and translational research. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2008. [PMID: 18217687 DOI: 10.1007/978-1-59745-335-6_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Phage display is a molecular technique, whereby genes are displayed in a functional form on the outer surfaces of bacteriophages by fusion to viral coat proteins. The gene product is encoded by a plasmid contained within the virus, which can be recovered and sequenced, linking the genetic information to the function of the protein. Phage display offers a powerful tool for the identification of short peptides or single chain antibodies that can bind and regulate the function of target proteins. One major advantage of phage display lies in its ability to rapidly identify target-specific peptides with pharmacological activity as agonists or antagonists.
Collapse
|
38
|
Peptide-conjugated antisense oligonucleotides for targeted inhibition of a transcriptional regulator in vivo. Nat Biotechnol 2008; 26:91-100. [PMID: 18176556 DOI: 10.1038/nbt1366] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 11/19/2007] [Indexed: 02/07/2023]
Abstract
Transcription factors are important targets for the treatment of a variety of malignancies but are extremely difficult to inhibit, as they are located in the cell's nucleus and act mainly by protein-DNA and protein-protein interactions. The transcriptional regulators Id1 and Id3 are attractive targets for cancer therapy as they are required for tumor invasiveness, metastasis and angiogenesis. We report here the development of an antitumor agent that downregulates Id1 effectively in tumor endothelial cells in vivo. Efficient delivery and substantial reduction of Id1 protein levels in the tumor endothelium were effected by fusing an antisense molecule to a peptide known to home specifically to tumor neovessels. In two different tumor models, systemic delivery of this drug led to enhanced hemorrhage, hypoxia and inhibition of primary tumor growth and metastasis, similar to what is observed in Id1 knockout mice. Combination with the Hsp90 inhibitor 17-(allylamino)-17-demethoxygeldanamycin yielded virtually complete growth suppression of aggressive breast tumors.
Collapse
|
39
|
Aina OH, Liu R, Sutcliffe JL, Marik J, Pan CX, Lam KS. From Combinatorial Chemistry to Cancer-Targeting Peptides. Mol Pharm 2007; 4:631-51. [PMID: 17880166 DOI: 10.1021/mp700073y] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Several monoclonal antibodies that target cell surface receptors have gained approval by the U.S. Food and Drug Administration and are widely used in the treatment of some cancers. These include but are not limited to the anti-CD20 antibody Rituximab, used in lymphoma treatment, as well as anti-HER-2 antibody for breast cancer therapy. The efficacy of this cancer immunotherapy modality is, however, limited by the large size of the antibody (160 kd) and its relatively nonspecific binding to the reticuloendothelial system. This latter property is particularly problematic if the antibody is used as a vehicle to deliver radionuclides, cytotoxic drugs, or toxins to the tumor site. Peptides, peptidomimetic, or small molecules are thus attractive as alternative cell surface targeting agents for cancer imaging and therapy. Cancer cell surface targeting peptides can be derived from known native peptide hormones such as somatostatin and bombesin, or they can be identified through screening combinatorial peptide libraries against unknown cell surface receptor targets. Phage-display peptide library and one-bead one-compound (OBOC) combinatorial library methods have been successfully used to discover peptides that target cancer cells or tumor blood vessel endothelial cells. The phage-display peptide library method, because of its biological nature, can only display l-amino acid peptides. In contrast, the OBOC combinatorial library method allows for bead-surface display of peptides that contain l-amino acids, d-amino acids, unnatural amino acids, or other organic moieties. We have successfully used the OBOC method to discover and optimize ligands against unique cell surface receptors of prostate cancer, T- and B-cell lymphoma, as well as ovarian and lung cancers, and we have used some of these peptides to image xenografts in nude mice with high specificity. Here, we (i) review the literature on the use of phage-display and OBOC combinatorial library methods to discover cancer and tumor blood vessel targeting ligands, and (ii) report on the use of an ovarian cancer targeting ligand, OA02, as an in vivo PET imaging probe in a xenograft model in nude mice.
Collapse
Affiliation(s)
- Olulanu H Aina
- U.C. Davis Cancer Center, Division of Hematology/Oncology, Department of Internal Medicine, University of California-Davis, 4501 X Street, Sacramento, CA 95817, USA
| | | | | | | | | | | |
Collapse
|
40
|
Gould DJ, Chernajovsky Y. Novel delivery methods to achieve immunomodulation. Curr Opin Pharmacol 2007; 7:445-50. [PMID: 17611159 PMCID: PMC2679984 DOI: 10.1016/j.coph.2007.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 05/22/2007] [Accepted: 05/22/2007] [Indexed: 01/13/2023]
Abstract
Immunomodulation in infectious diseases, cancer, cardiovascular disease and autoimmunity can now be targeted by sophisticated protein design, altering cellular responses by increasing therapeutic cell numbers ex vivo and then reimplanting, or altering cell function by gene transfer of cells ex vivo. In the last year, vaccination has been applied to modulate responses to autoantigens, allergens, viral or cancer antigens. The application of these technologies has entered the clinical arena and is having a positive impact on the treatment and prevention of human diseases.
Collapse
|
41
|
Bussolati B, Grange C, Tei L, Deregibus MC, Ercolani M, Aime S, Camussi G. Targeting of human renal tumor-derived endothelial cells with peptides obtained by phage display. J Mol Med (Berl) 2007; 85:897-906. [PMID: 17384922 DOI: 10.1007/s00109-007-0184-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 02/14/2007] [Accepted: 02/15/2007] [Indexed: 11/28/2022]
Abstract
The phenotypic and molecular diversity of tumor-associated vasculature provides a basis for the development of targeted diagnostics and therapeutics. In the present study, we have developed a peptide-based targeting of human tumor endothelial cells (TEC) derived from renal carcinomas. We used a murine model of human tumor angiogenesis, in which TEC injected subcutaneously in severe combined immunodeficiency (SCID) mice organized in vascular structures connected with the mouse circulation, to screen in vivo a phage display library of random peptides. Using this approach, we identified cyclic peptides showing specific binding to TEC and not to normal human endothelial cells or to murine tumor endothelial cells. In particular, the peptide CVGNDNSSC (BB1) bound to TEC in vitro and in vivo. Using BB1 peptide conjugated with the ribosome-inactivating toxin saporin, we targeted TEC in vivo. Injection of BB1-saporin but not saporin alone or control modified BB-1ala saporin induced a selective cell apoptosis and disruption of the TEC vessel network. No increase in cell apoptosis was found in other murine organs. In conclusion, the identification of peptide sequences able to bind selectively human tumor-derived endothelial cells may represent a tool to deliver antiangiogenic or antitumor agents within the neoplastic vessels.
Collapse
Affiliation(s)
- Benedetta Bussolati
- Cattedra di Nefrologia, Dipartimento di Medicina Interna, Università di Torino, Turin, Italy
| | | | | | | | | | | | | |
Collapse
|
42
|
Lee L, Garrood T, Pitzalis C. In Vivo Phage Display Selection in the Human/SCID Mouse Chimera Model for Defining Synovial Specific Determinants. ARTHRITIS RESEARCH 2007; 136:369-94. [DOI: 10.1007/978-1-59745-402-5_26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
|
43
|
Massa M, Passalia M, Manzoni SM, Campanelli R, Ciardelli L, Yung GP, Kamphuis S, Pistorio A, Meli V, Sette A, Prakken B, Martini A, Albani S. Differential recognition of heat-shock protein dnaJ–derived epitopes by effector and Treg cells leads to modulation of inflammation in juvenile idiopathic arthritis. ACTA ACUST UNITED AC 2007; 56:1648-57. [PMID: 17469159 DOI: 10.1002/art.22567] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To identify epitopes on Escherichia coli heat-shock protein (HSP) dnaJ or on homologous human HSP dnaJ involved in the induction/modulation of autoimmune inflammation in patients with oligoarticular juvenile idiopathic arthritis (JIA). METHODS We used a proliferation assay and cytokine production to evaluate the immune responses of synovial fluid mononuclear cells (SFMCs) to pan-HLA-DR binder peptides derived from either homologous or nonhomologous regions on bacterial and human HSP dnaJ. Cytofluorometric analysis was performed in order to phenotype and sort Treg cells. Sorted cells were then analyzed for the expression of the forkhead box P3 (FoxP3) transcription factor, and their regulatory capacity was tested in coculture assays. RESULTS T cell responses to E coli HSP dnaJ-derived peptides were eminently proinflammatory. Conversely, peptides derived from human HSP dnaJ induced interleukin-10 (IL-10) production from SFMCs of patients with oligoarticular JIA. A positive correlation was found between disease with a better prognosis (persistent oligoarticular JIA) and recognition of 3 human HSP dnaJ-derived peptides. The recognition of the human peptide H134-148 also induced a significantly greater amount of IL-10 in patients with persistent oligoarticular JIA than in those with extended oligoarticular JIA (P = 0.0012). Incubation of SFMCs from patients with persistent oligoarticular JIA with this human epitope increased the percentage of Treg cells and FoxP3 expression. It also induced the recovery of suppressor activity by Treg cells. CONCLUSION This is the first description of a self-regulating immune modulator circuit active during autoimmune inflammation through recognition of HSP epitopes with different functional properties. These epitopes induce T cells with regulatory function. Such induction correlates with disease severity and prognosis.
Collapse
|
44
|
Ogawara KI, Kułdo JM, Oosterhuis K, Kroesen BJ, Rots MG, Trautwein C, Kimura T, Haisma HJ, Molema G. Functional inhibition of NF-kappaB signal transduction in alphavbeta3 integrin expressing endothelial cells by using RGD-PEG-modified adenovirus with a mutant IkappaB gene. Arthritis Res Ther 2006; 8:R32. [PMID: 16803639 PMCID: PMC1526577 DOI: 10.1186/ar1885] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 12/09/2005] [Accepted: 12/14/2005] [Indexed: 02/06/2023] Open
Abstract
In order to selectively block nuclear factor κB (NF-κB)-dependent signal transduction in angiogenic endothelial cells, we constructed an αvβ3 integrin specific adenovirus encoding dominant negative IκB (dnIκB) as a therapeutic gene. By virtue of RGD modification of the PEGylated virus, the specificity of the cell entry pathway of adenovirus shifted from coxsacki-adenovirus receptor dependent to αvβ3 integrin dependent entry. The therapeutic outcome of delivery of the transgene into endothelial cells was determined by analysis of cellular responsiveness to tumor necrosis factor (TNF)-α. Using real time reverse transcription PCR, mRNA levels of the cell adhesion molecules E-selectin, vascular cell adhesion molecule (VCAM)-1 and intercellular adhesion molecule (ICAM)-1, the cytokines/growth factors IL-6, IL-8 and vascular endothelial growth factor (VEGF)-A, and the receptor tyrosine kinase Tie-2 were assessed. Furthermore, levels of ICAM-1 protein were determined by flow cytometric analysis. RGD-targeted adenovirus delivered the dnIκB via αvβ3 to become functionally expressed, leading to complete abolishment of TNF-α-induced up-regulation of E-selectin, ICAM-1, VCAM-1, IL-6, IL-8, VEGF-A and Tie-2. The approach of targeted delivery of dnIκB into endothelial cells presented here can be employed for diseases such as rheumatoid arthritis and inflammatory bowel disease where activation of NF-κB activity should be locally restored to basal levels in the endothelium.
Collapse
Affiliation(s)
- Ken-ichi Ogawara
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Joanna M Kułdo
- University of Groningen, Department of Pathology and Laboratory Medicine, Medical Biology Section, The Netherlands
| | - Koen Oosterhuis
- Department of Therapeutic Gene Modulation, Groningen University Institute for Drug Exploration, Groningen, The Netherlands
| | - Bart-Jan Kroesen
- University of Groningen, Department of Pathology and Laboratory Medicine, Medical Biology Section, The Netherlands
| | - Marianne G Rots
- Department of Therapeutic Gene Modulation, Groningen University Institute for Drug Exploration, Groningen, The Netherlands
| | | | - Toshikiro Kimura
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hidde J Haisma
- Department of Therapeutic Gene Modulation, Groningen University Institute for Drug Exploration, Groningen, The Netherlands
| | - Grietje Molema
- University of Groningen, Department of Pathology and Laboratory Medicine, Medical Biology Section, The Netherlands
| |
Collapse
|
45
|
King ASH, Martin IK, Twyman LJ. Synthesis and aggregation of amine-cored polyamidoamine dendrons synthesised without invoking a protection/deprotection strategy. POLYM INT 2006. [DOI: 10.1002/pi.2052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
46
|
Garrood T, Pitzalis C. Targeting the inflamed synovium: The quest for specificity. ACTA ACUST UNITED AC 2006; 54:1055-60. [PMID: 16575837 DOI: 10.1002/art.21720] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Garrood T, Lee L, Pitzalis C. Molecular mechanisms of cell recruitment to inflammatory sites: general and tissue-specific pathways. Rheumatology (Oxford) 2005; 45:250-60. [PMID: 16319101 DOI: 10.1093/rheumatology/kei207] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- T Garrood
- Rheumatology Unit, 5th Floor, Thomas Guy House, Guy's Hospital , London SE1 9RT, UK
| | | | | |
Collapse
|
48
|
Uchiyama F, Tanaka Y, Minari Y, Tokui N. Designing scaffolds of peptides for phage display libraries. J Biosci Bioeng 2005; 99:448-56. [PMID: 16233816 DOI: 10.1263/jbb.99.448] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Accepted: 03/02/2005] [Indexed: 11/17/2022]
Abstract
Phage display is a powerful method for the discovery of peptide ligands that are used for analytical tools, drug discovery, and target validations. Phage display technology can produce a huge number of peptides and generate novel peptide ligands. Recently, phage display technology has successfully managed to create peptide ligands that bind to pharmaceutically difficult targets such as the erythropoietin receptor. As a result of the structural analysis of their ligands, we found that the conformational design of peptides in library is important for selecting high-affinity ligands that bind to every target from a phage peptide library. Key issues concern constraints on the conformation of peptides on the phage and the development of chemically synthesized peptides derived from peptides on phage. This review discusses studies related to the conformation of peptides selected from phage display peptide libraries in addition to the conversion from peptides to non-peptides.
Collapse
Affiliation(s)
- Fumiaki Uchiyama
- Department of Nutritional Sciences, Graduate School of Nutritional Sciences, Nakamura Gakuen University, 5-7-1 Befu, Jounan-Ku, Fukuoka 814-0198, Japan.
| | | | | | | |
Collapse
|
49
|
Systemic Manifestations of Mucosal Diseases: Trafficking of Gut Immune Cells to Joints and Liver. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50083-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
McGuire MJ, Samli KN, Johnston SA, Brown KC. In vitro selection of a peptide with high selectivity for cardiomyocytes in vivo. J Mol Biol 2004; 342:171-82. [PMID: 15313615 DOI: 10.1016/j.jmb.2004.06.029] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Revised: 06/07/2004] [Accepted: 06/08/2004] [Indexed: 11/16/2022]
Abstract
One approach to targeted therapies for cardiovascular disease relies on isolating ligands that enhance the tissue-specific uptake of genes or drugs by heart cells. To obtain heart-targeting ligands, phage display biopanning was used to isolate a 20-mer peptide that binds to isolated primary cardiomyocytes. The isolated phage, PCM.1, displays the peptide WLSEAGPVVTVRALRGTGSW, and binds these cells 180 times better than a control phage from the library. Furthermore, phage displaying this peptide preferentially bind to cardiomyocytes when compared with a panel of other cell types. A BLAST search revealed that this peptide contains a 12 amino acid segment with sequence identity to a peptide in tenascin-X, an extracellular matrix protein. Synthetic peptides containing the complete 20-mer or a 12-mer tenascin peptide partially blocked phage binding to the cardiomyocytes. We developed a quantitative real-time PCR assay to assess uptake of this phage by tissues in vivo. Using this assay, preferential localization of the PCM.1 phage in heart was observed compared to the uptake of this phage by other tissues or other phage by heart. Furthermore, PCM.1 phage was associated with cardiomyocytes isolated from mice treated with a phage in vivo. These results demonstrate the utility of biopanning on isolated cells for identifying specific binding peptides that can target a tissue in vivo.
Collapse
Affiliation(s)
- Michael J McGuire
- Department of Internal Medicine, Center for Biomedical Inventions, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas 75390-9185, USA
| | | | | | | |
Collapse
|