1
|
Gu X, Li F, Che X, Wei X, Li P. HDAC4 represses ER stress induced chondrocyte apoptosis by inhibiting ATF4 and attenuates cartilage degeneration in an osteoarthritis rat model. BMC Musculoskelet Disord 2024; 25:467. [PMID: 38879481 PMCID: PMC11179397 DOI: 10.1186/s12891-024-07578-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/07/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND The present study evaluated whether the lack of histone deacetylase 4 (HDAC4) increases endoplasmic reticulum stress-induced chondrocyte apoptosis by releasing activating transcription factor 4 (ATF4) in human osteoarthritis (OA) cartilage degeneration. METHODS Articular cartilage from the tibial plateau was obtained from patients with OA during total knee replacement. Cartilage extracted from severely damaged regions was classified as degraded cartilage, and cartilage extracted from a relatively smooth region was classified as preserved cartilage. Terminal deoxynucleotidyl transferase dUTP nick end labeling staining was used to detect chondrocyte apoptosis. HDAC4, ATF4, and C/EBP homologous protein (CHOP) expression levels were measured using immunohistochemistry staining and real-time quantitative PCR. Chondrocytes were transfected with HDAC4 or HDAC4 siRNA for 24 h and stimulated with 300 µM H2O2 for 12 h. The chondrocyte apoptosis was measured using flow cytometry. ATF4, CHOP, and caspase 12 expression levels were measured using real-time quantitative PCR and western blotting. Male Sprague-Dawley rats (n = 15) were randomly divided into three groups and transduced with different vectors: ACLT + Ad-GFP, ACLT + Ad-HDAC4-GFP, and sham + Ad-GFP. All rats received intra-articular injections 48 h after the operation and every three weeks thereafter. Cartilage damage was assessed using Safranin O staining and quantified using the Osteoarthritis Research Society International score. ATF4, CHOP, and collagen II expression were detected using immunohistochemistry, and chondrocyte apoptosis was detected using terminal deoxynucleotidyl transferase dUTP nick end labeling staining. RESULTS The chondrocyte apoptosis was higher in degraded cartilage than in preserved cartilage. HDAC4 expression was lower in degraded cartilage than in preserved cartilage. ATF4 and CHOP expression was increased in degraded cartilage. Upregulation of HDAC4 in chondrocytes decreased the expression of ATF4, while the expression of ATF4 was increased after downregulation of HDAC4. Upregulation of HDAC4 decreased the chondrocyte apoptosis under endoplasmic reticulum stress, and chondrocyte apoptosis was increased after downregulation of HDAC4. In a rat anterior cruciate ligament transection OA model, adenovirus-mediated transduction of HDAC4 was administered by intra-articular injection. We detected a stronger Safranin O staining with lower Osteoarthritis Research Society International scores, lower ATF4 and CHOP production, stronger collagen II expression, and lower chondrocyte apoptosis in rats treated with Ad-HDAC4. CONCLUSION The lack of HDAC4 expression partially contributes to increased ATF4, CHOP, and endoplasmic reticulum stress-induced chondrocyte apoptosis in OA pathogenesis. HDAC4 attenuates cartilage damage by repressing ATF4-CHOP signaling-induced chondrocyte apoptosis in a rat model of OA.
Collapse
Affiliation(s)
- Xiaodong Gu
- Department of Orthopaedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, Shanxi Province, 030032, People's Republic of China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi Province, 030001, People's Republic of China
| | - Fei Li
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, People's Republic of China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi Province, 030001, People's Republic of China
| | - Xianda Che
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, People's Republic of China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi Province, 030001, People's Republic of China
| | - Xiaochun Wei
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, People's Republic of China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi Province, 030001, People's Republic of China
| | - Pengcui Li
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, People's Republic of China.
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi Province, 030001, People's Republic of China.
| |
Collapse
|
2
|
Shao Z, Wang B, Gao H, Zhang S. Microenvironmental interference with intra-articular stem cell regeneration influences the onset and progression of arthritis. Front Genet 2024; 15:1380696. [PMID: 38841721 PMCID: PMC11150611 DOI: 10.3389/fgene.2024.1380696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024] Open
Abstract
Studies have indicated that the preservation of joint health and the facilitation of damage recovery are predominantly contingent upon the joint's microenvironment, including cell-cell interactions, the extracellular matrix's composition, and the existence of local growth factors. Mesenchymal stem cells (MSCs), which possess the capacity to self-renew and specialize in many directions, respond to cues from the microenvironment, and aid in the regeneration of bone and cartilage, are crucial to this process. Changes in the microenvironment (such as an increase in inflammatory mediators or the breakdown of the extracellular matrix) in the pathological context of arthritis might interfere with stem cell activation and reduce their ability to regenerate. This paper investigates the potential role of joint microenvironmental variables in promoting or inhibiting the development of arthritis by influencing stem cells' ability to regenerate. The present status of research on stem cell activity in the joint microenvironment is also outlined, and potential directions for developing new treatments for arthritis that make use of these intervention techniques to boost stem cell regenerative potential through altering the intra-articular environment are also investigated. This review's objectives are to investigate these processes, offer fresh perspectives, and offer a solid scientific foundation for the creation of arthritic treatment plans in the future.
Collapse
Affiliation(s)
| | | | | | - Shenqi Zhang
- Department of Joint and Sports Medicine, Zaozhuang Municipal Hospital Affiliated to Jining Medical University, Zaozhuang, Shandong, China
| |
Collapse
|
3
|
Forteza-Genestra MA, Antich-Rosselló M, Ramis-Munar G, Calvo J, Gayà A, Monjo M, Ramis JM. Comparative effect of platelet- and mesenchymal stromal cell-derived extracellular vesicles on human cartilage explants using an ex vivo inflammatory osteoarthritis model. Bone Joint Res 2023; 12:667-676. [PMID: 37852621 PMCID: PMC10584413 DOI: 10.1302/2046-3758.1210.bjr-2023-0109.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Aims Extracellular vesicles (EVs) are nanoparticles secreted by all cells, enriched in proteins, lipids, and nucleic acids related to cell-to-cell communication and vital components of cell-based therapies. Mesenchymal stromal cell (MSC)-derived EVs have been studied as an alternative for osteoarthritis (OA) treatment. However, their clinical translation is hindered by industrial and regulatory challenges. In contrast, platelet-derived EVs might reach clinics faster since platelet concentrates, such as platelet lysates (PL), are already used in therapeutics. Hence, we aimed to test the therapeutic potential of PL-derived extracellular vesicles (pEVs) as a new treatment for OA, which is a degenerative joint disease of articular cartilage and does not have any curative or regenerative treatment, by comparing its effects to those of human umbilical cord MSC-derived EVs (cEVs) on an ex vivo OA-induced model using human cartilage explants. Methods pEVs and cEVs were isolated by size exclusion chromatography (SEC) and physically characterized by nanoparticle tracking analysis (NTA), protein content, and purity. OA conditions were induced in human cartilage explants (10 ng/ml oncostatin M and 2 ng/ml tumour necrosis factor alpha (TNFα)) and treated with 1 × 109 particles of pEVs or cEVs for 14 days. Then, DNA, glycosaminoglycans (GAG), and collagen content were quantified, and a histological study was performed. EV uptake was monitored using PKH26 labelled EVs. Results Significantly higher content of DNA and collagen was observed for the pEV-treated group compared to control and cEV groups. No differences were found in GAG quantification nor in EVs uptake within any treated group. Conclusion In conclusion, pEVs showed better performance than cEVs in our in vitro OA model. Although further studies are needed, pEVs are shown as a potential alternative to cEVs for cell-free regenerative medicine.
Collapse
Affiliation(s)
- Maria A. Forteza-Genestra
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Miquel Antich-Rosselló
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Guillem Ramis-Munar
- Microscopy Area, Serveis Cietificotècnics, University of the Balearic Islands, Palma, Spain
| | - Javier Calvo
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Fundació Banc de Sang i Teixits de les Illes Balears (FBSTIB), Palma, Spain
| | - Antoni Gayà
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Fundació Banc de Sang i Teixits de les Illes Balears (FBSTIB), Palma, Spain
| | - Marta Monjo
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Joana M. Ramis
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| |
Collapse
|
4
|
Dilley JE, Seetharam A, Ding X, Bello MA, Shutter J, Burr DB, Natoli RM, McKinley TO, Sankar U. CAMKK2 is upregulated in primary human osteoarthritis and its inhibition protects against chondrocyte apoptosis. Osteoarthritis Cartilage 2023; 31:908-918. [PMID: 36858195 PMCID: PMC10272098 DOI: 10.1016/j.joca.2023.02.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 03/03/2023]
Abstract
OBJECTIVE To investigate the role of calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) in human osteoarthritis. MATERIALS AND METHODS Paired osteochondral plugs and articular chondrocytes were isolated from the relatively healthier (intact) and damaged portions of human femoral heads collected from patients undergoing total hip arthroplasty for primary osteoarthritis (OA). Cartilage from femoral plugs were either flash frozen for gene expression analysis or histology and immunohistochemistry. Chondrocyte apoptosis in the presence or absence of CAMKK2 inhibition was measured using flow cytometry. CAMKK2 overexpression and knockdown in articular chondrocytes were achieved via Lentivirus- and siRNA-mediated approaches respectively, and their effect on pro-apoptotic and cartilage catabolic mechanisms was assessed by immunoblotting. RESULTS CAMKK2 mRNA and protein levels were elevated in articular chondrocytes from human OA cartilage compared to paired healthier intact samples. This increase was associated with elevated catabolic marker matrix metalloproteinase 13 (MMP-13), and diminished anabolic markers aggrecan (ACAN) and type II collagen (COL2A1) levels. OA chondrocytes displayed enhanced apoptosis, which was suppressed following pharmacological inhibition of CAMKK2. Levels of MMP13, pSTAT3, and the pro-apoptotic marker BAX became elevated when CAMKK2, but not its kinase-defective mutant was overexpressed, whereas knockdown of the kinase decreased the levels of these proteins. CONCLUSIONS CAMKK2 is upregulated in human OA cartilage and is associated with elevated levels of pro-apoptotic and catabolic proteins. Inhibition or knockdown of CAMKK2 led to decreased chondrocyte apoptosis and catabolic protein levels, whereas its overexpression elevated them. CAMKK2 may be a therapeutic target to prevent or mitigate human OA.
Collapse
Affiliation(s)
- J E Dilley
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - A Seetharam
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - X Ding
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - M A Bello
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - J Shutter
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - D B Burr
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - R M Natoli
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - T O McKinley
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - U Sankar
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
5
|
Lee SH, Jo SH, Kim SH, Kim CS, Park SH. Anti-Osteoarthritic Effects of Cartilage-Derived Extracellular Matrix in a Rat Osteoarthritis Model. Tissue Eng Regen Med 2023; 20:83-92. [PMID: 36562983 PMCID: PMC9852408 DOI: 10.1007/s13770-022-00508-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/29/2022] [Accepted: 10/27/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The extracellular matrix (ECM) has many functions, such as segregating tissues, providing support, and regulating intercellular communication. Cartilage-derived ECM (CECM) can be prepared via consecutive processes of chemical decellularization and enzyme treatment. The purpose of this study was to improve and treat osteoarthritis (OA) using porcine knee articular CECM. METHODS We assessed the rheological characteristics and pH of CECM solutions. Furthermore, we determined the effects of CECM on cell proliferation and cytotoxicity in the chondrocytes of New Zealand rabbits. The inhibitory effect of CECM on tumor necrosis factor (TNF)-α-induced cellular apoptosis was assessed using New Zealand rabbit chondrocytes and human synoviocytes. Finally, we examined the in vivo effects of CECM on inflammation control and cartilage degradation in an experimental OA-induced rat model. The rat model of OA was established by injecting monosodium iodoacetate into the intra-articular knee joint. The rats were then injected with CECM solution. Inflammation control and cartilage degradation were assessed by measuring the serum levels of proinflammatory cytokines and C-telopeptide of type II collagen and performing a histomorphological analysis. RESULTS CECM was found to be biocompatible and non-immunogenic, and could improve cell proliferation without inducing a toxic reaction. CECM significantly reduced cellular apoptosis due to TNF-α, significantly improved the survival of cells in inflammatory environments, and exerted anti-inflammatory effects. CONCLUSION Our findings suggest that CECM is an appropriate injectable material that mediates OA-induced inflammation.
Collapse
Affiliation(s)
- Sang-Hun Lee
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea
- The Center for Marine Integrated Biomedical Technology (BK21 PLUS), Pukyong National University, Busan, Republic of Korea
| | - Sung-Han Jo
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea
- The Center for Marine Integrated Biomedical Technology (BK21 PLUS), Pukyong National University, Busan, Republic of Korea
| | - Seon-Hwa Kim
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea
- The Center for Marine Integrated Biomedical Technology (BK21 PLUS), Pukyong National University, Busan, Republic of Korea
| | - Chang-Su Kim
- Department of Orthopedics Surgery, Kosin University Gospel Hospital, 45 Yongso-Ro, Nam-Gu, Busan, Republic of Korea
| | - Sang-Hyug Park
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea.
- The Center for Marine Integrated Biomedical Technology (BK21 PLUS), Pukyong National University, Busan, Republic of Korea.
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan, Republic of Korea.
| |
Collapse
|
6
|
Zhao Y, An Y, Zhou L, Wu F, Wu G, Wang J, Chen L. Animal Models of Temporomandibular Joint Osteoarthritis: Classification and Selection. Front Physiol 2022; 13:859517. [PMID: 35574432 PMCID: PMC9095932 DOI: 10.3389/fphys.2022.859517] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/04/2022] [Indexed: 01/11/2023] Open
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is a common degenerative joint disease that can cause severe pain and dysfunction. It has a serious impact on the quality of lives of patients. Since mechanism underlying the pathogenesis of TMJOA is not fully understood, the development of effective tools for early diagnosis and disease-modifying therapies has been hindered. Animal models play a key role in understanding the pathological process of diseases and evaluating new therapeutic interventions. Although some similarities in disease processes between animals and humans are known, no one animal model is sufficient for studying all characteristics of TMJOA, as each model has different translatability to human clinical conditions. For the past 4 decades, TMJOA animal models have been studied by numerous researchers and can be broadly divided into induced, naturally occurring, and genetically modified models. The induced models can be divided into invasive models (intra-articular injection and surgical induction) or non-invasive models (mechanical loading, high-fat diet, and sleep deprivation). Different types of animal models simulate different pathological expressions of TMJOA and have their unique characteristics. Currently, mice, rats, and rabbits are commonly used in the study of TMJOA. This review sought to provide a general description of current experimental models of TMJOA and assist researchers in selecting the most appropriate models for different kinds of research.
Collapse
Affiliation(s)
- Yuqing Zhao
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
| | - Yanxin An
- Department of General Surgery, The First Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Libo Zhou
- School of Basic Medicine, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
| | - Fan Wu
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
| | - Gaoyi Wu
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
| | - Jing Wang
- Department of Oral Implants, School of Stomatology, National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology & Shaanxi Key Laboratory of Stomatology, The Fourth Military Medical University, Xi’an, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Lei Chen
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
7
|
Apizi X, Talifujiang D, Kasimu A, Zhang X, Yiming A, Ma X, Song Q, Wang D. Circular RNA mmu_circ_0001598 Contributes to IL-1 β-Induced Osteoarthritis Progression by Regulating miR-127-3p. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:2793379. [PMID: 34917303 PMCID: PMC8670906 DOI: 10.1155/2021/2793379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/07/2021] [Accepted: 11/13/2021] [Indexed: 12/05/2022]
Abstract
Osteoarthritis (OA), a chronic disease characterized by articular cartilage degeneration, is a leading cause of disability and pain worldwide. Accumulating evidence indicates that circular RNAs (circRNAs) play a critical role in various diseases, but the function of circRNAs in OA remains largely unknown. In this study, we found that circ_0001598 was significantly upregulated in chondrocytes treated with IL-1β and in cartilage tissue from mice with severed anterior cruciate ligament surgery (ACLT) induced OA models. Interference with circ_0001598 in vitro restored IL-1β-induced chondrocyte proliferation and apoptosis. Silencing circ_0001598 significantly alleviated ACLT-induced OA in mice. Mechanistically, knockdown of circ_0001598 affected chondrocyte proliferation, apoptosis, and matrix degradation by regulating miR-127-3p. Taken together, our results demonstrate the fundamental role of circ_0001598 and provide new ideas for the prevention and treatment of osteoarthritis.
Collapse
Affiliation(s)
- Xierenguli Apizi
- Department of Pain Treatment, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Uygur Autonomous Region, Urumqi 830001, China
| | - Dilibaier Talifujiang
- Department of Pain Treatment, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Uygur Autonomous Region, Urumqi 830001, China
| | - Aziguli Kasimu
- Department of Pain Treatment, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Uygur Autonomous Region, Urumqi 830001, China
| | - Xue Zhang
- Department of Pain Treatment, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Uygur Autonomous Region, Urumqi 830001, China
| | - Aibibula Yiming
- Department of Pain Treatment, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Uygur Autonomous Region, Urumqi 830001, China
| | - Xin Ma
- Department of Pain Treatment, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Uygur Autonomous Region, Urumqi 830001, China
| | - Qingshan Song
- Department of Pain Treatment, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Uygur Autonomous Region, Urumqi 830001, China
| | - Dequan Wang
- Department of Pain Treatment, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Uygur Autonomous Region, Urumqi 830001, China
| |
Collapse
|
8
|
BMP5 silencing inhibits chondrocyte senescence and apoptosis as well as osteoarthritis progression in mice. Aging (Albany NY) 2021; 13:9646-9664. [PMID: 33744859 PMCID: PMC8064147 DOI: 10.18632/aging.202708] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
In this study, we using the in vivo destabilization of the medial meniscus (DMM) mouse model to investigate the role of bone morphogenetic protein 5 (BMP5) in osteoarthritis (OA) progression mediated via chondrocyte senescence and apoptosis. BMP5 expression was significantly higher in knee articular cartilage tissues of OA patients and DMM model mice than the corresponding controls. The Osteoarthritis Research Society International scores based on histological staining of knee articular cartilage sections were lower in DMM mice where BMP5 was knocked down in chondrocytes than the corresponding controls 4 weeks after DMM surgery. DMM mice with BMP5-deficient chondrocytes showed reduced levels of matrix-degrading enzymes such as MMP13 and ADAMTS5 as well as reduced cartilage destruction. BMP5 knockdown also decreased chondrocyte apoptosis and senescence by suppressing the activation of p38 and ERK MAP kinases. These findings demonstrate that BMP5 silencing inhibits chondrocyte senescence and apoptosis as well as OA progression by downregulating activity in the p38/ERK signaling pathway.
Collapse
|
9
|
Lin YY, Chen NF, Yang SN, Jean YH, Kuo HM, Chen PC, Feng CW, Liu YW, Lai YC, Wen ZH. Effects of Streptococcus thermophilus on anterior cruciate ligament transection-induced early osteoarthritis in rats. Exp Ther Med 2021; 21:222. [PMID: 33603831 PMCID: PMC7851616 DOI: 10.3892/etm.2021.9653] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) is the most common joint disorder and is classically defined as a progressively degenerative disease of articular cartilage. It manifests as joint pain and disability and currently has no comprehensive treatments. The primary purpose of the present study was to test the effects of probiotics, Streptococcus thermophilus (TCI633), on anterior cruciate ligament transection (ACLT)-induced experimental osteoarthritis (OA) in rats. In the current study, the experimental groups were given TCI633 (5x109, 5x1010 and 5x1011 CFU/kg/day) and glucosamine sulfate (250 mg/kg) between week 8 and 20 following ACLT. The results showed that oral administration of TCI633 and glucosamine had significant therapeutic effects on pain behaviors and knee swelling. Dose-dependent effects of TCI633 were also observed in ACLT-treated rats. Histopathological analysis demonstrated that ACLT+TCI633 (5x109, 5x1010 and 5x1011 CFU/kg/day) improved the synovial inflammation and cartilage damage of ACLT rats. Histology evaluation using the Osteoarthritis Research Society International system and synovial inflammatory score analysis showed the dose-dependent inhibition of TCI633 on synovial inflammation and cartilage damage. Immunohistochemical staining and TUNEL apoptosis staining showed that TCI633 could effectively increase the expression of type II collagen and reduce the amount of chondrocyte apoptosis in cartilage. Therefore, the present study demonstrated that oral intake of TCI633 could significantly suppressing pain behavior, reduce joint swelling and synovial tissue inflammation and increase type II collagen expression in cartilage. There was also a reduction in chondrocyte apoptosis and decreased progression of OA in ACLT-treated rats.
Collapse
Affiliation(s)
- Yen-You Lin
- Department of Sports Medicine, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Nan-Fu Chen
- Division of Neurosurgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan, R.O.C.,Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| | - San-Nan Yang
- Department of Pediatrics, E-DA Hospital, School of Medicine, College of Medicine I-Shou University, Kaohsiung 82445, Taiwan, R.O.C
| | - Yen-Hsuan Jean
- Department of Orthopedic Surgery, Pingtung Christian Hospital, Pingtung, Pingtung 90059, Taiwan, R.O.C
| | - Hsiao-Mei Kuo
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| | - Pei-Chin Chen
- Department of Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung 80424, Taiwan, R.O.C
| | - Chien-Wei Feng
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan, R.O.C
| | - Yu-Wei Liu
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, R.O.C
| | - Yu-Cheng Lai
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, R.O.C.,Department of Orthopedics, Asia University Hospital, Taichung 41354, Taiwan, R.O.C
| | - Zhi-Hong Wen
- Department of Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung 80424, Taiwan, R.O.C.,Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, R.O.C.,Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C
| |
Collapse
|
10
|
Han Y, Huang H, Pan J, Lin J, Zeng L, Liang G, Yang W, Liu J. Meta-analysis Comparing Platelet-Rich Plasma vs Hyaluronic Acid Injection in Patients with Knee Osteoarthritis. PAIN MEDICINE 2020; 20:1418-1429. [PMID: 30849177 PMCID: PMC6611633 DOI: 10.1093/pm/pnz011] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE The purpose of this meta-analysis was to compare platelet-rich plasma (PRP) and hyaluronic acid (HA) in patients with knee osteoarthritis (KOA). METHODS Randomized controlled trials (RCTs) comparing the use of PRP and HA in KOA patients were retrieved from each database from the establishment date to April 2018. Outcome measurements were the Western Ontario and McMaster Universities Arthritis Index (WOMAC), visual analog scale (VAS), International Knee Documentation Committee, and Lequesne Index scores and adverse events. The pooled data were evaluated with Review Manager 5.3.5. RESULTS Fifteen RCTs (N = 1,314) were included in our meta-analysis. The present meta-analysis indicated that PRP injections reduced pain more effectively than HA injections in patients with KOA at six and 12 months of follow-up, as evaluated by the WOMAC pain score; the VAS pain score showed a significant difference at 12 months. Moreover, better functional improvement was observed in the PRP group, as demonstrated by the WOMAC function score at three, six, and 12 months. Additionally, PRP injections did not display different adverse event rates compared with HA injections. CONCLUSION In terms of long-term pain relief and functional improvement, PRP injections might be more effective than HA injections as a treatment for KOA. The optimal dosage, the timing interval and frequency of injections, and the ideal treatment for different stages of KOA remain areas of concern for future investigations.
Collapse
Affiliation(s)
- Yanhong Han
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hetao Huang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianke Pan
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiongtong Lin
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingfeng Zeng
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Guihong Liang
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Weiyi Yang
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jun Liu
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| |
Collapse
|
11
|
Zahan OM, Serban O, Gherman C, Fodor D. The evaluation of oxidative stress in osteoarthritis. Med Pharm Rep 2020; 93:12-22. [PMID: 32133442 PMCID: PMC7051818 DOI: 10.15386/mpr-1422] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/02/2019] [Accepted: 10/16/2019] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is a whole joint disease driven by abnormal biomechanics and attendant cell-derived and tissue-derived factors. The disease is multifactorial and polygenic, and its progression is significantly related to oxidative stress and reactive oxygen species (ROS). Augmented ROS generation can cause the damage of structural biomolecules of the joint and, by acting as intracellular signaling component, ROS are associated with various inflammatory responses. By activating several signaling pathways, ROS have a vital importance in the patho-physiology of OA. This review is focused on the mechanism of ROS which regulate intracellular signaling processes, chondrocyte senescence and apoptosis, extracellular matrix synthesis and degradation, along with synovial inflammation and dysfunction of the subcondral bone, targeting the complex oxidative stress signaling pathways.
Collapse
Affiliation(s)
- Oana-Maria Zahan
- 2 Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Oana Serban
- 2 Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Claudia Gherman
- 2 Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Daniela Fodor
- 2 Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
12
|
Fu YB, Li B, Sun SF, Liu HL, Wang X, Wang SS, Zhang F, Du X, Ge DJ, Shang L, Liang RL, Wang LN, Yuan F, Sun JQ, Chen JW. Fire acupuncture for mild to moderate knee osteoarthritis: a protocol for a randomized controlled pilot trial. Trials 2019; 20:673. [PMID: 31801600 PMCID: PMC6894354 DOI: 10.1186/s13063-019-3744-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Knee osteoarthritis (KOA) is one of the most common bone and joint diseases. As one of the main non-drug therapies, acupuncture is widely used to treat KOA, although the evidence for its efficacy is inconclusive. The objective of this pilot trial is to clarify the clinical efficacy and safety of fire acupuncture in the treatment of mild to moderate KOA and to provide high-quality data for further research. METHODS/DESIGN This study is a prospective randomized controlled pilot trial in which 120 patients with mild to moderate KOA will be randomly allocated in equal proportions to a fire acupuncture group or a general acupuncture group. They will receive acupuncture for six sessions over 2 weeks. The primary end point is success rate, which will be calculated based on the change from baseline of the pain and function scores in the Western Ontario and McMaster Universities Osteoarthritis Index at 4 weeks. Secondary end points include the proportion of patients achieving clinical improvement based on: (1) the OMERACT-OARSI responder criteria, (2) levels of matrix metalloproteinase 3, interleukin 1β, and tumor necrosis factor α in blood, and (3) a subjective efficacy evaluation from patients. TRIAL REGISTRATION Chinese Clinical Trial Registry, ChiCTR1800019162. Registered on 29 October 2018.
Collapse
Affiliation(s)
- Yuan-Bo Fu
- The Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, No. 23 Meishuguanhou Street, Dongcheng District, Beijing, 100010, China
- Beijing Huairou District Hospital of Traditional Chinese Medicine, No. 1 Houheng Street, Huairou District, Beijing, 101400, China
| | - Bin Li
- The Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, No. 23 Meishuguanhou Street, Dongcheng District, Beijing, 100010, China
| | - San-Feng Sun
- Beijing Huairou District Hospital of Traditional Chinese Medicine, No. 1 Houheng Street, Huairou District, Beijing, 101400, China
| | - Hui-Lin Liu
- The Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, No. 23 Meishuguanhou Street, Dongcheng District, Beijing, 100010, China
| | - Xin Wang
- The Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, No. 23 Meishuguanhou Street, Dongcheng District, Beijing, 100010, China
| | - Shao-Song Wang
- The Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, No. 23 Meishuguanhou Street, Dongcheng District, Beijing, 100010, China
| | - Fan Zhang
- The Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, No. 23 Meishuguanhou Street, Dongcheng District, Beijing, 100010, China
| | - Xin Du
- The Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, No. 23 Meishuguanhou Street, Dongcheng District, Beijing, 100010, China
| | - Du-Juan Ge
- Beijing Huairou District Hospital of Traditional Chinese Medicine, No. 1 Houheng Street, Huairou District, Beijing, 101400, China
| | - Lei Shang
- Beijing Huairou District Hospital of Traditional Chinese Medicine, No. 1 Houheng Street, Huairou District, Beijing, 101400, China
| | - Rui-Li Liang
- Beijing Huairou District Hospital of Traditional Chinese Medicine, No. 1 Houheng Street, Huairou District, Beijing, 101400, China
| | - Li-Na Wang
- Beijing Huairou District Hospital of Traditional Chinese Medicine, No. 1 Houheng Street, Huairou District, Beijing, 101400, China
| | - Fang Yuan
- The Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, No. 23 Meishuguanhou Street, Dongcheng District, Beijing, 100010, China
| | - Jing-Qing Sun
- The Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, No. 23 Meishuguanhou Street, Dongcheng District, Beijing, 100010, China.
| | - Jun-Wei Chen
- The Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, No. 23 Meishuguanhou Street, Dongcheng District, Beijing, 100010, China.
- Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
13
|
Cho H, Bhatti FUR, Hasty KA, Yi AK. Nanosome-Mediated Delivery Of Protein Kinase D Inhibitor Protects Chondrocytes From Interleukin-1β-Induced Stress And Apoptotic Death. Int J Nanomedicine 2019; 14:8835-8846. [PMID: 31806974 PMCID: PMC6857658 DOI: 10.2147/ijn.s218901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/30/2019] [Indexed: 01/10/2023] Open
Abstract
Background Inflammatory stress caused by protein kinase D (PKD) plays a critical role in damaging chondrocytes and extracellular matrix (ECM) during osteoarthritis (OA). The PKD inhibitor (PKDi) (CRT0066101) has been used to overcome inflammation in different cell types. However, the efficacy of a therapeutic drug can be limited due to off-target distribution, slow cellular internalization, and limited lysosomal escape. In order to overcome this issue, we developed nanosomes carrying CRT0066101 (PKDi-Nano) and tested their efficacy in vitro in chondrocytes. Methods Chondrocytes were subjected to IL-1β-induced inflammatory stress treated with either PKDi or PKDi-Nano. Effects of treatment were measured in terms of cytotoxicity, cellular morphology, viability, apoptosis, phosphorylation of protein kinase B (Akt), and anabolic/catabolic gene expression analyses related to cartilage tissue. Results and Discussion The effects of PKDi-Nano treatment were more pronounced as compared to PKDi treatment. Cytotoxicity and apoptosis were significantly reduced following PKDi-Nano treatment (P < 0.001). Cellular morphology was also restored to normal size and shape. The viability of chondrocytes was significantly enhanced in PKDi-Nano-treated cells (P < 0.001). The data indicated that PKDi-Nano acted independently of the Akt pathway. Gene expression analyses revealed significant increases in the expression levels of anabolic genes with concomitant decreases in the level of catabolic genes. Our results indicate that PKDi-Nano attenuated the effects of IL-1β via the nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) pathway. Conclusion Taken together, these results suggest that PKDi-Nano can be used as a successful strategy to reduce IL1β-induced inflammatory stress in chondrocytes.
Collapse
Affiliation(s)
- Hongsik Cho
- Department of Orthopaedic Surgery and Biomedical Engineering, The University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Orthopaedic Surgery, Campbell Clinic, Memphis, TN, USA.,151 Research Service, Veterans Affairs Medical Center, Memphis, TN, USA
| | - Fazal-Ur-Rehman Bhatti
- Department of Orthopaedic Surgery and Biomedical Engineering, The University of Tennessee Health Science Center, Memphis, TN, USA.,151 Research Service, Veterans Affairs Medical Center, Memphis, TN, USA
| | - Karen A Hasty
- Department of Orthopaedic Surgery and Biomedical Engineering, The University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Orthopaedic Surgery, Campbell Clinic, Memphis, TN, USA.,151 Research Service, Veterans Affairs Medical Center, Memphis, TN, USA
| | - Ae-Kyung Yi
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
14
|
Zeng YF, Wang R, Bian Y, Chen WS, Peng L. Catalpol Attenuates IL-1β Induced Matrix Catabolism, Apoptosis and Inflammation in Rat Chondrocytes and Inhibits Cartilage Degeneration. Med Sci Monit 2019; 25:6649-6659. [PMID: 31484919 PMCID: PMC6752111 DOI: 10.12659/msm.916209] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Chondrocyte dysfunction and apoptosis are 2 major features during the progression of osteoarthritis. Catalpol, an iridoid glycoside isolated from the root of Rehmannia, is a valuable medication with anti-inflammatory, anti-oxidative, and anti-apoptotic effects in various diseases. However, whether catalpol protects against osteoarthritis has not been investigated. MATERIAL AND METHODS To assess the role of catalpol in osteoarthritis and the potential mechanism of action, chondrocytes were treated with interleukin (IL)-1ß and various concentrations of catalpol. Catabolic metabolism, apoptotic level and relative signaling pathway were measured by western blot, real-time polymerase chain reaction and immunofluorescence staining. Meanwhile, we assess the cartilage degeneration in an experimental rat model using Safranin O fast green staining and cartilage was graded according to the Osteoarthritis Research Society International (OARSI) system. RESULTS The results showed that catalpol prevented chondrocyte apoptotic level triggered by IL-1ß, suppressed the release of catabolic enzymes, and inhibited the degradation of extracellular matrix induced by IL-1ß. Catalpol also inhibited the nuclear factor kappa B (NF-kappaB) pathway, reduced the production of inflammatory cytokines (IL-6, tumor necrosis factor-alpha) in IL-1ß-treated chondrocytes, and partially reversed cartilage degeneration in the knee joint in animal model of osteoarthritis. CONCLUSIONS Our work suggested that catalpol treatment attenuates IL-1ß-induced inflammatory response and catabolism in rat chondrocytes by inhibiting the NF-kappaB pathway, suggesting the therapeutic potential of catalpol for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Yun-Fu Zeng
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China (mainland)
| | - Rong Wang
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China (mainland)
| | - Yang Bian
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China (mainland)
| | - Wen-Sheng Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China (mainland)
| | - Lei Peng
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China (mainland)
| |
Collapse
|
15
|
Kim KM, Sohn DH, Kim K, Park YC. Inhibition of protein kinase CK2 facilitates cellular senescence by inhibiting the expression of HO-1 in articular chondrocytes. Int J Mol Med 2018; 43:1033-1040. [PMID: 30535443 DOI: 10.3892/ijmm.2018.4016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/27/2018] [Indexed: 11/06/2022] Open
Abstract
Protein kinase casein kinase 2 (CK2) is important in the regulation of cell proliferation and death, even under pathological conditions. Previously, we reported that CK2 regulates the expression of heme oxygenase‑1 (HO‑1) in stress‑induced chondrocytes. In the present study, it was shown that CK2 is involved in the dedifferentiation and cellular senescence of chondrocytes. Treatment of primary articular chondrocytes with CK2 inhibitors, 4,5,6,7‑terabromo‑2‑azabenzimidazole (TBB) or 5,6‑dichlorobenzimidazole 1‑β‑D‑ribofuranoside (DRB), induced an increase in senescence‑associated β‑galactosidase (SA‑β‑gal) staining. In addition, TBB reduced the expression of type II collagen and stimulated the accumulation of β‑catenin, phenotypic markers of chondrocyte differentiation and dedifferentiation, respectively. It was also observed that the abrogation of CK2 activity by CK2 small interfering RNA induced phenotypes of chondrocyte senescence. The association between HO‑1 and cellular senescence was also examined in CK2 inhibitor‑treated chondrocytes. Pretreatment with 3‑morpholinosydnonimine hydrochloride, an inducer of the HO‑1 expression, or overexpression of the HO‑1 gene significantly delayed chondrocyte senescence. These results show that CK2 is associated with chondrocyte differentiation and cellular senescence and that this is due to regulation of the expression of HO‑1. Furthermore, the findings suggest that CK2 is crucial as an anti‑aging factor during chondrocyte senescence.
Collapse
Affiliation(s)
- Kang Mi Kim
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Gyeongnam 50612, Republic of Korea
| | - Dong Hyun Sohn
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Gyeongnam 50612, Republic of Korea
| | - Koanhoi Kim
- Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Gyeongnam 50612, Republic of Korea
| | - Young Chul Park
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Gyeongnam 50612, Republic of Korea
| |
Collapse
|
16
|
Han YH, Huang HT, Pan JK, Lin JT, Zeng LF, Liang GH, Yang WY, Liu J. Comparison of platelet-rich plasma vs hyaluronic acid injections in patients with knee osteoarthritis: A protocol for a systematic review and meta-analysis. Medicine (Baltimore) 2018; 97:e13049. [PMID: 30383675 PMCID: PMC6221718 DOI: 10.1097/md.0000000000013049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Knee osteoarthritis (KOA) is a progressive joint disease involving intraarticular and periarticular structures. In recent years, there has been increasing interest in the use of autologous growth factors, such as intraarticular injections of platelet-rich plasma (PRP), to treat KOA. It is necessary to update the research and reevaluate the efficacy and safety of PRP to provide up-to-date evidence for KOA management. Therefore, we provide a protocol for a systematic review of PRP for KOA. METHODS The aim of this study was to retrieve papers on the topic of PRP treatment for KOA in electronic databases including PubMed, Embase, and the Cochrane Library. The search will include studies that were published from the time the databases were established until April 2018. The entire process will include study selection, data extraction, risk of bias assessment, and meta-analyses. RESULTS The literature will provide a high-quality analysis of the current evidence supporting PRP for KOA based on various comprehensive assessments including the Western Ontario and McMaster Universities Osteoarthritis Index, visual analog scale scores, International Knee Documentation Committee scores, Lequesne index scores, and adverse events. CONCLUSION This proposed systematic review will provide up-to-date evidence to assess the effect of PRP treatment for patients with KOA. PROSPERO REGISTRATION NUMBER CRD42018108825.
Collapse
Affiliation(s)
- Yan-hong Han
- Second School of Clinical Medicine, Guangzhou University of Chinese Medicine
| | - He-tao Huang
- Second School of Clinical Medicine, Guangzhou University of Chinese Medicine
| | - Jian-ke Pan
- Department of Orthopedics, Second Affiliated Hospital of the Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine
| | - Jiong-tong Lin
- Second School of Clinical Medicine, Guangzhou University of Chinese Medicine
| | - Ling-feng Zeng
- Department of Orthopedics, Second Affiliated Hospital of the Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine
- Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Gui-hong Liang
- Department of Orthopedics, Second Affiliated Hospital of the Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine
- Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Wei-yi Yang
- Department of Orthopedics, Second Affiliated Hospital of the Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine
| | - Jun Liu
- Department of Orthopedics, Second Affiliated Hospital of the Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine
- Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| |
Collapse
|
17
|
Pan T, Shi X, Chen H, Chen R, Wu D, Lin Z, Zhang J, Pan J. Geniposide Suppresses Interleukin-1β-Induced Inflammation and Apoptosis in Rat Chondrocytes via the PI3K/Akt/NF-κB Signaling Pathway. Inflammation 2018; 41:390-399. [PMID: 29214554 DOI: 10.1007/s10753-017-0694-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease that is principally characterized by progressive joint dysfunction and cartilage degradation. Inflammation and apoptosis play critical roles in the progression of OA. Geniposide (GPO), one of the principal components of the fruit of Gardenia jasminoides Ellis, has been reported to have anti-inflammatory and other pharmacological effects. In this study, we performed in vitro experiments on rat chondrocytes to examine the therapeutic effects of GPO on OA and investigated its effects in vivo in a rat model of OA induced by medial meniscal tear (MMT). The results suggest that GPO can inhibit the expression of INOS, COX-2, and MMP-13 in vitro, and promote the expression of collagen II in rat chondrocytes stimulated with interleukin-1β (IL-1β). In addition, we also found that GPO can inhibit the expression of pro-apoptotic proteins such as Bax, Cyto-c, and C-caspase3 and increase the expression of the anti-apoptotic protein Bcl-2. These changes may be related to GPO-induced inhibition of the IL-1β-induced activation of the PI3K/Akt/NF-κB signaling pathway. In vivo, we also found that GPO can limit the development of OA in a rat model. Taken together, the above results indicate that GPO has potential therapeutic value for treating OA.
Collapse
Affiliation(s)
- Tianlong Pan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang, 325000, China
| | - Xuchao Shi
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang, 325000, China
| | - Huan Chen
- Department of Orthopaedics, Yongjia County People's Hospital, 37 Yong Zhong Road, Shang Tang Town, Yongjia County, Zhejiang, 325100, China
| | - Rong Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang, 325000, China
| | - Dengying Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang, 325000, China
| | - Zeng Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang, 325000, China
| | - Jingdong Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang, 325000, China
| | - Jun Pan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
18
|
Kourtis A, Adamopoulos PG, Papalois A, Iliopoulos DC, Babis GC, Scorilas A. Quantitative analysis and study of the mRNA expression levels of apoptotic genes BCL2, BAX and BCL2L12 in the articular cartilage of an animal model of osteoarthritis. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:243. [PMID: 30069445 DOI: 10.21037/atm.2018.05.47] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Given that apoptosis of chondrocytes is one of the most important factors related to the pathogenesis of osteoarthritis (OA), the recent research interest adds progress not only to the knowledge of the molecular signals that mediate apoptosis but also to find new therapeutic targets. This study attempts to investigate the differential expression of BCL2 family genes in the articular cartilage of an experimental animal model of OA. Methods In total, 26 New Zealand white rabbits underwent an anterior cruciate ligament transaction, 26 more were subjected to a placebo surgery and 18 specimens constituted the control non-operated group. Thirteen weeks later, samples of cartilage from the osteoarthritic and non-osteoarthritic knees were collected and subjected to analysis of the BCL2, BAX and BCL2L12 gene expression at the mRNA level. Results Installed osteoarthritic alterations of varied intensity and of grade 1 up to grade 5, were confirmed according to the OARSI system. Contrary to the physiologically healthy samples, in the osteoarthritic samples the mRNA expression levels of BAX and BCL2L12 genes were found significantly upregulated by signals which can activate apoptosis. However, the difference between BCL2 mRNA expression levels in healthy and osteoarthritic samples was not supported statistically. Conclusions Since apoptosis is the main feature of the cartilage degeneration in OA, the effective inhibition of apoptosis of chondrocytes can provide novel and interesting therapeutic strategies for the treatment of OA. Therefore, BAX and BCL2L12 are highlighted as potential therapeutic targets in OA.
Collapse
Affiliation(s)
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - George C Babis
- Second Orthopaedic Department, National and Kapodistrian University of Athens Medical School, Konstantopouleio General Hospital, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
19
|
Zhang HF, Wang CG, Li H, Huang YT, Li ZJ. Intra-articular platelet-rich plasma versus hyaluronic acid in the treatment of knee osteoarthritis: a meta-analysis. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:445-453. [PMID: 29551888 PMCID: PMC5842781 DOI: 10.2147/dddt.s156724] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Purpose Platelet-rich plasma (PRP) and hyaluronic acid (HA) have been increasingly used in recent years to treat knee osteoarthritis (OA). However, whether PRP is superior to HA is controversial. Methods We conducted an electronic search of PubMed, Embase, ScienceDirect, and Cochrane library. The pooled data were analyzed using RevMan 5.1. Results Three prospective and ten randomized trials were identified. PRP injections reduced pain more effectively than HA injections in OA of the knee at 6 months (mean difference [MD]=−14.18; 95% confidence interval [CI]: −26.12 to −2.23; P=0.02; I2=95%) and 12 months (MD=−15.25; 95% CI: −22.17 to −8.32; P<0.01; I2=81%) of follow-up evaluated by Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain score, while the VAS showed no significant difference at 3 months (MD=−0.98; 95% CI: −2.55 to 0.59; P=0.22; I2=90%) and 6 months (MD=−0.82; 95% CI: −1.80 to 0.16; P=0.1; I2=83%). Additionally, similar results were observed for the function recovery according to the WOMAC function score and EuroQol-visual analog scales. Conclusion The intra-articular injection of PRP was not obviously superior to HA in knee OA. Due to the limited quality and data of the evidence currently available, more high-quality randomized controlled trials are required.
Collapse
Affiliation(s)
- Hua-Feng Zhang
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Chen-Guang Wang
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Hui Li
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Yu-Ting Huang
- Cancer & Immunology Research, Children's Research Institute, Children's National Medical Center, Washington DC, USA
| | - Zhi-Jun Li
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| |
Collapse
|
20
|
Zhang HB, Zhang Y, Chen C, Li YQ, Ma C, Wang ZJ. Pioglitazone inhibits advanced glycation end product-induced matrix metalloproteinases and apoptosis by suppressing the activation of MAPK and NF-κB. Apoptosis 2018; 21:1082-93. [PMID: 27515513 DOI: 10.1007/s10495-016-1280-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Apoptosis and degeneration coming mainly from chondrocytes are important mechanisms in the onset and progression of osteoarthritis. Specifically, advanced glycation end products (AGEs) play an important role in the pathogenesis of osteoarthritis. Pioglitazone, a peroxisome proliferator-activated receptor γ (PPARγ) agonist has a protective effect on cartilage. This study aims to evaluate the effect of pioglitazone on AGEs-induced chondrocyte apoptosis and degeneration and their underlying mechanism. The in vitro study shows that AGEs induce cleavage of caspase-3 and PARP, up-regulate MMP-13 expression, enhance chondrocyte apoptosis and down-regulate PPARγ expression in human primary chondrocytes, which is reversed by pioglitazone. Furthermore, AGEs activate phosphorylation of Erk, JNK, and p38, and pioglitazone reverses AGEs-induced phosphorylation of Erk and p38. AGEs-induced degradation of IκBα and translocation of nuclear NF-κB p65 is reversed by pioglitazone. Pretreatment of chondrocytes with SB202190 (p38 inhibitor), SP600125 (JNK inhibitor) and BAY-11-7082 (NF-κB inhibitor) inhibit AGEs-induced apoptosis and degeneration. In vivo experiments suggest that pioglitazone reverses AGEs-induced cartilage degeneration and apoptosis in a mouse model, as demonstrated by HE and Safranin O staining, immunohistochemical analyses of Type II collagen (Col II), metalloproteinases (MMPs) and caspase-3. These findings suggest that pioglitazone, a PPARγ agonist, inhibits AGEs-induced chondrocytes apoptosis and degeneration via suppressing the activation of MAPK and NF-κB.
Collapse
Affiliation(s)
- Hai-Bin Zhang
- Department of Orthopedics, The 163rd Central Hospital of the People's Liberation Army, The Second Affiliated Hospital of Hunan Normal University, Changsha, 410003, Hunan, People's Republic of China
| | - Ying Zhang
- Department of Orthopedics, The 163rd Central Hospital of the People's Liberation Army, The Second Affiliated Hospital of Hunan Normal University, Changsha, 410003, Hunan, People's Republic of China
| | - Cheng Chen
- Department of Orthopedics, The 163rd Central Hospital of the People's Liberation Army, The Second Affiliated Hospital of Hunan Normal University, Changsha, 410003, Hunan, People's Republic of China.
| | - Yu-Qing Li
- Department of Orthopedics, The 163rd Central Hospital of the People's Liberation Army, The Second Affiliated Hospital of Hunan Normal University, Changsha, 410003, Hunan, People's Republic of China
| | - Chi Ma
- Department of Orthopedics, People's Hospital of Xiangxi Autonomous Prefecture, Jishou, Hunan, China
| | - Zhao-Jun Wang
- Department of Orthopedics, The 163rd Central Hospital of the People's Liberation Army, The Second Affiliated Hospital of Hunan Normal University, Changsha, 410003, Hunan, People's Republic of China
| |
Collapse
|
21
|
Yang Y, Wang Y, Zhao M, Jia H, Li B, Xing D. Tormentic acid inhibits IL-1β-induced chondrocyte apoptosis by activating the PI3K/Akt signaling pathway. Mol Med Rep 2018; 17:4753-4758. [PMID: 29328385 DOI: 10.3892/mmr.2018.8425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 02/22/2017] [Indexed: 11/05/2022] Open
Abstract
Interleukin-1β (IL-1β) accelerates degradation of the cartilage matrix and induces apoptosis of chondrocytes. Tormentic acid (TA) is a triterpene isolated from the stem bark of the Vochysia divergens plant, which has been demonstrated to exert in vitro inhibitory activity against hepatocyte apoptosis. However, the effects of TA on IL‑1β‑induced apoptosis of human chondrocytes remain unclear. Therefore, the present study investigated the in vitro effects of TA on human osteoarthritic chondrocyte apoptosis cultivated in the presence of IL‑1β. Human chondrocytes were pretreated with or without various concentrations of TA and then co‑incubated in the absence or presence of IL‑1β for 24 h. Cell viability was determined using the MTT assay, and cell apoptosis was detected using a Nucleosome ELISA kit. Caspase‑3 activity was detected using a caspase‑3 colorimetric assay kit. The levels of B‑cell lymphoma 2 (Bcl‑2)‑associated X protein (Bax), Bcl‑2, phosphorylated (p)‑phosphoinositide 3‑kinase (PI3K), PI3K, p‑protein kinase B (Akt) and Akt were measured by western blotting. The results revealed that pretreatment with TA inhibited IL‑1β‑induced cytotoxicity and apoptosis in chondrocytes. In addition, TA pretreatment increased B‑cell lymphoma (Bcl)‑2 expression, and decreased caspase‑3 activity and Bax expressionin human chondrocytes. In addition, pretreatment with TA markedly increased the expression of p‑PI3K and p‑Akt in IL‑1β‑induced chondrocytes. Collectively, these results indicate that TA inhibits IL‑1β‑induced chondrocyte apoptosis by activating the PI3K/Akt signaling pathway. Therefore, TA may be considered a potential therapeutic target for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Yang Yang
- Department of Orthopedics, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Yawei Wang
- Department of Electromyography, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Meng Zhao
- Clinical Laboratory, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Haobo Jia
- Department of Orthopedics, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Bing Li
- Department of Orthopedics, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Dan Xing
- Department of Orthopedics, Tianjin Hospital, Tianjin 300211, P.R. China
| |
Collapse
|
22
|
Topoluk N, Steckbeck K, Siatkowski S, Burnikel B, Tokish J, Mercuri J. Amniotic mesenchymal stem cells mitigate osteoarthritis progression in a synovial macrophage-mediated in vitro explant coculture model. J Tissue Eng Regen Med 2017; 12:1097-1110. [PMID: 29131526 DOI: 10.1002/term.2610] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 10/03/2017] [Accepted: 10/28/2017] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) is a disease of the synovial joint marked by chronic, low-grade inflammation leading to cartilage destruction. Regenerative medicine strategies for mitigating OA progression and/or promoting cartilage regeneration must be assessed using models that mimic the hallmarks of OA. More specifically, these models should maintain synovial macrophage phenotype in their native micro-environment. Herein, an in vitro coculture model of patient-matched human OA cartilage and synovium was assessed for viability, macrophage phenotype, and progressive cartilage destruction in the presence of an inflammatory milieu. Additionally, the influence of synovial macrophages and their polarization within the model was defined using depletion studies. Finally, the model was used to compare the ability of human amniotic stem cells (hAMSCs) and human adipose stem cells (hADSCs) to mitigate OA progression. OA cocultures demonstrated progressive and significant reductions in chondrocyte viability and cartilage glycosaminoglycan content within a proinflammatory environment. Selective depletion of synovial macrophages resulted in significant decreases in M1:M2 percentage ratio yielding significant reductions in concentrations of interleukin-1 beta, matrix metalloproteinase-13 and attenuation of cartilage damage. Finally, hAMSCs were found to be more chondroprotective versus hADSCs as indicated by significantly improved OA chondrocyte viability (89.8 ± 2.4% vs. 58.4 ± 2.4%) and cartilage glycosaminoglycan content (499.0 ± 101.9 μg/mg dry weight vs. 155.0 ± 26.3 μg/mg dry weight) and were more effective at shifting OA synovial macrophage M1:M2 ratio (1.3:1 vs. 5:1), respectively. Taken together, the coculture model mimics salient features of OA, including macrophage-mediated cartilage destruction that was effectively abrogated by hAMSCs but not hADSCs.
Collapse
Affiliation(s)
- Natasha Topoluk
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Kathleen Steckbeck
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Sandra Siatkowski
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Brian Burnikel
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, SC, USA.,Steadman Hawkins Clinic of the Carolinas, Greenville Health System, Greenville, SC, USA
| | - John Tokish
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, SC, USA.,Steadman Hawkins Clinic of the Carolinas, Greenville Health System, Greenville, SC, USA
| | - Jeremy Mercuri
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, SC, USA
| |
Collapse
|
23
|
Jia PT, Zhang XL, Zuo HN, Lu X, Li L. Articular cartilage degradation is prevented by tanshinone IIA through inhibiting apoptosis and the expression of inflammatory cytokines. Mol Med Rep 2017; 16:6285-6289. [PMID: 28849083 DOI: 10.3892/mmr.2017.7340] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 06/14/2017] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the effect of tanshinone IIA on the degradation of articular cartilage in a rat model of osteoarthritis (OA). The OA rat model was established by anterior cruciate ligament transection (ACLT) and medial meniscus resection (MMx). The animals were treated for 28 days with 0.25‑0.5 mg/kg doses of tanshinone IIA following ACLT + MMx. The knee joints of the rats in the ACLT + MMx group exhibited marked alterations in articular cartilage histopathology and higher Mankin scores, compared with those in the normal group. Tanshinone IIA treatment at a dose of 0.5 mg/kg significantly inhibited cartilage degradation and improved Mankin scores in the OA rat model (P<0.002). Tanshinone IIA treatment completely inhibited the ACLT + MMx‑induced accumulation of inflammatory cells and disintegration of synovial lining in the rats. An increase in the dose of tanshinone IIA between 0.25 and 0.5 mg/kg reduced the proportion of apoptotic chrondrocytes from 41 to 2% on day 29. Treatment of the rats in the ACLT + MMx group with 0.5 mg/kg doses of tanshinone IIA markedly inhibited the expression level of matrix metalloproteinase and increased the expression of tissue inhibitor of metalloproteinase in the rat articular cartilage tissues. Tanshinone IIA treatment significantly reduced the levels of inflammatory cytokines, including interleukin‑1β, tumor necrosis factor‑α and nitric oxide in rat serum samples. The protein expression levels of bone morphogenetic protein and transforming growth factor‑β were significantly increased by tanshinone IIA in the ACLT + MMx rats. Therefore, tanshinone IIA inhibited articular cartilage degradation through inhibition of apoptosis and expression levels of inflammatory cytokines, offering potential for use in the treatment of OA.
Collapse
Affiliation(s)
- Pei-Tong Jia
- Department of Orthopedics, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Xing-Lin Zhang
- Department of Orthopedics, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Hai-Ning Zuo
- Department of Orthopedics, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Xing Lu
- Department of Orthopedics, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Lin Li
- Department of Orthopedics, Shandong Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
24
|
Resveratrol inhibits apoptosis by increase in the proportion of chondrocytes in the S phase of cell cycle in articular cartilage of ACLT plus Mmx rats. Saudi J Biol Sci 2017; 26:839-844. [PMID: 31049011 PMCID: PMC6486510 DOI: 10.1016/j.sjbs.2017.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/13/2017] [Accepted: 04/26/2017] [Indexed: 11/23/2022] Open
Abstract
The current study was aimed to investigate the effect of resveratrol on apoptosis inhibition in chondrocytes in ACLT plus Mmx rat model. TUNEL assay revealed a markedly higher level of apoptotic chondrocytes in the cartilage of untreated ACLT plus Mmx rats. The percentage of apoptotic chondrocytes was found to be 29.5 and 40.75%, respectively at 21 and 45 days. The percentage of apoptotic chondrocytes at 21 and 45 days in resveratrol (5 mg/kg) treated ACLT plus Mmx rats was found to be 13% and 2%, respectively. Real-time PCR analysis revealed that treatment of the ACLT plus Mmx rats with resveratrol for 45 days caused a significant increase in the expression of miR-18a compared to that in untreated rats. Flow cytometry and BrdUrd incorporation assay revealed that the proportion of chondrocytes in the S phase was increased to 51.4% in resveratrol treatment group compared to 25.3% in the untreated ACLT plus Mmx rats. Western blot analysis showed that treatment of the ACLT plus Mmx rats with resveratrol decreased the expression of ATM protein kinase and GFP protein without any effect on the expression of GFP-ϒ-tubulin in chondrocytes. In addition, resveratrol treatment also led to reduction in the activity of luciferase in the chondrocytes of ACLT plus Mmx rats. Resveratrol treatment of the ACLT plus Mmx rats decreases the expression level of ATM protein and checkpoint kinase 2 (CHK2) phosphorylation in chondrocytes. H2AX and 53BP1 phosphorylation was decreased in ACLT plus Mmx rats on treatment with resveratrol for 45 days. Immunofluorescence results revealed a markedly lower level of H2AX and 53BP1 nuclear foci in the chondrocytes of ACLT plus Mmx rats treated with resveratrol. Thus resveratrol treatment of the ACLT plus Mmx rats inhibits chondrocyte apoptosis and increases proportion of cells in the S phase of cell cycle which may be through the increase in expression of miR18a. A significant relation appears between resveratrol and miR-18a expression in the chondrocytes.
Collapse
|
25
|
Zhang P. Ginsenoside‑Rg5 treatment inhibits apoptosis of chondrocytes and degradation of cartilage matrix in a rat model of osteoarthritis. Oncol Rep 2017; 37:1497-1502. [PMID: 28112382 DOI: 10.3892/or.2017.5392] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 11/07/2016] [Indexed: 11/05/2022] Open
Abstract
This study investigated the effect of ginsenoside‑Rg5 on the degradation of articular cartilage in osteoarthritis rat model and on induction of chondrocyte apoptosis. Osteoarthritis rat model was prepared by ligament transection and medial meniscus resection. The rats were then treated with different doses (1, 2, 5, 10 and 15 µM) of ginsenoside‑Rg5 for 48 h. The results from histopathological analysis revealed a significant (P=0.005) prevention of cartilage degradation in OA rat model by ginsenoside‑Rg5 treatment at 15 µM. Ginsenoside‑Rg5 treatment prevented the disintegration of synovial membrane to a significant (P=0.005) extent. The proportion of apoptotic cells in the knee joints was reduced to 7% by ginsenoside‑Rg5 treatment after one month compared to the control. Treatment of the rats with ginsenoside‑Rg5 caused increase in the levels of proteoglycan, collagen and type II collagen by 5-, 3- and 4-fold compared to the control group. Immunohistochemistry revealed that the level of MMP-13 was reduced to 45% and that of TIMP‑1 was increased by 67% on treatment with ginsenoside‑Rg5. The levels of interleukin-1β, tumor necrosis factor-α, nitric oxide and inducible nitric oxide synthetase were reduced by 67, 54, 32 ad 49%, respectively after one month of treatment with 15 mg/kg dose of ginsenoside‑Rg5. The expression was increased to 67 and 52% for BMP-2 and TGF-β1, respectively on treatment with ginsenoside‑Rg5. Thus ginsenoside‑Rg5 prevents cartilage degradation in the OA rats and inhibits cartilage apoptosis, therefore it can be used for osteoarthritis treatment.
Collapse
Affiliation(s)
- Ping Zhang
- The Disease Prevention Center of Anyang Hospital of Traditional Chinese Medicine of Henan Province, Nanyang, Henan 455000, P.R. China
| |
Collapse
|
26
|
Insights on Molecular Mechanisms of Chondrocytes Death in Osteoarthritis. Int J Mol Sci 2016; 17:ijms17122146. [PMID: 27999417 PMCID: PMC5187946 DOI: 10.3390/ijms17122146] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis (OA) is a joint pathology characterized by progressive cartilage degradation. Medical care is mainly based on alleviating pain symptoms. Compelling studies report the presence of empty lacunae and hypocellularity in cartilage with aging and OA progression, suggesting that chondrocyte cell death occurs and participates to OA development. However, the relative contribution of apoptosis per se in OA pathogenesis appears complex to evaluate. Indeed, depending on technical approaches, OA stages, cartilage layers, animal models, as well as in vivo or in vitro experiments, the percentage of apoptosis and cell death types can vary. Apoptosis, chondroptosis, necrosis, and autophagic cell death are described in this review. The question of cell death causality in OA progression is also addressed, as well as the molecular pathways leading to cell death in response to the following inducers: Fas, Interleukin-1β (IL-1β), Tumor Necrosis factor-α (TNF-α), leptin, nitric oxide (NO) donors, and mechanical stresses. Furthermore, the protective role of autophagy in chondrocytes is highlighted, as well as its decline during OA progression, enhancing chondrocyte cell death; the transition being mainly controlled by HIF-1α/HIF-2α imbalance. Finally, we have considered whether interfering in chondrocyte apoptosis or promoting autophagy could constitute therapeutic strategies to impede OA progression.
Collapse
|
27
|
The Extract of Fructus Psoraleae Promotes Viability and Cartilaginous Formation of Rat Chondrocytes In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:2057631. [PMID: 27994628 PMCID: PMC5141302 DOI: 10.1155/2016/2057631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/20/2016] [Indexed: 01/10/2023]
Abstract
This study aimed to investigate the extract components of FP on rat chondrocyte function and cartilaginous formation in vitro. Petroleum ether extract (P-e) of FP extract components was selected to treat Sprague-Dawley rat chondrocytes. Cell viability was tested with different concentrations (0.1, 1, 10, and 100 μg/mL) of P-e treatment. Concentrations of 0.1 and 1 μg/mL P-e conditioned culture mediums were used for treating chondrocytes in experiments. Cell proliferation was measured via DNA incorporation assay. Type II collagen, aggrecan, and Sox-9 genes expression levels were measured with RT-PCR. Additionally, cartilaginous formation was analyzed with type II collagen immunofluorescence, H&E, and alcian blue staining. Concentrations of 0.1 and 1 μg/mL P-e showed low cytotoxicity and demonstrated stimulatory effects on chondrocyte proliferation in early stages. Following 6 days of P-e culture, aggrecan and Sox-9 gene expression levels of the 1 μg/mL P-e group were upregulated by 1.82- (p < 0.05) and 2.06-fold (p < 0.05), respectively, versus controls. Moreover, 1 μg/mL P-e significantly stimulated cell aggregation and type II collagen deposits after 1 week of treatment. Noteworthy, tight cartilaginous structures formed in the 10-day 1 μg/mL P-e conditioned culture. These findings suggest that P-e has the potential to treat cartilage degeneration induced by chondrocyte failure.
Collapse
|
28
|
Wang YH, Dong J, Zhang JX, Zhai J, Ge B. Effects of mimic of manganese superoxide dismutase on 2,4,6-trinitrobenzene sulfonic acid-induced colitis in rats. Arch Pharm Res 2016; 39:1296-306. [DOI: 10.1007/s12272-016-0811-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 08/04/2016] [Indexed: 01/02/2023]
|
29
|
Chen Y, Lin S, Sun Y, Pan X, Xiao L, Zou L, Ho KW, Li G. Translational potential of ginsenoside Rb1 in managing progression of osteoarthritis. J Orthop Translat 2016; 6:27-33. [PMID: 30035080 PMCID: PMC5987022 DOI: 10.1016/j.jot.2016.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 03/08/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is the most common degenerative joint disorder. Inflammatory cytokine plays an important role in OA progression. Previous studies have demonstrated that ginsenoside Rb1 would prevent inflammation and apoptosis in chondrocytes. However, we have not found any animal study reporting that Rb1 attenuates the severity of OA. OBJECTIVE In this study, we used a rat anterior cruciate ligament transaction plus medial meniscus resection (ACLT + MMx) model of OA and a cell model, to investigate whether administration of ginsenoside Rb1 may attenuate the progression of arthritis. METHODS In this in vivo study, 16-week-old male Sprague-Dawley rats were divided into three groups: Group 1 (sham control group), Group 2 (Rb1-treated group), and Group 3 (OA group). In Groups 2 and 3, OA was induced in the right knee joint with ACLT + MMx in rats. Then Group 2 received continuous infusion of ginsenoside Rb1 via osmotic mini-pumps implanted subcutaneously. At 4 weeks after treatment, the rats were sacrificed. Interleukin-1β (IL-1β) level was evaluated by enzyme-linked immunosorbent assay (ELISA); cartilage damage was assessed via histology (Safranin-O/fast green stain) and immunohistochemistry [matrix metalloproteinase-13 (MMP13) and type X collagen (Col X)]. For cell study, C5.18 (rat chondrocyte cell line) was used in this research. The effect of Rb1 on IL-1β-induced MMP13 or Col X expression level in C5.18 cells was investigated. RESULTS In this in vivo study, characteristics of OA were present in the OA group, in contrast to less severe damage generally observed in the Rb1 treatment group: first, IL-1β level was significantly decreased, and second, cartilage degeneration was attenuated, as indicated by lower histologic damage scores and lower percentages of MMP13 or Col X-positive chondrocytes. In the cell study, the results showed that Rb1 treatment would relieve the MMP13 or Col X expression in C5.18 cells induced by IL-1β. CONCLUSION In the present study, we demonstrated that Rb1 can attenuate the progression or severity of arthritis by reducing inflammation.
Collapse
Affiliation(s)
- Yuanfeng Chen
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Sien Lin
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Yuxin Sun
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Xiaohua Pan
- Department of Orthopaedics and Traumatology, Bao-An District People's Hospital, Shenzhen, China
| | - Liubin Xiao
- People's Hospital of New District Longhua, Shenzhen, China
| | - Liyi Zou
- Department of Pharmacology, Guangdong Medical University, Dongguan, China
| | - Ki Wai Ho
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| | - Gang Li
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
30
|
Li D, Han J, Guo X, Qu C, Yu F, Wu X. The effects of T-2 toxin on the prevalence and development of Kashin-Beck disease in China: a meta-analysis and systematic review. Toxicol Res (Camb) 2016; 5:731-751. [PMID: 30090385 PMCID: PMC6062151 DOI: 10.1039/c5tx00377f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/16/2016] [Indexed: 12/11/2022] Open
Abstract
To reveal the influence of T-2 toxin detection rate and detection amount in food samples on Kashin-Beck disease (KBD), and define a linking mechanism between T-2 toxin induced chondrocytes or cartilage damage and KBD pathological changes, seven electronic databases were searched to obtain epidemiological and experimental studies. For epidemiological studies, subgroup analyses of the positive detection rate (PDR) of the T-2 toxin and PDR of the T-2 toxin with concentrations (PDRC of T-2) >100 ng g-1 were carried out, together with a histogram of the T-2 toxin concentrations in different food types in KBD and non-KBD areas. For experimental studies, a systematic review of a variety of chondrocyte and cartilage changes and damage induced by the T-2 toxin was performed. As a result, in epidemiological studies, meta-analysis demonstrated that the T-2 toxin PDR and the overall PDRC of T-2 toxin >100 ng g-1 showed a slightly significant increase in KBD areas than that in non-KBD areas separately. From the histogram, T-2 toxin accumulation was more serious in endemic areas, especially in wheat flour samples. In experimental studies, the T-2 toxin could induce damage of chondrocytes and cartilage, and inhibit cell proliferation by promoting apoptosis and catabolism as well as intracellular injuries, which is similar to the characteristics of KBD. In conclusion, the amount of T-2 toxin detected has a more significant influence on KBD prevalence and development as compared to the T-2 toxin detection rate. Besides, the T-2 toxin induces chondrocyte and cartilage damage through apoptosis, catabolism promotion and intracellular impairment, which is similar to the KBD change.
Collapse
Affiliation(s)
- Danyang Li
- College of Public Health , Xi'an Jiaotong University Health Science Center , Xi'an , Shaanxi 710061 , PR China . ; ; ; ;
| | - Jing Han
- College of Public Health , Xi'an Jiaotong University Health Science Center , Xi'an , Shaanxi 710061 , PR China . ; ; ; ;
| | - Xiong Guo
- College of Public Health , Xi'an Jiaotong University Health Science Center , Xi'an , Shaanxi 710061 , PR China . ; ; ; ;
| | - Chengjuan Qu
- Department of Integrative Medical Biology , Umeå University , Umeå 90187 , Sweden .
| | - Fangfang Yu
- College of Public Health , Xi'an Jiaotong University Health Science Center , Xi'an , Shaanxi 710061 , PR China . ; ; ; ;
| | - Xiaofang Wu
- College of Public Health , Xi'an Jiaotong University Health Science Center , Xi'an , Shaanxi 710061 , PR China . ; ; ; ;
| |
Collapse
|
31
|
Nagai M, Ito A, Tajino J, Iijima H, Yamaguchi S, Zhang X, Aoyama T, Kuroki H. Remobilization causes site-specific cyst formation in immobilization-induced knee cartilage degeneration in an immobilized rat model. J Anat 2016; 228:929-39. [PMID: 26989984 PMCID: PMC5341580 DOI: 10.1111/joa.12453] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2016] [Indexed: 12/13/2022] Open
Abstract
An understanding of the articular cartilage degenerative process is necessary for the prevention and treatment of joint disease. The present study aimed to examine how long‐term immobilization‐induced cartilage degeneration is aggravated by remobilization. Sixty 8‐week‐old male Wistar rats were used in this study. The unilateral knee joint was immobilized using an external fixator for 8 weeks. The rats were killed at 0 and 3 days, and at 1, 2, 4 and 8 weeks after removing the fixator. After the rats were killed, the maximum knee extension angles were measured. Histological sections at the medial mid‐condylar region (non‐contact, transitional and contact regions of the femur and tibia) were prepared and scored. The cartilage thickness and number of chondrocytes were measured, and CD44 and Col2‐3/4c expression levels were assessed immunohistochemically. The histological assessment revealed progressive aggravation of cartilage degeneration in the transitional region, with a decreased number of chondrocytes and CD44‐positive chondrocytes as well as poor scoring over time, particularly in the tibia. Cyst formation was confirmed in the transitional region of the tibia at 8 weeks post‐remobilization. The cartilage thickness in the transitional region was thicker than that in the contact region, particularly in the tibia. Col2‐3/4c expression was observed in the non‐contact and transitional regions, and the knee extension angle was recovered. In conclusion, immobilization‐induced cartilage degeneration was aggravated by remobilization over time in the transitional region, followed by observations of a decreased number of chondrocytes and morphological disparity between different cartilage regions.
Collapse
Affiliation(s)
- Momoko Nagai
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Congenital Anomaly Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Ito
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Orthopedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junichi Tajino
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hirotaka Iijima
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shoki Yamaguchi
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Xiangkai Zhang
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoki Aoyama
- Department of Development and Rehabilitation of Motor Function, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Kuroki
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
32
|
Lepetsos P, Papavassiliou AG. ROS/oxidative stress signaling in osteoarthritis. Biochim Biophys Acta Mol Basis Dis 2016; 1862:576-591. [PMID: 26769361 DOI: 10.1016/j.bbadis.2016.01.003] [Citation(s) in RCA: 488] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/07/2015] [Accepted: 01/04/2016] [Indexed: 12/11/2022]
Abstract
Osteoarthritis is the most common joint disorder with increasing prevalence due to aging of the population. Its multi-factorial etiology includes oxidative stress and the overproduction of reactive oxygen species, which regulate intracellular signaling processes, chondrocyte senescence and apoptosis, extracellular matrix synthesis and degradation along with synovial inflammation and dysfunction of the subchondral bone. As disease-modifying drugs for osteoarthritis are rare, targeting the complex oxidative stress signaling pathways would offer a valuable perspective for exploration of potential therapeutic strategies in the treatment of this devastating disease.
Collapse
Affiliation(s)
- Panagiotis Lepetsos
- Fourth Department of Trauma and Orthopaedics, Medical School, National and Kapodistrian University of Athens, 'KAT' Hospital, 14561, Kifissia, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|
33
|
Abstract
Rheumatology was first recognized as a distinct clinical specialty in Korea just 35 years ago. Young professors who were trained in rheumatology in the USA and afterwards returned to Korea contributed substantially to advances in rheumatology clinical practice, educational programmes and research activities. They also established the Korean Rheumatism Association, later renamed the Korean College of Rheumatology. These young rheumatologists had a major role not only in raising the level of clinical and scientific activities, but also in promoting academic exchanges around the Asia-Pacific region, the USA and Europe. Subsequently, Korea's rapid economic growth and high education level enabled rheumatology to advance rapidly. Today, continued efforts are required to raise the standard of clinical and basic research, to optimize clinical practice with regard to new biologic agents, to exploit personalized and targeted therapies for the rheumatic diseases, and to meet the medical demands of Korea's ageing society.
Collapse
Affiliation(s)
- Ho-Youn Kim
- Departments of Rheumatology, Catholic University of Korea and Konkuk University Medical Center, 120-1 Neungdong-ro, Hwayang-dong, Guangjin-gu, Seoul 143-729, Korea
| | - Yeong-Wook Song
- Department of Internal Medicine &Department of Molecular Medicine and Biopharmaceutical Sciences, Medical Research Center, Graduate School of Convergence Science &Technology and College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Korea
| |
Collapse
|
34
|
Yang H, Zhang M, Wang X, Zhang H, Zhang J, Jing L, Liao L, Wang M. TNF Accelerates Death of Mandibular Condyle Chondrocytes in Rats with Biomechanical Stimulation-Induced Temporomandibular Joint Disease. PLoS One 2015; 10:e0141774. [PMID: 26529096 PMCID: PMC4631347 DOI: 10.1371/journal.pone.0141774] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/13/2015] [Indexed: 11/19/2022] Open
Abstract
Objective To determine if temporomandibular joint chondrocyte apoptosis is induced in rats with dental biomechanical stimulation and what a role TNF takes. Methods Thirty-two rats were divided into 4 groups (n = 8/group) and exposed to incisor mal-occlusion induced by unilateral anterior crossbite biomechanical stimulation. Two groups were sampled at 2 or 4 weeks. The other two groups were treated with local injections of a TNF inhibitor or PBS into the temporomandibular joints area at 2 weeks and then sampled at 4 weeks. Twenty-four rats either served as unilateral anterior crossbite mock operation controls (n = 8/group) with sampling at 2 or 4 weeks or received a local injection of the TNF inhibitor at 2 weeks with sampling at 4 weeks. Chondrocytes were isolated from the temporomandibular joints of 6 additional rats and treated with TNF in vitro. Joint samples were assessed using Hematoxylin&eosin, Safranin O, TUNEL and immunohistochemistry staining, real-time PCR, fluorogenic activity assays and Western blot analyses. The isolated chondrocytes were also analyzed by flow cytometry. Results Unilateral anterior crossbite stimulation led to temporomandibular joint cartilage degradation, associated with an increase in TUNEL-positive chondrocytes number, caspase-9 expression levels, and the release of cytochrome c from mitochondria at 2 weeks without changes in TNF and caspase-8 levels until after 4 weeks. TNF stimulated apoptosis of the isolated chondrocytes and up-regulated caspase-8 expression, but did not change caspase-9 expression levels. Local injection of TNF inhibitor down-regulated caspase-8 expression and reduced TUNEL-positive cell number, but did not reverse cartilage thickness reduction, caspase-9 up-regulation or cytochrome c release. Conclusions Unilateral anterior crossbite stimulation induces mitochondrion-mediated apoptosis of articular chondrocytes. TNF accelerated the unilateral anterior crossbite induced chondrocytes apoptosis via death-receptor pathway. However, anti-TNF therapy does not prevent cartilage loss in this model of temporomandibular joint.
Collapse
Affiliation(s)
- Hongxu Yang
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, the Fourth Military Medical University, 145 Changle West Road, Xi’an, China
| | - Mian Zhang
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, the Fourth Military Medical University, 145 Changle West Road, Xi’an, China
| | - Xin Wang
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, the Fourth Military Medical University, 145 Changle West Road, Xi’an, China
| | - Hongyun Zhang
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, the Fourth Military Medical University, 145 Changle West Road, Xi’an, China
| | - Jing Zhang
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, the Fourth Military Medical University, 145 Changle West Road, Xi’an, China
| | - Lei Jing
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, the Fourth Military Medical University, 145 Changle West Road, Xi’an, China
| | - Lifan Liao
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, the Fourth Military Medical University, 145 Changle West Road, Xi’an, China
| | - Meiqing Wang
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, the Fourth Military Medical University, 145 Changle West Road, Xi’an, China
- * E-mail:
| |
Collapse
|
35
|
Liu P, Sun L, Chen H, Sun S, Zhou D, Pang B, Wang J. Lentiviral-mediated multiple gene transfer to chondrocytes promotes chondrocyte differentiation and bone formation in rabbit bone marrow-derived mesenchymal stem cells. Oncol Rep 2015; 34:2618-26. [PMID: 26328747 DOI: 10.3892/or.2015.4241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/02/2015] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to provide a theoretical and experimental foundation on the differentiation of stem cells through the induction of multiple genes. The lentiviral vector carrying TGF-β1 and IL-10 genes was transfected to bone marrow-derived mesenchymal stem cells (BMSCs) which differentiated into chondrogenesis. Healthy New Zealand white rabbits, 2-3 months of age were used in the present study. A 6-8 ml of bone marrow was isolated from the iliac and tibial shaft of each rabbit. The BMSCs suspension was aspired following centrifugation of the bone marrow by percoll separating medium. The BMSCs were primarily cultured and subcultured in vitro, then divided into four groups according to the difference of lentivirus vectors: group A, receiving transforming growth factor β1 (TGF‑β1); group B, receiving TGF-β1 and Interleukin-10 (IL-10); group C, empty vector transfection; and group D, receiving no cell growth factor. Fluorescence expression was detected 12 h after transfecting the lentiviral vector carrying the TGF-β1 and IL-10 gene to BMSCs. The transfection efficiency was approximately 70% with a MOI=100 after 96 h. Expression of SOX-9 aggrecan and Type Ⅱ collagen in groups A-E on day 7 and 14 was detected by RT-PCR and western blot analysis. The expression level of three genes expressed in groups A and C were higher compared to the expression in groups B, D and E. The expression level of the three genes expressed in group B was higher compared to the expression in group D. The expression level of three genes expressed in group A and C showed no statistical difference. Cytokines therefore play an important role in cell proliferation and chondrogenic differentiation. TGF-β1 has a synergistic effect in the differentiation. In addition, IL-10 may have a protective role in the restoration of cartilaginous tissue.
Collapse
Affiliation(s)
- Ping Liu
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Liang Sun
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Hui Chen
- Department of Orthopaedics, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Shui Sun
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250012, P.R. China
| | - Dongsheng Zhou
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250012, P.R. China
| | - Bo Pang
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jian Wang
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
36
|
Aigner T, Schmitz N, Salter DM. Pathogenesis and pathology of osteoarthritis. Rheumatology (Oxford) 2015. [DOI: 10.1016/b978-0-323-09138-1.00175-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
37
|
Xu Y, Dai GJ, Liu Q, Ma XP, Li L, Chen WH, Lin N. Effect of Ermiao Recipe (二妙方) with medicinal guide Angelicae Pubescentis Radix on promoting the homing of bone marrow stem cells to treat cartilage damage in osteoarthritis rats. Chin J Integr Med 2014; 20:600-9. [DOI: 10.1007/s11655-014-1761-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Indexed: 12/15/2022]
|
38
|
Effect of Ermiao Fang with Xixin (Herba Asari Mandshurici) on bone marrow stem cell directional homing to a focal zone in an osteoarthritis rat model. J TRADIT CHIN MED 2014; 34:477-87. [DOI: 10.1016/s0254-6272(15)30050-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Weng T, Xie Y, Yi L, Huang J, Luo F, Du X, Chen L, Liu C, Chen D, Chen L. Loss of Vhl in cartilage accelerated the progression of age-associated and surgically induced murine osteoarthritis. Osteoarthritis Cartilage 2014; 22:1197-205. [PMID: 24999110 PMCID: PMC4150692 DOI: 10.1016/j.joca.2014.06.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 06/05/2014] [Accepted: 06/25/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the role of Vhl in maintaining the integrity of articular cartilage and in the development of experimental osteoarthritis (OA). METHOD Histology of articular cartilage and subchondral bone in both Vhl cKO and WT mice were analyzed by histopathology and micro-CT. Articular cartilage destruction and proteoglycan loss were scored in aged (12-month-old) mice as well as in mice with surgically induced OA. Apoptosis of cartilage in age-related and surgically induced OA was detected with TUNEL assay. Expressions of von Hippel-Lindau (VHL), Fas, LC-3, HIF-1α, HIF-2α, p-mTOR and MMP-13 in the knee joints were analyzed by immunostaining. RESULTS No gross differences in cartilage were observed between Vhl cKO and WT mice at age 4 months. However, Vhl cKO mice displayed accelerated age-associated spontaneous OA and surgically induced OA. Cartilage destruction and proteoglycan loss were observed in the absence of Vhl. In addition, inactivation of Vhl resulted in up-regulation of HIF-2α and increased chondrocyte apoptosis and decreased expression of autophagy during OA development. Immunohistochemical staining also showed that Vhl deficiency led to increased expression of Fas, p-mTOR and MMP-13, and those genes were associated with cell apoptosis, autophagy and cartilage matrix breakdown, respectively. CONCLUSION Loss of Vhl in adult articular cartilage is associated with earlier dysregulation of cartilage homeostasis, characterized by an increased chondrocyte apoptosis, compromised chondrocyte autophagy, and an accelerated age-related and surgery-induced OA development. These results highlight the novel role of Vhl in maintaining joint homeostasis and OA development.
Collapse
Affiliation(s)
- T Weng
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Y Xie
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - L Yi
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - J Huang
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - F Luo
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - X Du
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - L Chen
- Department of Orthopedics, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - C Liu
- Department of Rheumatic Disease, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - D Chen
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - L Chen
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China.
| |
Collapse
|
40
|
Xu Y, Dai GJ, Liu Q, Liu ZL, Song ZQ, Li L, Chen WH, Lin N. Sanmiao formula inhibits chondrocyte apoptosis and cartilage matrix degradation in a rat model of osteoarthritis. Exp Ther Med 2014; 8:1065-1074. [PMID: 25187798 PMCID: PMC4151698 DOI: 10.3892/etm.2014.1862] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 07/14/2014] [Indexed: 12/11/2022] Open
Abstract
Sanmiao formula (SM) is a basic prescription for the treatment of gouty and rheumatoid arthritis that has been used in China over a long period of history. However, there is no evidence associating SM with the treatment of osteoarthritis (OA). In this study, a characterization of the anti-OA effect of SM was conducted using an in vivo rat model induced by anterior cruciate ligament transection and medial meniscus resection (ACLT plus MMx), together with in vitro studies using chondrocytes for further molecular characterization. Rats subjected to ACLT plus MMx were treated with SM at doses of 0.63, 1.25 and 2.5 g/kg per day for three or six weeks. SM treatment significantly inhibited the histopathological changes of articular cartilage damage and synovial inflammation in the rats following ACLT plus MMx. SM (2.5 g/kg) clearly inhibited chondrocyte apoptosis and prevented cartilage matrix degradation, which was indicated by the increased proteoglycan and collagen content, particularly with regard to type II collagen expression in articular cartilage. Furthermore, SM (2.5 g/kg) markedly inhibited the release of interleukin (IL)-1β, tumor necrosis factor-α and nitric oxide in serum, while simultaneously increasing the levels of bone morphogenetic protein-2 and transforming growth factor-β in the circulation. Notably, SM (2.5 g/kg) clearly attenuated the OA-augmented expression of matrix metalloproteinase (MMP)-13 and augmented the OA-reduced expression of tissue inhibitor of metalloproteinase (TIMP)-1 in the knee joints. In addition, SM significantly reduced the proportion of early and late apoptotic and sub-G1 phase cells, and clearly decreased the expression of MMP-13 and increased that of TIMP-1 at the mRNA and protein levels in IL-1β-induced chondrocytes. These findings provide the first evidence that SM effectively treats OA by inhibiting chondrocyte apoptosis, cartilage matrix degradation and the inflammatory response.
Collapse
Affiliation(s)
- Ying Xu
- Institutes of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Guo-Jing Dai
- Institutes of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Qian Liu
- Institutes of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Zhen-Li Liu
- Basic Theory, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Zhi-Qian Song
- Basic Theory, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Li Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, P.R. China
| | - Wei-Heng Chen
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, P.R. China
| | - Na Lin
- Institutes of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| |
Collapse
|
41
|
Protective effect of resveratrol against IL-1β-induced inflammatory response on human osteoarthritic chondrocytes partly via the TLR4/MyD88/NF-κB signaling pathway: an "in vitro study". Int J Mol Sci 2014; 15:6925-40. [PMID: 24758933 PMCID: PMC4013670 DOI: 10.3390/ijms15046925] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 04/02/2014] [Accepted: 04/09/2014] [Indexed: 01/17/2023] Open
Abstract
Resveratrol is a natural polyphenolic compound that prevents inflammation in chondrocytes and animal models of osteoarthritis (OA) via yet to be defined mechanisms. The purpose of this study was to determine whether the protective effect of resveratrol on IL-1β-induced human articular chondrocytes was associated with the TLR4/MyD88/NF-κB signaling pathway by incubating human articular chondrocytes (harvested from osteoarthritis patients) with IL-1β before treatment with resveratrol. Cell viability was evaluated using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and TNFα levels in culture supernatants were measured by ELISA(Enzymelinked immunosorbent assay). The levels of TLR4 and its downstream signaling targets (MyD88 and TRAF6) and IL-1β were assessed by measuring the levels of mRNA and protein expression by real-time RT-PCR and western blot analysis, respectively, in addition to assessing NF-κB activation. In addition, TLR4 siRNA was used to block TLR4 expression in chondrocytes further demonstrating that resveratrol prevented IL-1β-mediated inflammation by TLR4 inhibition. We found that resveratrol prevented IL-1β-induced reduction in cell viability. Stimulation of chondrocytes with IL-1β caused a significant up-regulation of TLR4 and its downstream targets MyD88 and TRAF6 resulting in NF-κB activation associated with the synthesis of IL-1β and TNFα. These IL-1β-induced inflammatory responses were all effectively reversed by resveratrol. Furthermore, activation of NF-κB in chondrocytes treated with TLR4 siRNA was significantly attenuated, but not abolished, and exposure to resveratrol further reduced NF-κB translocation. These data suggested that resveratrol prevented IL-1β-induced inflammation in human articular chondrocytes at least in part by inhibiting the TLR4/MyD88/NF-κB signaling pathway suggesting that resveratrol has the potential to be used as a nutritional supplement to counteract OA symptoms.
Collapse
|
42
|
Peck Y, Ng LY, Goh JYL, Gao C, Wang DA. A three-dimensionally engineered biomimetic cartilaginous tissue model for osteoarthritic drug evaluation. Mol Pharm 2014; 11:1997-2008. [PMID: 24579704 DOI: 10.1021/mp500026x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Osteoarthritis (OA) is primarily characterized by focal cartilage destruction and synovitis. Presently, the pathogenesis of OA remains unclear, and an effective treatment methodology is an unmet need. To this end, a plethora of animal models and monolayer models have been developed, but they are faced with the limitation of high cost and inability to recapitulate a pure hyaline cartilaginous phenotype, which is important in studying the efficacy of therapeutic agents. We have previously developed a living hyaline cartilage graft (LhCG) that accurately presented a pure hyaline cartilage phenotype. Here, through the coculture of lipopolysaccharide (LPS)-activated macrophages with LhCG, we hypothesized that an accurate OA disease model may be developed. Subsequently, this model was evaluated for its accuracy for in vitro drug testing. Results indicated that chondrocyte proliferation and apoptosis were increased in the disease model. Additionally, extracellular matrix (ECM) synthesis increased as indicated by the increased anabolic gene expression levels, such as collagen type II and aggrecan. Up-regulation of matrix metalloproteinase-1 (MMP-1) and MMP-3 genes suggested increased degradative activity, while chondrocytic hypertrophic differentiation was observed. Furthermore, extensive degradation of collagen type II and glycosaminoglycans (GAGs) were also observed. The results of celecoxib treatment on our model showed inhibition of nitric oxide (NO) and prostaglandin E2 (PGE2) production, as well as down-regulation of MMP-1 and MMP-3 expression. Taken together, the results suggested that this coculture model was able to sufficiently mimic the native, diseased OA cartilage, while drug testing results confirmed its suitability as an in vitro model for predicting native cartilage response to drug treatment.
Collapse
Affiliation(s)
- Yvonne Peck
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University , Singapore 637457
| | | | | | | | | |
Collapse
|
43
|
Andia I, Abate M. Knee osteoarthritis: hyaluronic acid, platelet-rich plasma or both in association? Expert Opin Biol Ther 2014; 14:635-49. [PMID: 24533435 DOI: 10.1517/14712598.2014.889677] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Bidirectional interactions between cells and fluidic surroundings regulate cellular functions and maintain tissue or organ architecture. Accordingly, the synovial fluid is the primary source of environmental signals and determines to a great extent the molecular interactions within the joint capsule, both in homeostasis and pathology. AREAS COVERED We provided an update on hyaluronic acid (HA) and platelet-rich plasma (PRP) concepts necessary to build the rationale for creating a combined treatment. The information is based on a PubMed search using the terms 'platelet-rich plasma', 'hyaluronic acid', 'knee pathology', 'knee osteoarthritis' (OA). EXPERT OPINION In OA, a deleterious fluidic microenvironment is established, with presence of HA fragments, catabolic enzymes and inflammatory molecules. The central concept underlying intra-articular injection is to modify deleterious fluidic microenvironments. PRP administration has shown pain remission and function improvement, but less than half of the patients showed clinically significant improvement. PRP exceeds HA, the comparator used in PRP clinical trials, albeit both HA and PRP alleviate symptoms in mild-to-moderate OA patients. Combining PRP and HA may benefit from their dissimilar biological mechanisms and help in controlling delivery and presentation of signaling molecules. Three armed randomized studies, using both HA and PRP as comparators, will provide information about the impact of this approach.
Collapse
Affiliation(s)
- Isabel Andia
- Cruces University Hospital, BioCruces Health Research Institute, Regenerative Medicine Laboratory , 48903 Barakaldo , Spain
| | | |
Collapse
|
44
|
Guo FJ, Xiong Z, Lu X, Ye M, Han X, Jiang R. ATF6 upregulates XBP1S and inhibits ER stress-mediated apoptosis in osteoarthritis cartilage. Cell Signal 2013; 26:332-42. [PMID: 24269637 DOI: 10.1016/j.cellsig.2013.11.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 10/30/2013] [Accepted: 11/11/2013] [Indexed: 12/27/2022]
Abstract
As we previously reported, transcription factor XBP1S enhances BMP2-induced chondrocyte differentiation and acts as a positive mediator of chondrocyte hypertrophy. The purpose of this study was to determine (1) whether XBP1S influences ER stress-mediated apoptosis in osteoarthritis (OA); (2) whether ATF6 regulates IRE1/XBP1 signal pathway in OA cartilage; (3) what are the associated molecules affecting apoptosis in osteoarthritis and the molecular events underlying this process. Herein, we examined and found that ER stress-associated molecules were activated in OA patients, specifically XBP1S splice and expression were increased markedly by TNF-α and IL-1β treatments. Transcription factor ATF6 can specifically bind to the promoter of XBP1 gene and enhance the expression of XBP1S spliced by IRE1α in osteoarthritis cartilage. Furthermore, siXBP1S can enhance ER stress-mediated apoptosis and main matrix degradation in osteoarthritis. Whereas AdXBP1S can inhibit ER stress-mediated apoptosis and TNFα induced nitrite production in OA cartilage. In a word, our observations demonstrate the importance of XBP1S in osteoarthritis. ATF6 and IRE1α can regulate endogenous XBP1S gene expression synergistically in OA cartilage. More significantly, XBP1S was a negative regulator of apoptosis in osteoarthritis by affecting caspase 3, caspase 9, caspase 12, p-JNK1, and CHOP.
Collapse
Affiliation(s)
- Feng-Jin Guo
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China.
| | - Zhangyuan Xiong
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Xiaojie Lu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Mengliang Ye
- Department of Health Statistics, College of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Xiaofeng Han
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Rong Jiang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
45
|
Wang XD, Kou XX, Meng Z, Bi RY, Liu Y, Zhang JN, Zhou YH, Gan YH. Estrogen aggravates iodoacetate-induced temporomandibular joint osteoarthritis. J Dent Res 2013; 92:918-24. [PMID: 23934157 DOI: 10.1177/0022034513501323] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is clinically characterized by female preponderance, with a female-to-male ratio of more than 2:1; however, the underlying mechanism remains obscure. We examined the effects of estrogen on TMJOA induced by monosodium iodoacetate. Female rats were randomly and equally divided into 5 groups: control, sham-ovariectomized, and ovariectomized rats treated, respectively, with 17β-estradiol (E2) at doses of 0 µg, 20 µg, and 80 µg/day until the end of the experiment. After induction of TMJOA, TMJs were evaluated by histopathology and microCT, and the expression of Fas, FasL, caspase 3, and caspase 8 was evaluated by real-time polymerase chain-reaction or immunohistochemistry. Another 5 groups of female rats were used to evaluate the effect of estrogen receptor antagonist ICI 182780 on E2 effects on TMJOA, when injected intraperitoneally into the control, sham-ovariectomized, and 80-µg-E2-treated groups. We found that E2 potentiated cartilage degradation and subchondral bone erosion in iodoacetate-induced TMJOA. E2 also potentiated mRNA expression of Fas, FasL, caspase 3, and caspase 8 in the condylar cartilage. Moreover, the estrogen receptor antagonist partially blocked E2 effects on TMJOA. These findings suggest that E2 could aggravate TMJOA, which may be an important mechanism underlying the sexual dimorphism of TMJOA.
Collapse
Affiliation(s)
- X D Wang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Cheng W, Wu D, Zuo Q, Wang Z, Fan W. Ginsenoside Rb1 prevents interleukin-1 beta induced inflammation and apoptosis in human articular chondrocytes. INTERNATIONAL ORTHOPAEDICS 2013; 37:2065-70. [PMID: 23835558 PMCID: PMC3779573 DOI: 10.1007/s00264-013-1990-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 06/17/2013] [Indexed: 11/24/2022]
Abstract
PURPOSE Osteoarthritis (OA) is an age-related joint disease that is characterised by the degeneration of articular chondrocytes. Ginsenosides, the most important pharmacological ingredients of ginseng, have been proven to provide effective therapy for neurodegenerative diseases and can inhibit cell apoptosis. We investigated whether ginsenoside Rb1 can modulate inflammation and apoptosis in human chondrocytes. METHODS Chondrocytes were isolated from OA patients undergoing total knee replacement surgery. Apoptosis was assessed by TUNEL (terminal deoxyribonucleotide transferasemediated dUTP nick end-labelling)-positive staining. Levels of PGE2 and NO(2)- were detected by ELISA. Gene expression levels were measured for type II collagen (Col2A1), aggrecan, MMP-13, COX-2, iNOS, caspase-3, and PARP. RESULTS The results showed that TUNEL-positive staining chondrocytes were decreased by Rb1 compared with IL-1β. Both 10 or 100 μg/ml Rb1 inhibited the effect of IL-1β on chondrocytes by decreasing levels of PGE2, NO(2)-, MMP-13, COX-2, iNOS, caspase-3 and PARP and increasing aggrecan and Col2A1 gene expression levels, to block IL-1β-induced cell inflammation and apoptosis. CONCLUSIONS The results suggest that Rb1 possesses potential anti-inflammatory and anti-apoptotic properties in human chondrocytes, possibly by binding to oestrogen receptors to exert its pharmacological effects.
Collapse
Affiliation(s)
- Wendan Cheng
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guang Zhou Road, Nanjing, 210000, China
| | | | | | | | | |
Collapse
|
47
|
Puglia C, Cardile V, Panico AM, Crascì L, Offerta A, Caggia S, Drechsler M, Mariani P, Cortesi R, Esposito E. Evaluation of Monooleine Aqueous Dispersions as Tools for Topical Administration of Curcumin: Characterization, In Vitro and Ex-Vivo Studies. J Pharm Sci 2013; 102:2349-61. [DOI: 10.1002/jps.23605] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/16/2013] [Accepted: 04/24/2013] [Indexed: 12/30/2022]
|
48
|
Croxford AM, Whittingham S, McNaughton D, Nandakumar KS, Holmdahl R, Rowley MJ. Type II collagen-specific antibodies induce cartilage damage in mice independent of inflammation. ACTA ACUST UNITED AC 2013; 65:650-9. [DOI: 10.1002/art.37805] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 11/15/2012] [Indexed: 12/18/2022]
|
49
|
Apoptosis-related Fas and FasL gene polymorphisms' associations with knee osteoarthritis. Rheumatol Int 2013; 33:2039-43. [PMID: 23392773 DOI: 10.1007/s00296-013-2688-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
Abstract
To investigate the associations between Fas and FasL gene polymorphisms and susceptibility to knee osteoarthritis. Genomic DNA was obtained from 146 patients with knee osteoarthritis and 102 healthy controls. Genotype distributions and allelic frequencies of four polymorphisms of Fas (-670 G>A rs1800682, -1377 G>A rs2234767) and FasL (IVS2nt-124 A>G rs5030772, -844 T>C rs763110) genes were compared between the groups. Thereafter, this association was investigated between patients and controls of the same sex. There were significant differences between patients with knee osteoarthritis and controls regarding the genotype distributions and allelic frequencies of Fas-1377 G>A polymorphism (P = 0.0001 and P = 0.005, respectively). The Fas-1377 GG genotype and G allele were significantly more frequent in patients with knee osteoarthritis than in controls. Genotype distributions and allelic frequencies of Fas-670 G>A, FasL-844 T>C, and FasL IVS2nt-124 A>G polymorphisms did not differ between the groups (P > 0.05). However, there were no significant differences between patients and controls of the same sex (P > 0.05). These findings suggest that the Fas-1377 G>A polymorphism in the Fas gene related with apoptosis may contribute to susceptibility to knee osteoarthritis in the Turkish population. There is a need for further studies to evaluate the role of apoptosis in large cohorts.
Collapse
|
50
|
Lee CM, Kisiday JD, McIlwraith CW, Grodzinsky AJ, Frisbie DD. Synoviocytes protect cartilage from the effects of injury in vitro. BMC Musculoskelet Disord 2013; 14:54. [PMID: 23374282 PMCID: PMC3620939 DOI: 10.1186/1471-2474-14-54] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 01/22/2013] [Indexed: 11/24/2022] Open
Abstract
Background It is well documented that osteoarthritis (OA) can develop following traumatic joint injury and is the leading cause of lameness and subsequent wastage of equine athletes. Although much research of injury induced OA has focused on cartilage, OA is a disease that affects the whole joint organ. Methods In this study, we investigated the impact of synovial cells on the progression of an OA phenotype in injured articular cartilage. Injured and control cartilage were cultured in the presence of synoviocytes extracted from normal equine synovium. Synoviocytes and cartilage were evaluated for catabolic and anabolic gene expression. The cartilage was also evaluated histologically for loss of extracellular matrix molecules, chondrocyte cell death and chondrocyte cluster formation. Results The results indicate synoviocytes exert both positive and negative effects on injured cartilage, but ultimately protect injured cartilage from progressing toward an OA phenotype. Synoviocytes cultured in the presence of injured cartilage had significantly reduced expression of aggrecanase 1 and 2 (ADAMTS4 and 5), but also had increased expression of matrix metalloproteinase (MMP) -1 and reduced expression of tissue inhibitor of metalloproteinases 1 (TIMP-1). Injured cartilage cultured with synoviocytes had increased expression of both collagen type 2 and aggrecanase 2. Histologic examination of cartilage indicated that there was a protective effect of synoviocytes on injured cartilage by reducing the incidence of both focal cell loss and chondrocyte cluster formation, two major hallmarks of OA. Conclusions These results support the importance of evaluating more than one synovial joint tissue when investigating injury induced OA.
Collapse
Affiliation(s)
- Christina M Lee
- Orthopaedic Research Center, Department of Clinical Sciences, College of Veterinary Medicine, Colorado State University, 300 West Drake Rd,, Fort Collins, Colorado CO 80523, USA
| | | | | | | | | |
Collapse
|