1
|
Hu N, Wang J, Ju B, Li Y, Fan P, Jin X, Kang X, Wu S. Recent advances of osteoimmunology research in rheumatoid arthritis: From single-cell omics approach. Chin Med J (Engl) 2023:00029330-990000000-00608. [PMID: 37166215 DOI: 10.1097/cm9.0000000000002678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Indexed: 05/12/2023] Open
Abstract
ABSTRACT Cellular immune responses as well as generalized and periarticular bone loss are the key pathogenic features of rheumatoid arthritis (RA). Under the pathological conditions of RA, dysregulated inflammation and immune processes tightly interact with skeletal system, resulting in pathological bone damage via inhibition of bone formation or induction of bone resorption. Single-cell omics technologies are revolutionary tools in the field of modern biological research.They enable the display of the state and function of cells in various environments from a single-cell resolution, thus making it conducive to identify the dysregulated molecular mechanisms of bone destruction in RA as well as the discovery of potential therapeutic targets and biomarkers. Here, we summarize the latest findings of single-cell omics technologies in osteoimmunology research in RA. These results suggest that single-cell omics have made significant contributions to transcriptomics and dynamics of specific cells involved in bone remodeling, providing a new direction for our understanding of cellular heterogeneity in the study of osteoimmunology in RA.
Collapse
Affiliation(s)
- Nan Hu
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jing Wang
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Bomiao Ju
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yuanyuan Li
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ping Fan
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xinxin Jin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Xiaomin Kang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Shufang Wu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
2
|
Speacht TL, Lang CH, Donahue HJ. Soluble RANKL exaggerates hindlimb suspension-induced osteopenia but not muscle protein balance. J Orthop Res 2021; 39:1860-1869. [PMID: 33222219 PMCID: PMC8140066 DOI: 10.1002/jor.24917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/02/2020] [Accepted: 11/19/2020] [Indexed: 02/04/2023]
Abstract
We examined the hypothesis that exaggerating unloading-induced bone loss using a combination of hindlimb suspension (HLS) and exogenous injections of receptor activator of nuclear factor-κB ligand (RANKL) also exaggerates gastrocnemius and quadriceps muscle loss. Forty, male C57Bl/6J mice (16 weeks) were subjected to HLS or normal ambulation (ground control, GC) for 14 days. Mice received three intraperitoneal injections of either human recombinant soluble RANKL or phosphate-buffered saline as control (n = 10/group) at 24 h intervals starting on Day 1 of HLS. GC + RANKL and HLS mice exhibited similar decreases in trabecular bone volume and density in both proximal tibias and distal femurs. However, RANKL affected trabecular number, separation, and connectivity density, while HLS decreased trabecular thickness. The combination of RANKL and HLS exacerbated these changes. Similarly, GC + RANKL and HLS mice saw comparable decreases in cortical bone volume, thickness, and strength in femur midshafts, and combination treatment exacerbated these changes. Plasma concentrations of P1NP were increased in both groups receiving RANKL, while CTX concentrations were unchanged. HLS decreased gastrocnemius weight and was associated with a reduction in global protein synthesis, and no change in proteasome activity. This change was correlated with a decrease in S6K1 and S6 phosphorylation, but no change in 4E-BP1 phosphorylation. Injection of RANKL did not alter gastrocnemius or quadriceps muscle protein metabolism in GC or HLS mice. Our results suggest that injection of soluble RANKL exacerbates unloading-induced bone loss, but not unloading-induced gastrocnemius or quadriceps muscle loss.
Collapse
Affiliation(s)
- Toni L. Speacht
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania, USA
| | - Charles H. Lang
- Department of Cellular and Molecular Physiology, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania, USA
| | - Henry J. Donahue
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania, USA,Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
3
|
Hayer S, Vervoordeldonk MJ, Denis MC, Armaka M, Hoffmann M, Bäcklund J, Nandakumar KS, Niederreiter B, Geka C, Fischer A, Woodworth N, Blüml S, Kollias G, Holmdahl R, Apparailly F, Koenders MI. 'SMASH' recommendations for standardised microscopic arthritis scoring of histological sections from inflammatory arthritis animal models. Ann Rheum Dis 2021; 80:714-726. [PMID: 33602797 PMCID: PMC8142455 DOI: 10.1136/annrheumdis-2020-219247] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/06/2021] [Accepted: 01/21/2021] [Indexed: 11/30/2022]
Abstract
Animal models for inflammatory arthritides such as rheumatoid arthritis (RA) and psoriatic arthritis are widely accepted and frequently used to identify pathological mechanisms and validate novel therapeutic strategies. Unfortunately, many publications reporting on these animal studies lack detailed description and appropriate assessment of the distinct histopathological features of arthritis: joint inflammation, cartilage damage and bone erosion. Therefore, the European consortium BeTheCure, consisting of 38 academic and industrial partners from 15 countries, set as goal to standardise the histological evaluation of joint sections from animal models of inflammatory arthritis. The consensual approach of a task force including 16 academic and industrial scientists as well as laboratory technicians has resulted in the development of the Standardised Microscopic Arthritis Scoring of Histological sections (‘SMASH’) recommendations for a standardised processing and microscopic scoring of the characteristic histopathological features of arthritis, exemplified by four different rodent models for arthritis: murine collagen-induced arthritis, collagen–antibody-induced arthritis, human tumour necrosis factor transgenic Tg197 mice and rat pristane-induced arthritis, applicable to any other inflammatory arthritis model. Through standardisation, the SMASH recommendations are designed to improve and maximise the information derived from in vivo arthritis experiments and to promote reproducibility and transparent reporting on such studies. In this manuscript, we will discuss and provide recommendations for analysis of histological joint sections: identification of the regions of interest, sample preparation, staining procedures and quantitative scoring methods. In conclusion, awareness of the different features of the arthritis pathology in animal models of inflammatory arthritis is of utmost importance for reliable research outcome, and the standardised histological processing and scoring methods in these SMASH recommendations will help increase uniformity and reproducibility in preclinical research on inflammatory arthritis.
Collapse
Affiliation(s)
- Silvia Hayer
- Department of Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Wien, Austria
| | | | | | - Marietta Armaka
- Department of Immunology, Biomedical Sciences Research Centre 'Alexander Fleming', Vari, Greece
| | - Markus Hoffmann
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Johan Bäcklund
- Department of Medical Biochemistry and Biophysics, Division of Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Kutty Selva Nandakumar
- Department of Medical Biochemistry and Biophysics, Division of Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Birgit Niederreiter
- Department of Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Wien, Austria
| | | | - Anita Fischer
- Department of Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Wien, Austria.,Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| | | | - Stephan Blüml
- Department of Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Wien, Austria
| | - George Kollias
- Department of Immunology, Biomedical Sciences Research Centre 'Alexander Fleming', Vari, Greece.,Department of Physiology, Medical School, University of Athens, Athens, Greece
| | - Rikard Holmdahl
- Department of Medical Biochemistry and Biophysics, Division of Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | | | - Marije I Koenders
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Rheumatoid Arthritis in the View of Osteoimmunology. Biomolecules 2020; 11:biom11010048. [PMID: 33396412 PMCID: PMC7823493 DOI: 10.3390/biom11010048] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/23/2020] [Accepted: 12/26/2020] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis is characterized by synovial inflammation and irreversible bone erosions, both highlighting the immense reciprocal relationship between the immune and bone systems, designed osteoimmunology two decades ago. Osteoclast-mediated resorption at the interface between synovium and bone is responsible for the articular bone erosions. The main triggers of this local bone resorption are autoantibodies directed against citrullinated proteins, as well as pro-inflammatory cytokines and the receptor activator of nuclear factor-κB ligand, that regulate both the formation and activity of the osteoclast, as well as immune cell functions. In addition, local bone loss is due to the suppression of osteoblast-mediated bone formation and repair by inflammatory cytokines. Similarly, inflammation affects systemic bone remodeling in rheumatoid arthritis with the net increase in bone resorption, leading to systemic osteoporosis. This review summarizes the substantial progress that has been made in understanding the pathophysiology of systemic and local bone loss in rheumatoid arthritis.
Collapse
|
5
|
Osteoclasts and their circulating precursors in rheumatoid arthritis: Relationships with disease activity and bone erosions. Bone Rep 2020; 12:100282. [PMID: 32478145 PMCID: PMC7251539 DOI: 10.1016/j.bonr.2020.100282] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 12/29/2022] Open
Abstract
Patients with rheumatoid arthritis (RA) have very different outcomes, particularly with regard to bone erosions. Since osteoclasts are responsible for bone destruction adjacent to rheumatoid synovium, profiling osteoclasts from circulating precursors in RA could help identify patients at risk for bone destruction. In this study, we sought to determine whether the functional characteristics of osteoclasts generated from their blood precursors were modified by RA activity or were intrinsic to osteoclasts and associated with the RA phenotype (erosive or not). Osteoclasts were generated in vitro from peripheral blood mononuclear cells (PBMCs) of subjects with RA (n = 140), as well as sex- and age-matched healthy controls (n = 101). Osteoclastic parameters were analyzed at baseline and during the follow-up for up to 4 years, with regular assessment of RA activity, bone erosions, and bone mineral density (BMD). As a validation cohort, we examined RA patients from the Early Undifferentiated PolyArthritis (EUPA) study (n = 163). The proportion of CD14+ PBMC was higher in RA than in control subjects, but inversely correlated with the 28-joint disease activity score (DAS28). Also surprisingly, in osteoclast cultures from PBMCs, active RA was associated with lower osteoclastogenic capacity, while in vitro bone resorption per osteoclast and resistance to apoptosis were similar in both active and quiescent RA. In a small subgroup analysis, osteoclasts from subjects with recent RA that had progressed at four years to an erosive RA exhibited at baseline greater resistance to apoptosis than those from patients remaining non-erosive. Our findings establish that when RA is active, circulating monocytes have a reduced potential to generate osteoclasts from PBMCs in vitro. In addition, osteoclasts associated with erosive disease had resistance to apoptosis from the start of RA. Osteoclasts are derived in vitro from circulating monocytes in rheumatoid arthritis. Blood CD14+ monocytes (%) are higher but inversely correlated with disease activity. Active rheumatoid arthritis is associated with reduced osteoclast formation in vitro. Inflammation alters the ability to generate osteoclasts from circulating monocytes. Osteoclast resistance to apoptosis is stable and associated with long-term erosions.
Collapse
|
6
|
Coury F, Peyruchaud O, Machuca-Gayet I. Osteoimmunology of Bone Loss in Inflammatory Rheumatic Diseases. Front Immunol 2019; 10:679. [PMID: 31001277 PMCID: PMC6456657 DOI: 10.3389/fimmu.2019.00679] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/12/2019] [Indexed: 12/14/2022] Open
Abstract
Over the past two decades, the field of osteoimmunology has emerged in response to a range of evidence demonstrating the reciprocal relationship between the immune system and bone. In particular, localized bone loss, in the form of joint erosions and periarticular osteopenia, as well as systemic osteoporosis, caused by inflammatory rheumatic diseases including rheumatoid arthritis, the prototype of inflammatory arthritis has highlighted the importance of this interplay. Osteoclast-mediated resorption at the interface between synovium and bone is responsible for the joint erosion seen in patients suffering from inflammatory arthritis. Clinical studies have helped to validate the impact of several pathways on osteoclast formation and activity. Essentially, the expression of pro-inflammatory cytokines as well as Receptor Activator of Nuclear factor κB Ligand (RANKL) is, both directly and indirectly, increased by T cells, stimulating osteoclastogenesis and resorption through a crucial regulator of immunity, the Nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1). Furthermore, in rheumatoid arthritis, autoantibodies, which are accurate predictors both of the disease and associated structural damage, have been shown to stimulate the differentiation of osteoclasts, resulting in localized bone resorption. It is now also evident that osteoblast-mediated bone formation is impaired by inflammation both in joints and the skeleton in rheumatoid arthritis. This review summarizes the substantial progress that has been made in understanding the pathophysiology of bone loss in inflammatory rheumatic disease and highlights therapeutic targets potentially important for the cure or at least an alleviation of this destructive process.
Collapse
Affiliation(s)
- Fabienne Coury
- INSERM, UMR1033 LYOS, Lyon, France.,University Claude Bernard Lyon I, Lyon, France.,Department of Rheumatology, Lyon Sud Hospital, Lyon, France
| | - Olivier Peyruchaud
- INSERM, UMR1033 LYOS, Lyon, France.,University Claude Bernard Lyon I, Lyon, France
| | - Irma Machuca-Gayet
- INSERM, UMR1033 LYOS, Lyon, France.,University Claude Bernard Lyon I, Lyon, France
| |
Collapse
|
7
|
Lombardi MS, Gilliéron C, Berkelaar M, Gabay C. Salt-inducible kinases (SIK) inhibition reduces RANKL-induced osteoclastogenesis. PLoS One 2017; 12:e0185426. [PMID: 28973003 PMCID: PMC5626034 DOI: 10.1371/journal.pone.0185426] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/12/2017] [Indexed: 11/23/2022] Open
Abstract
Osteoclasts are large multinucleated cells responsible for bone resorption. Excessive inflammatory activation of osteoclasts leads to bony erosions, which are the hallmark of several diseases such as rheumatoid arthritis (RA). Salt-inducible kinases (SIK) constitute a subfamily of kinases comprising three members (SIK1, -2, and -3). Inhibition of SIK kinase activity induces an anti-inflammatory phenotype in macrophages. Since osteoclasts originate from precursors of macrophage origin, we hypothesized a role of SIK in osteoclastogenesis. We analyzed SIK1, -2 and -3 expression and function in osteoclast differentiation using the mouse macrophage cell line RAW264.7 and bone marrow-derived macrophages (BMM). We show that all three SIK are expressed in fully differentiated osteoclasts and that in BMM-derived osteoclasts there is an increased expression of SIK1 and SIK3 proteins. Interestingly, the pan-SIK inhibitor HG-9-91-01 significantly inhibited osteoclastogenesis by dose dependently reducing osteoclast differentiation markers (i.e. CathepsinK, MMP-9 and TRAP) and bone resorbing activity. Analysis of the signaling pathways activated by RANKL in RAW cells showed that SIK inhibitors did not affect RANKL-induced ERK1/2, JNK, p38 or NF-κB activation, but induced a significant downregulation in c-Fos and NFATc1 protein levels, the two main transcription factors involved in the regulation of osteoclast-specific genes. Moreover, SIK inhibition partially increased the proteasome-mediated degradation of c-Fos. SIK2 and SIK3 knockout RAW cells were generated by the CRISPR/Cas9 approach. SIK2 KO and, to a lesser extent, SIK3 KO recapitulated the effect of SIK small molecule inhibitor, thus confirming the specificity of the effect of SIK inhibition on the reduction of osteoclastogenesis. Overall, our results support the notion that the SIK signaling pathway plays a significant role among the check-points controlling osteoclastogenesis. SIK kinase inhibitors could thus represent a potential novel therapy to prevent bone erosions.
Collapse
Affiliation(s)
- Maria Stella Lombardi
- Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, University of Geneva School of Medicine, Geneva, Switzerland
- * E-mail: (CGa); (MSL)
| | - Corine Gilliéron
- Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, University of Geneva School of Medicine, Geneva, Switzerland
| | - Majoska Berkelaar
- Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, University of Geneva School of Medicine, Geneva, Switzerland
| | - Cem Gabay
- Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, University of Geneva School of Medicine, Geneva, Switzerland
- * E-mail: (CGa); (MSL)
| |
Collapse
|
8
|
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that primarily affects the joints. Self-reactive B and T lymphocytes cooperate to promote antibody responses against self proteins and are major drivers of disease. T lymphocytes also promote RA independently of B lymphocytes mainly through the production of key inflammatory cytokines, such as IL-17, that promote pathology. While the innate signals that initiate self-reactive adaptive immune responses are poorly understood, the disease is predominantly caused by inflammatory cellular infiltration and accumulation in articular tissues, and by bone erosions driven by bone-resorbing osteoclasts. Osteoclasts are giant multinucleated cells formed by the fusion of multiple myeloid cells that require short-range signals, such as the cytokines MCSF and RANKL, for undergoing differentiation. The recruitment and positioning of osteoclast precursors to sites of osteoclast differentiation by chemoattractants is an important point of control for osteoclastogenesis and bone resorption. Recently, the GPCR EBI2 and its oxysterol ligand 7a, 25 dihydroxycholesterol, were identified as important regulators of osteoclast precursor positioning in proximity to bone surfaces and of osteoclast differentiation under homeostasis. In chronic inflammatory diseases like RA, osteoclast differentiation is also driven by inflammatory cytokines such as TNFa and IL-1, and can occur independently of RANKL. Finally, there is growing evidence that the chemotactic signals guiding osteoclast precursors to inflamed articular sites contribute to disease and are of great interest. Furthering our understanding of the complex osteoimmune cell interactions should provide new avenues of therapeutic intervention for RA.
Collapse
|
9
|
Shim KS, Lee CJ, Yim NH, Gu MJ, Ma JY. Alpinia officinarum Stimulates Osteoblast Mineralization and Inhibits Osteoclast Differentiation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:1255-1271. [PMID: 27627921 DOI: 10.1142/s0192415x16500701] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Alpinia officinarum rhizome has been used as a traditional herbal remedy to treat inflammatory and internal diseases. Based on the previously observed inhibitory effect of A. officinarum rhizome in an arthritis model, we evaluated whether a water extract of A. officinarum rhizome (WEAO) would enhance in vitro osteoblast mineralization using calvarial osteoblast precursor cells or would inhibit in vitro osteoclast differentiation and bone resorption using bone marrow derived macrophages. In osteoblasts, WEAO enhanced the mRNA levels of transcription factor (runt-related transcription factor 2, smad1, smad5, and junB) and marker (bone morphogenetic protein-2, collagen type 1alpha1, and osteocalcin) genes related to osteoblast mineralization, consistent with increased alizarin red S staining intensity. WEAO markedly inhibited osteoclast differentiation by suppressing the receptor activator for nuclear factor-[Formula: see text]B ligand-induced downregulation of inhibitor of DNA binding 2 and V-maf musculoaponeurotic fibrosarcoma oncogene homolog B and the phosphorylation of c-Jun N-terminal kinase, p38, nuclear factor-[Formula: see text]B, c-Src, and Bruton's tyrosine kinase to induce nuclear factor of activated T cells cytoplasmic 1 expression. WEAO also suppressed the resorbing activity of mature osteoclasts by altering actin ring formation. Therefore, the results of this study demonstrate that WEAO stimulates osteoblast mineralization and inhibits osteoclast differentiation. Thus, WEAO may be a promising herbal candidate to treat or prevent pathological bone diseases by regulating the balance between osteoclast and osteoblast activity.
Collapse
Affiliation(s)
- Ki-Shuk Shim
- 1 Korea Medicine Application Center, Korea Institute of Oriental Medicine, 70 Cheomdanro Dong-gu, Daegu, Republic of Korea
| | - Chung-Jo Lee
- 1 Korea Medicine Application Center, Korea Institute of Oriental Medicine, 70 Cheomdanro Dong-gu, Daegu, Republic of Korea
| | - Nam-Hui Yim
- 1 Korea Medicine Application Center, Korea Institute of Oriental Medicine, 70 Cheomdanro Dong-gu, Daegu, Republic of Korea
| | - Min Jung Gu
- 1 Korea Medicine Application Center, Korea Institute of Oriental Medicine, 70 Cheomdanro Dong-gu, Daegu, Republic of Korea
| | - Jin Yeul Ma
- 1 Korea Medicine Application Center, Korea Institute of Oriental Medicine, 70 Cheomdanro Dong-gu, Daegu, Republic of Korea
| |
Collapse
|
10
|
Houben A, Kostanova-Poliakova D, Weissenböck M, Graf J, Teufel S, von der Mark K, Hartmann C. β-catenin activity in late hypertrophic chondrocytes locally orchestrates osteoblastogenesis and osteoclastogenesis. Development 2016; 143:3826-3838. [PMID: 27621061 PMCID: PMC5087647 DOI: 10.1242/dev.137489] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/24/2016] [Indexed: 12/21/2022]
Abstract
Trabecular bone formation is the last step in endochondral ossification. This remodeling process of cartilage into bone involves blood vessel invasion and removal of hypertrophic chondrocytes (HTCs) by chondroclasts and osteoclasts. Periosteal- and chondrocyte-derived osteoprogenitors utilize the leftover mineralized HTC matrix as a scaffold for primary spongiosa formation. Here, we show genetically that β-catenin (encoded by Ctnnb1), a key component of the canonical Wnt pathway, orchestrates this remodeling process at multiple levels. Conditional inactivation or stabilization of β-catenin in HTCs by a Col10a1-Cre line locally modulated osteoclastogenesis by altering the Rankl:Opg ratio in HTCs. Lack of β-catenin resulted in a severe decrease of trabecular bone in the embryonic long bones. Gain of β-catenin activity interfered with removal of late HTCs and bone marrow formation, leading to a continuous mineralized hypertrophic core in the embryo and resulting in an osteopetrotic-like phenotype in adult mice. Furthermore, β-catenin activity in late HTCs is required for chondrocyte-derived osteoblastogenesis at the chondro-osseous junction. The latter contributes to the severe trabecular bone phenotype in mutants lacking β-catenin activity in HTCs. Summary: The conditional modulation of β-catenin activity in late hypertrophic chondrocytes locally regulates osteoclast differentiation and the transdifferentiation of chondrocytes into osteoblasts.
Collapse
Affiliation(s)
- Astrid Houben
- Institute of Experimental Musculoskeletal Medicine, Medical Faculty of the University of Münster, Domagkstrasse 3, 48149 Münster, Germany
| | | | - Martina Weissenböck
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | - Julian Graf
- Institute of Experimental Musculoskeletal Medicine, Medical Faculty of the University of Münster, Domagkstrasse 3, 48149 Münster, Germany
| | - Stefan Teufel
- Institute of Experimental Musculoskeletal Medicine, Medical Faculty of the University of Münster, Domagkstrasse 3, 48149 Münster, Germany
| | - Klaus von der Mark
- Dept. of Experimental Medicine I, University of Erlangen-Nürnberg, Glückstrasse 6, 91054 Erlangen, Germany
| | - Christine Hartmann
- Institute of Experimental Musculoskeletal Medicine, Medical Faculty of the University of Münster, Domagkstrasse 3, 48149 Münster, Germany
| |
Collapse
|
11
|
Alves CH, Farrell E, Vis M, Colin EM, Lubberts E. Animal Models of Bone Loss in Inflammatory Arthritis: from Cytokines in the Bench to Novel Treatments for Bone Loss in the Bedside-a Comprehensive Review. Clin Rev Allergy Immunol 2016; 51:27-47. [PMID: 26634933 PMCID: PMC4961736 DOI: 10.1007/s12016-015-8522-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Throughout life, bone is continuously remodelled. Bone is formed by osteoblasts, from mesenchymal origin, while osteoclasts induce bone resorption. This process is tightly regulated. During inflammation, several growth factors and cytokines are increased inducing osteoclast differentiation and activation, and chronic inflammation is a condition that initiates systemic bone loss. Rheumatoid arthritis (RA) is a chronic inflammatory auto-immune disease that is characterised by active synovitis and is associated with early peri-articular bone loss. Peri-articular bone loss precedes focal bone erosions, which may progress to bone destruction and disability. The incidence of generalised osteoporosis is associated with the severity of arthritis in RA and increased osteoporotic vertebral and hip fracture risk. In this review, we will give an overview of different animal models of inflammatory arthritis related to RA with focus on bone erosion and involvement of pro-inflammatory cytokines. In addition, a humanised endochondral ossification model will be discussed, which can be used in a translational approach to answer osteoimmunological questions.
Collapse
Affiliation(s)
- C Henrique Alves
- Department of Rheumatology, Erasmus MC, University Medical Center, Wytemaweg 80, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Eric Farrell
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus MC, University Medical Center, Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Marijn Vis
- Department of Rheumatology, Erasmus MC, University Medical Center, Wytemaweg 80, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Edgar M Colin
- Department of Rheumatology, Erasmus MC, University Medical Center, Wytemaweg 80, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Rheumatology, ZGT Almelo, Zilvermeeuw 1, 7600 SZ, Almelo, The Netherlands
| | - Erik Lubberts
- Department of Rheumatology, Erasmus MC, University Medical Center, Wytemaweg 80, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
12
|
Chen N, Gao RF, Yuan FL, Zhao MD. Recombinant Human Endostatin Suppresses Mouse Osteoclast Formation by Inhibiting the NF-κB and MAPKs Signaling Pathways. Front Pharmacol 2016; 7:145. [PMID: 27313530 PMCID: PMC4887464 DOI: 10.3389/fphar.2016.00145] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/17/2016] [Indexed: 11/14/2022] Open
Abstract
Rheumatoid arthritis is an autoimmune disease characterized by synovial hyperplasia and progressive joint destruction. As reported previously, recombinant human endostatin (rhEndostatin) is associated with inhibition of joint bone destruction present in rat adjuvant-induced arthritis; however, the effect of rhEndostatin on bone destruction is not known. This study was designed to assess the inhibitory effect and mechanisms of rhEndostatin on formation and function of osteoclasts in vitro, and to gain insight into the mechanism underlying the inhibitory effect of bone destruction. Bone marrow-derived macrophages isolated from BALB/c mice were stimulated with receptor activator of NF-κB ligand (RANKL) and macrophage colony-stimulating factor to establish osteoclast formation. Osteoclast formation was determined by TRAP staining. Cell viability of BMMs affected by rhEndostatin was determined using a MTT assay. Bone resorption was examined with a bone resorption pits assay. The expression of osteoclast-specific markers was analyzed using quantitative real-time PCR. The related signaling pathways were examined using a Luciferase reporter assay and western blot analysis. Indeed, rhEndostatin showed a significant reduction in the number of osteoclast-like cells and early-stage bone resorption. Moreover, molecular analysis demonstrated that rhEndostatin attenuated RANKL-induced NF-κB signaling by inhibiting the phosphorylation of IκBα and NF-κB p65 nuclear translocation. Furthermore, rhEndostatin significantly inhibited the activation of RANKL-dependent mitogen-activated protein kinases, such as ERK1/2, JNK, and p38. Hence, we demonstrated for the first time that preventing the formation and function of osteoclasts is an important anti-bone destruction mechanism of rhEndostatin, which might be useful in the prevention and treatment of bone destruction in RA.
Collapse
Affiliation(s)
- Nong Chen
- Department of Orthopaedic Surgery, Zhongshan Hospital, Qingpu Branch, Fudan University Shanghai, China
| | - Ru-Feng Gao
- Department of Orthopaedic Surgery, Zhongshan Hospital, Qingpu Branch, Fudan University Shanghai, China
| | - Feng-Lai Yuan
- Department of Orthopaedics and Central Laboratory, The Third Hospital Affiliated to Nantong University Wuxi, China
| | - Ming-Dong Zhao
- Department of Orthopaedics, Jinshan Hospital, Fudan University Shanghai, China
| |
Collapse
|
13
|
Scales HE, Ierna M, Smith KM, Ross K, Meiklejohn GR, Patterson-Kane JC, McInnes IB, Brewer JM, Garside P, Maffia P. Assessment of murine collagen-induced arthritis by longitudinal non-invasive duplexed molecular optical imaging. Rheumatology (Oxford) 2015; 55:564-72. [PMID: 26475798 DOI: 10.1093/rheumatology/kev361] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE In the present study we evaluated the use of four commercially available fluorescent probes to monitor disease activity in murine CIA and its suppression during glucocorticoid therapy. METHODS Arthritis was induced in male DBA/1 mice by immunization with type II collagen in Complete Freund's Adjuvant, followed by a boost of collagen in PBS. Four fluorescent probes from PerkinElmer in combination [ProSense 750 fluorescent activatable sensor technology (FAST) with Neutrophil Elastase 680 FAST and MMPSense 750 FAST with CatK 680 FAST] were used to monitor disease development from day 5 through to day 40 post-immunization. Fluorescence generated in vivo by the probes was correlated with clinical and histological score and paw measurements. RESULTS The fluorescence intensity emitted by each probe was shown to correlate with the conventional measurements of disease. The highest degree of correlation was observed with ProSense 750 FAST in combination with Neutrophil Elastase 680 FAST; these probes were then used to successfully assess CIA suppression during dexamethasone treatment. CONCLUSION We have demonstrated that longitudinal non-invasive duplexed optical fluorescence imaging provides a simple assessment of arthritic disease activity within the joints of mice following the induction of CIA and may represent a powerful tool to monitor the efficacy of drug treatments in preclinical studies.
Collapse
Affiliation(s)
- Hannah E Scales
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, MD Biosciences
| | | | | | - Kirsty Ross
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK and
| | | | - Janet C Patterson-Kane
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow
| | - Iain B McInnes
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow
| | - James M Brewer
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow
| | - Paul Garside
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow
| | - Pasquale Maffia
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
14
|
Favero M, Giusti A, Geusens P, Goldring SR, Lems W, Schett G, Bianchi G. OsteoRheumatology: a new discipline? RMD Open 2015; 1:e000083. [PMID: 26557384 PMCID: PMC4632147 DOI: 10.1136/rmdopen-2015-000083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/28/2015] [Accepted: 05/01/2015] [Indexed: 12/20/2022] Open
Abstract
This review summarises recent evidence about the interaction between bone, the immune system and cartilage in disabling conditions such as osteoarthritis, rheumatoid arthritis and spondyloarthritis. These topics have been recently discussed at the ‘OsteoRheumatology’ conference held in Genoa in October 2014. The meeting, at its 10th edition, has been conceived to bring together distinguished international experts in the fields of rheumatic and metabolic bone diseases with the aim of discussing emerging knowledge regarding the role of the bone tissue in rheumatic diseases. Moreover, this review focuses on new treatments based on underlying the pathophysiological processes in rheumatic diseases. Although, a number of issues still remain to be clarified, it seems quite clear that in clinical practice, as well as in basic and translational research, there is a need for more knowledge of the interactions between the cartilage, the immune system and the bone. In this context, ‘OsteoRheumatology’ represents a potential new discipline providing a greater insight into this interplay, in order to face the multifactorial and complex issues underlying common and disabling rheumatic diseases.
Collapse
Affiliation(s)
- Marta Favero
- Rheumatology Unit, Department of Medicine-DIMED , University Hospital of Padova , Padova , Italy ; Laboratory of Immunorheumatology and Tissue Regeneration/RAMSES , Rizzoli Orthopedic Research Institute , Bologna , Italy
| | - Andrea Giusti
- Bone Clinic, Department of Gerontology and Musculoskeletal Sciences , Galliera Hospital , Genoa , Italy
| | - Piet Geusens
- Department of Internal Medicine, Subdivision of Rheumatology , CAPHRI/NUTRIM, Maastricht University Medical Centre , Maastricht , The Netherlands & UHasselt, Belgium
| | - Steven R Goldring
- Hospital for Special Surgery and Weill Cornell Medical College , New York, New York , USA
| | - Willem Lems
- Department of Rheumatology , VU Medical Centre , Amsterdam , The Netherlands
| | - Georg Schett
- Department of Internal Medicine 3 , University of Erlangen-Nuremberg , Erlangen , Germany
| | - Gerolamo Bianchi
- Department of Locomotor System, Division of Rheumatology , ASL3 Genovese , Genoa , Italy
| |
Collapse
|
15
|
Lee HP, Lin YY, Duh CY, Huang SY, Wang HM, Wu SF, Lin SC, Jean YH, Wen ZH. Lemnalol attenuates mast cell activation and osteoclast activity in a gouty arthritis model. ACTA ACUST UNITED AC 2014; 67:274-85. [PMID: 25557511 DOI: 10.1111/jphp.12331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 09/21/2014] [Indexed: 12/14/2022]
Abstract
OBJECTIVES In this study, we investigated the effects of a soft coral-derived anti-inflammatory compound, lemnalol, on mast cell (MC) function and osteoclast activity in rats with monosodium urate (MSU) crystal-induced gouty arthritis. METHODS In this study, we examined the therapeutic effects of lemnalol on intra-articular injection of MSU induces gouty arthritis with the measurement of ankle oedema. Toluidine blue staining were used to analyse the infiltration and the percentage degranulation MCs. Immunohistochemical analysis showed CD117, transforming growth factor beta 1 (TGF-β1), matrix metalloproteinase 9 (MMP-9), the osteoclast markers cathepsin K and tartrate-resistant acid phosphatase (TRAP) protein expression in ankle tissue. KEY FINDINGS We found that both infiltration and degranulation of MCs increased at 24 h after MSU injection in the ankle joint. Immunohistochemical analysis showed that MSU induced upregulation of TGF-β1, MMP-9, the osteoclast markers cathepsin K and TRAP in ankle tissues. Administration of lemnalol ameliorated MSU-induced TGF-β1, MMP-9, cathepsin K and TRAP protein expression. CONCLUSIONS Taken together, our results show that MSU-induced gouty arthritis is accompanied by osteoclast-related protein upregulation and that lemnalol treatment may be beneficial for the attenuation of MC infiltration and degranulation and for suppressing osteoclast activation in gouty arthritis.
Collapse
Affiliation(s)
- Hsin-Pai Lee
- Department of Marine Biotechnology and Resources, Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Orthopaedic Surgery, Ping-Tung Christian Hospital, Ping-Tung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tanishima S, Kishimoto Y, Fukata S, Mizumura H, Hagino H, Teshima R. Minodronic acid influences receptor activator of nuclear factor κB ligand expression and suppresses bone resorption by osteoclasts in rats with collagen-induced arthritis. Mod Rheumatol 2014. [DOI: 10.3109/s10165-007-0566-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
|
18
|
Nepal M, Choi HJ, Choi BY, Yang MS, Chae JI, Li L, Soh Y. Hispidulin attenuates bone resorption and osteoclastogenesis via the RANKL-induced NF-κB and NFATc1 pathways. Eur J Pharmacol 2013; 715:96-104. [PMID: 23791609 DOI: 10.1016/j.ejphar.2013.06.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 05/31/2013] [Accepted: 06/08/2013] [Indexed: 01/15/2023]
Abstract
Hispidulin, a flavonoid that is known to have anti-inflammatory and anti-oxidant effects, attenuates osteoclastogenesis and bone resorption. To investigate the molecular mechanism of its inhibitory effect on osteoclastogenesis, we employed the receptor activator of the nuclear factor κB (NF-κB) ligand (RANKL)-induced murine monocyte/macrophage RAW 264.7 cells and bone marrow-derived macrophages (BMMs) for osteoclastic differentiation in vitro. The inhibitory effect on in vitro osteoclastogenesis was evaluated by counting the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells and by measuring the expression levels of osteoclast-specific genes such as matrix metalloproteinase 9 (MMP9), TRAP and cathepsin K. Similarly, hispidulin significantly inhibited osteoclast activity in RAW 264.7 cell as well as stimulated the ALP activity of MC3T3E1 cells. Furthermore, the in vivo suppressive effect on bone loss was assessed quantitatively in a lipopolysaccharide (LPS)-induced mouse model using microcomputational tomography (μCT) and histochemical analyses. Hispidulin was found to inhibit RANKL-induced activation of Jun N-terminal kinase (JNK) and p38, in addition to NF-κB in vitro experiment. Additionally, hispidulin decreased NFATc1 transcriptional activity in RANKL-induced osteoclastogenesis. This study identifies hispidulin as a potent inhibitor of osteoclastogenesis and bone resorption and provides evidence for its therapeutic potential to treat diseases involving abnormal bone lysis.
Collapse
Affiliation(s)
- Manoj Nepal
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 project, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
19
|
Bone erosion in rheumatoid arthritis: mechanisms, diagnosis and treatment. Nat Rev Rheumatol 2012; 8:656-64. [PMID: 23007741 DOI: 10.1038/nrrheum.2012.153] [Citation(s) in RCA: 604] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bone erosion is a central feature of rheumatoid arthritis and is associated with disease severity and poor functional outcome. Erosion of periarticular cortical bone, the typical feature observed on plain radiographs in patients with rheumatoid arthritis, results from excessive local bone resorption and inadequate bone formation. The main triggers of articular bone erosion are synovitis, including the production of proinflammatory cytokines and receptor activator of nuclear factor κB ligand (RANKL), as well as antibodies directed against citrullinated proteins. Indeed, both cytokines and autoantibodies stimulate the differentiation of bone-resorbing osteoclasts, thereby stimulating local bone resorption. Although current antirheumatic therapy inhibits both bone erosion and inflammation, repair of existing bone lesions, albeit physiologically feasible, occurs rarely. Lack of repair is due, at least in part, to active suppression of bone formation by proinflammatory cytokines. This Review summarizes the substantial progress that has been made in understanding the pathophysiology of bone erosions and discusses the improvements in the diagnosis, monitoring and treatment of such lesions.
Collapse
|
20
|
El-Malky M, Nabih N, Heder M, Saudy N, El-Mahdy M. Helminth infections: therapeutic potential in autoimmune disorders. Parasite Immunol 2012; 33:589-93. [PMID: 21797885 DOI: 10.1111/j.1365-3024.2011.01324.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Knowledge of immunity enables us to predict that the reactions set in response to infection with helminth would prevent concomitant disease driven by an opposing spectrum of immune events. In another way, the immune response generated to combat the helminth infection could counteract the immunopathological reactions that drive autoimmune diseases. Rodent model systems recapitulate many aspects of human autoimmune diseases and have been enormously useful in defining mechanisms of immunopathology after infection. From this theoretical perspective, many researchers have proved that infection with a variety of helminth can ameliorate disease in murine model systems. Thus, helminth-evoked Th2 events were shown to improve disorders in which Th1 events predominated. This raised the question, 'Can this information be translated into therapies for autoimmune diseases in humans via actual infection, cell delivery or drug intervention?' In this review, we will present some experimental trails to treat autoimmune disorders through establishment of some parasitic infections.
Collapse
Affiliation(s)
- M El-Malky
- Departments of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | | | | | | | | |
Collapse
|
21
|
Abstract
Natural killer (NK) cells can be swiftly mobilized by danger signals and are among the earliest arrivals in target organs of disease. However, the role of NK cells in regulating inflammatory responses is far from completely understood in different organs. It is often complex and sometimes paradoxical. The phenotypes and functions of NK cells in the liver, mucosal tissues, uterus, pancreas, joints and brain are influenced by the unique cellular interactions and the local microenvironment within each organ. Hepatic NK cells exhibit an activated phenotype with high levels of cytotoxic effector molecules. These cells have been implicated in promoting liver injury and inhibiting liver fibrosis and regeneration. The liver is also enriched in NK cells with memory-like adaptive immune features. NK cells are detected in healthy lymphoid tissues of the lung, skin and gut, and are recruited to these tissues during infection or inflammation. In the gastrointestinal tract, classical NK cells and a variety of innate lymphoid cells, such as the family of lymphoid tissue-inducer (LTi) cells, are likely to have crucial roles in controlling inflammatory responses. NK cells represent the major lymphocyte subset in the pregnant uterus, with a unique phenotype resembling an early developmental state. Emerging evidence indicates that these cells play a crucial part in mediating the uterine vascular adaptations to pregnancy and promoting the maintenance of healthy pregnancy. In non-obese diabetic (NOD) mice, NK cells are recruited early to the pancreas, become locally activated and then adopt a hyporesponsive phenotype. Although NK cells have a pathogenic role in the natural progression of diabetes in NOD mice, they contribute to diabetes protection induced by complete Freund's adjuvant and to islet allograft tolerance induced by co-stimulatory blockade. NK cells in the inflamed joint uniquely express receptor activator of NF-κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF), which promote osteoclast differentiation. Although NK cells have a pathogenic role in collagen-induced arthritis in mice, they are also crucial for protection against antibody-induced arthritis mediated by CpG oligonucleotides. Studies in a mouse model of multiple sclerosis have shown that NK cells arrive in the central nervous system (CNS) before pathogenic T cells and have a protective role in the development of CNS inflammation, probably by killing CNS-resident microglia that prime effector T cells. During evolution, different organs might have evolved distinct ways to recruit and influence the effector functions of NK cells. Once we understand these mechanisms, the next challenge will be to exploit this information for harnessing NK cells to develop prophylactic and therapeutic measures against infectious agents, tumours and inflammatory diseases.
Each tissue in our body contains a unique microenvironment that can differentially shape immune reactivity. In this Review article, Shiet al. describe how organ-specific factors influence natural killer cell homing and phenotype, and discuss the local molecular and cellular interactions that determine the protective or pathogenic functions of natural killer cells in the different tissues. Natural killer (NK) cells can be swiftly mobilized by danger signals and are among the earliest arrivals at target organs of disease. However, the role of NK cells in mounting inflammatory responses is often complex and sometimes paradoxical. Here, we examine the divergent phenotypic and functional features of NK cells, as deduced largely from experimental mouse models of pathophysiological responses in the liver, mucosal tissues, uterus, pancreas, joints and brain. Moreover, we discuss how organ-specific factors, the local microenvironment and unique cellular interactions may influence the organ-specific properties of NK cells.
Collapse
|
22
|
Hofkens W, Grevers LC, Walgreen B, de Vries TJ, Leenen PJM, Everts V, Storm G, van den Berg WB, van Lent PL. Intravenously delivered glucocorticoid liposomes inhibit osteoclast activity and bone erosion in murine antigen-induced arthritis. J Control Release 2011; 152:363-9. [PMID: 21396411 DOI: 10.1016/j.jconrel.2011.03.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 02/25/2011] [Accepted: 03/03/2011] [Indexed: 02/06/2023]
Abstract
UNLABELLED The objective of this study was to determine the effect of systemic delivery of prednisolone phosphate (PLP) encapsulated within long circulating 'stealth' liposomes on bone erosion and osteoclast activity during experimental antigen-induced arthritis (AIA). Liposomal PLP strongly suppressed knee joint swelling, synovial infiltrate and bone erosion in antigen-induced arthritis. The number of active osteoclasts was not only suppressed in bone lesions near inflamed synovium, but also within the trabecular bone of the tibia, suggesting a systemic suppression of osteoclast activation. Furthermore, liposomal PLP directly blocked osteoclast differentiation and bone resorption in vitro while it also suppressed expression of osteoclast differentiation factors M-CSF and RANKL in the synovium. Targeting studies showed that liposomes are most efficiently phagocytosed by macrophages and early precursors of osteoclasts in the bone marrow rather than by mature osteoclasts, indicating a possible inhibition of osteoclast differentiation from an early stage. CONCLUSION Liposomal glucocorticoid delivery rather than free PLP offers a more efficacious way to inhibit both inflammation and bone erosion in rheumatoid arthritis.
Collapse
Affiliation(s)
- Wouter Hofkens
- Rheumatology Research and Advanced Therapeutics, Department of Rheumatology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Islander U, Jochems C, Lagerquist MK, Forsblad-d'Elia H, Carlsten H. Estrogens in rheumatoid arthritis; the immune system and bone. Mol Cell Endocrinol 2011; 335:14-29. [PMID: 20685609 DOI: 10.1016/j.mce.2010.05.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 05/28/2010] [Accepted: 05/29/2010] [Indexed: 01/29/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that is more common in women than in men. The peak incidence in females coincides with menopause when the ovarian production of sex hormones drops markedly. RA is characterized by skeletal manifestations where production of pro-inflammatory mediators, connected to the inflammation in the joint, leads to bone loss. Animal studies have revealed distinct beneficial effects of estrogens on arthritis, and a positive effect of hormone replacement therapy has been reported in women with postmenopausal RA. This review will focus on the influence of female sex hormones in the pathogenesis and progression of RA.
Collapse
Affiliation(s)
- Ulrika Islander
- Center for Bone and Arthritis Research (CBAR), Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy, University of Gothenburg, Sweden.
| | | | | | | | | |
Collapse
|
24
|
Parasitic helminths: new weapons against immunological disorders. J Biomed Biotechnol 2010; 2010:743758. [PMID: 20169100 PMCID: PMC2821776 DOI: 10.1155/2010/743758] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 11/25/2009] [Indexed: 12/14/2022] Open
Abstract
The prevalence of allergic and autoimmune diseases is increasing in developed countries, possibly due to reduced exposure to microorganisms in childhood (hygiene hypothesis). Epidemiological and experimental evidence in support of this hypothesis is accumulating. In this context, parasitic helminths are now important candidates for antiallergic/anti-inflammatory agents. Here we summarize antiallergic/anti-inflammatory effects of helminths together along with our own study of the effects of Schistosoma mansoni on Th17-dependent experimental arthritis. We also discuss possible mechanisms of helminth-induced suppression according to the recent advances of immunology.
Collapse
|
25
|
Colbert RA, Deodhar AA, Fox D, Gravallese EM, Khan MA, McGonagle D, Reveille JD, Schett G, Weisman M, Clegg DO. Entheses and bones in spondyloarthritis: 2008 Annual Research and Education Meeting of the Spondyloarthritis Research and Therapy Network (SPARTAN). J Rheumatol 2009; 36:1527-31. [PMID: 19567633 DOI: 10.3899/jrheum.090122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Spondyloarthritis Research and Therapy Network (SPARTAN), founded in 2003 to promote research, education, and treatment of ankylosing spondylitis (AS) and related forms of spondyloarthritis (SpA), held its 6th Annual Research and Education Meeting in July 2008 in Cleveland, Ohio, USA. The overall theme of the meeting was entheses and bones in SpA, which included presentations on the anatomy and physiology of the synovial-entheseal complex; bone formation and destruction, and the effect of inflammation on bone; the Th17 axis, HLA-B27, IL23R, and ARTS1; and breakout sessions on epidemiology and registries.
Collapse
|
26
|
SYVERSEN SILJEW, LANDEWE ROBERT, van der HEIJDE DÉSIRÉE, BATHON JOANM, BOERS MAARTEN, BYKERK VIVIANP, FITZGERALD OLIVER, GLADMAN DAFNAD, GARNERO PATRICK, GEUSENS PIET, EL-GABALAWY HANI, INMAN ROBERTD, KRAUS VIRGINIA, KVIEN TOREK, MEASE PHILIPJ, ØSTERGAARD MIKKEL, RITCHLIN CHRISTOPHERJ, TAK PAULPETER, TAYLOR WILLIAMJ, MAKSYMOWYCH WALTERP. Testing of the OMERACT 8 Draft Validation Criteria for a Soluble Biomarker Reflecting Structural Damage in Rheumatoid Arthritis: A Systematic Literature Search on 5 Candidate Biomarkers. J Rheumatol 2009; 36:1769-84. [DOI: 10.3899/jrheum.090262] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objective.To test the OMERACT 8 draft validation criteria for soluble biomarkers by assessing the strength of literature evidence in support of 5 candidate biomarkers.Methods.A systematic literature search was conducted on the 5 soluble biomarkers RANKL, osteoprotegerin (OPG), matrix metalloprotease (MMP-3), urine C-telopeptide of types I and II collagen (U-CTX-I and U CTX-II), focusing on the 14 OMERACT 8 criteria. Two electronic voting exercises were conducted to address: (1) strength of evidence for each biomarker as reflecting structural damage according to each individual criterion and the importance of each individual criterion; (2) overall strength of evidence in support of each of the 5 candidate biomarkers as reflecting structural damage endpoints in rheumatoid arthritis (RA) and identification of omissions to the criteria set.Results.The search identified 111 articles. The strength of evidence in support of these biomarkers reflecting structural damage was low for all biomarkers and was rated highest for U-CTX-II [score of 6.5 (numerical rating scale 0–10)]. The lowest scores for retention of specific criteria in the draft set went to criteria that refer to the importance of animal studies, correlations with other biomarkers reflecting damage, and an understanding of the metabolism of the biomarker.Conclusion.Evidence in support of any of the 5 tested biomarkers (MMP-3, CTX-I, CTX-II, OPG, RANKL) was inadequate to allow their substitution for radiographic endpoints in RA. Three of the criteria in the draft criteria set might not be required, but few omissions were identified.
Collapse
|
27
|
Inhibition of cathepsin K reduces bone erosion, cartilage degradation and inflammation evoked by collagen-induced arthritis in mice. Eur J Pharmacol 2009; 613:155-62. [PMID: 19358841 DOI: 10.1016/j.ejphar.2009.03.074] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 03/18/2009] [Accepted: 03/31/2009] [Indexed: 11/20/2022]
Abstract
Cathepsin K (EC 3.4.22.38) is expressed by osteoclasts and synovial fibroblasts and its proteolytic activity is hypothesized to play a role in the pathology of rheumatoid arthritis. This study explored the effects of the cathepsin K inhibitor N-(1-{[(Cyanomethyl)amino]carbonyl}cyclohexyl)-4-[2-(4-methylpiperazin-1-yl)-1,3-thiazol-4-yl]benzamide (L-006235) in murine collagen-induced arthritis. L-006235 is a potent inhibitor of recombinant human and murine cathepsin K, enzymes (K(i):0.073 nM and IC(50): 2.4 nM, respectively) and at the cellular level in human osteoclasts (IC(50): 28 nM) with ~1000-fold selectivity against cathepsin S. L-006235 did not result in splenic invariant chain p10 accumulation, a specific marker of cathepsin S inhibition. L-006235 was dosed daily (25 mg/kg, p.o.), either prophylactically (days 0-42) or therapeutically (14 days post onset of disease) to DBA/1J mice subjected to collagen-induced arthritis. Disease severity was scored during the course of the study. Histological evaluation of cartilage and bone degradation together with related biomarkers namely, deoxypyridinoline, cartilage oligomeric matrix protein and C-terminal telopeptide degradation product of type I collagen (CTX-I) were analyzed after the study. After prophylactic or therapeutic administration, L-006235 significantly reduced biomarkers reflecting bone and cartilage degradation. Pathological changes at the histological level were significantly reduced after prophylactic treatment (P<0.01), but not after therapeutic treatment. Prophylactic treatment with L-006235 delayed disease onset (P<0.01) and reduced the disease severity score (P<0.05). Inhibition of cathepsin K activity exerts beneficial effects on collagen-induced arthritis in mice and thus warrants further investigation as a therapeutic intervention in human rheumatoid arthritis.
Collapse
|
28
|
Osada Y, Shimizu S, Kumagai T, Yamada S, Kanazawa T. Schistosoma mansoni infection reduces severity of collagen-induced arthritis via down-regulation of pro-inflammatory mediators. Int J Parasitol 2008; 39:457-64. [PMID: 18835272 DOI: 10.1016/j.ijpara.2008.08.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 08/01/2008] [Accepted: 08/19/2008] [Indexed: 01/06/2023]
Abstract
Various experimental and epidemiological studies have demonstrated that helminth infections affect outcomes of allergic or autoimmune disorders. Here, we examined the effects of Schistosoma mansoni infection on mouse collagen-induced arthritis, one of the most widely used animal models for rheumatoid arthritis. Male DBA/1 mice were infected with S. mansoni 2 weeks prior to being immunized with type II collagen (IIC). Cytokine mRNA expression in mouse paws, cytokine production by ConA-stimulated spleen cells, and anti-IIC antibodies were evaluated in addition to the severity of arthritis. S. mansoni infection significantly reduced the severity of arthritis. Anti-IIC IgG and IgG2a levels were lower in infected than uninfected mice. With regard to cytokine producing potentials in the infected mice, the down-regulation of Th1 (IFNgamma) and pro-inflammatory cytokines (TNFalpha and IL-17A), and up-regulation of Th2 (IL-4) and an anti-inflammatory cytokine (IL-10) were observed.In addition, real-time PCR revealed that the augmentation of pro-inflammatory mediators such as IL-1 beta, IL-6 and receptor activator of NFkappaB ligand in inflamed paws was abrogated by S. mansoni infection [corrected]. In conclusion, schistosome infection reduced the severity of autoimmune arthritis via systemic and local suppression of pro-inflammatory mediators, suggesting the potential of parasite-derived materials as therapeutic agents against rheumatoid arthritis.
Collapse
Affiliation(s)
- Yoshio Osada
- Department of Immunology and Parasitology, University of Occupational and Environmental Health, Yahatanishi-ku, Kitakyushu, Japan.
| | | | | | | | | |
Collapse
|
29
|
Findlay DM, Haynes DR. Mechanisms of bone loss in rheumatoid arthritis. Mod Rheumatol 2007; 15:232-40. [PMID: 17029071 DOI: 10.1007/s10165-005-0412-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 05/30/2005] [Indexed: 10/25/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune inflammatory disease in which destruction of bone in the joints causes major morbidity. Recent research has shed light on the cell and molecular mechanisms that lead to this osteolysis, all due directly or indirectly to the chronic inflammation. The aspects of this research covered in this review include the alteration of cell proliferation and survival that results in growth of the RA synovium. This process depends upon an increase in angiogenesis and local blood flow, which is also a feature of increased bone turnover. In addition, the inflammatory environment increases expression of chemokines, which are involved in the recruitment of monocytic osteoclast precursors. Chronic inflammation also promotes an overall catabolic state, with increased osteoclast differentiation and resorptive activity, driven by disregulation of receptor activator of NF-kappaB ligand (RANKL) and the synergistic activity of inflammatory cytokines such as tumor necrosis factor-alpha and interleukin-1. Osteoclast survival is increased in this environment, but osteoblast differentiation and survival are decreased, with a consequent reduction in bone formation and a net loss of bone. Recognition of these processes and the factors involved will enable more effective and targeted treatments for RA.
Collapse
Affiliation(s)
- David M Findlay
- Department of Orthopaedics and Trauma, University of Adelaide, and Hanson Institute, Level 4, Bice Building, Royal Adelaide Hospital, North Terrace, Adelaide, 5000, South Australia, Australia.
| | | |
Collapse
|
30
|
Tanishima S, Kishimoto Y, Fukata S, Mizumura H, Hagino H, Teshima R. Minodronic acid influences receptor activator of nuclear factor kappaB ligand expression and suppresses bone resorption by osteoclasts in rats with collagen-induced arthritis. Mod Rheumatol 2007; 17:198-205. [PMID: 17564774 DOI: 10.1007/s10165-007-0566-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 01/24/2007] [Indexed: 10/23/2022]
Abstract
We investigated the inhibitory mechanism of bone resorption by minodronic acid in collagen-induced arthritis (CIA) in rats. Four groups of female Sprague-Dawley rats, aged 7 months, were studied: three groups of collagen-sensitized rats, including one placebo-administered group (CIA-P), and two minodronic acid-administered groups at 0.2 mg/kg/2 day (CIA-BIS) and 2.0 mg/kg/2 day (CIA-BIS10). These were studied with an additional untreated observation group (Cont group). Minodronic acid was administered orally a day after the initial sensitization. The femoral posteromedial condyle was analyzed histologically and immunohistologically 4 weeks after the initial sensitization. Western blotting was also performed to assess the receptor activator of nuclear factor kappaB (RANK), RANK ligand (RANKL), and osteoprotegerin (OPG) expression of the knee joints. In CIA-P rats, many tartrate-resistant acid phosphatase (TRAP)-positive cells were found at the pannus-lining layer and the epiphyseal medulla. The bone-lining cells in the epiphyseal medulla and the cells in the pannus strongly expressed RANK and RANKL. In the minodronic acid-administered group, the number of TRAP-positive cells and the severity of arthritis were reduced. The reduction in the CIA-BIS10 group was significant compared with the CIA-P group (P < 0.05). Dosage-dependent reduction of RANK and RANKL expression was confirmed by immunohistology and Western blotting. With or without minodronic acid administration, no apoptotic cells were found in any groups using the TdT-mediated dUTP-biotinnick end labeling (TUNEL) method. The expression of OPG was not clear in all groups. These results demonstrated that minodronic acid inhibited the differentiation and the activation of osteoclasts not by inducing apoptosis but by inhibiting the RANKL-RANK system, and thereby suppressing bone resorption.
Collapse
Affiliation(s)
- Shinji Tanishima
- Division of Orthopedic Surgery, Department of Medicine of Sensory and Motor Organs, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan.
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Inflammatory synovitis induces profound bone loss and OCLs are the instrument of this destruction. TNF blockers have an established role in the prevention of inflammatory bone loss in RA; however, not all patients respond to anti-TNF therapy and side effects may prevent long-term treatment in others. The B-cell--depleting antibody rituximab and the T-cell costimulation blocker abatacept are emerging as major treatment options for patients who are resistant to anti-TNF [96,97]. Proof-of-concept studies demonstrate that targeting RANK-mediated osteoclastogenesis prevents inflammatory bone loss and clinical application has only just begun. The efficacy of RANKL inhibition has been witnessed in trials of Denosumab, and RANKL-neutralizing antibodies are likely to become the treatment of choice for blocking RANKL in RA [77,78]. A major limitation of RANKL antagonism is that it does not treat synovitis. Therefore, anti-RANKL therapy most likely will be used in the context of MTX therapy. There is uncertainty about the possible extraskeletal adverse effects of long-term effects of long-term RANKL blockade. In particular, anti-RANKL therapy could jeopardize dendritic cell function or survival. The demonstrable role of OCLs in inflammation-induced bone loss also invites a reconsideration of the new BPs for bone protection [98]. Studies of ZA in preclinical models indicate that bone protection is comparable to that afforded by OPG. One possible caveat is that intravenous BPs are linked to jaw osteonecrosis [99], although the incidence is confined mainly to intensive treatment in the oncology setting. Although pulsed PTH stimulated bone formation in arthritic models, it has yet to be proven clinically in the context of powerful OCL inhibition with TNF or RANKL antagonists. With strategies that normalize OCL numbers, clinicians are poised to accomplish effective prevention of inflammation-induced bone loss.
Collapse
Affiliation(s)
- Evange Romas
- The University of Melbourne, St. Vincent's Hospital, 41 Victoria Parade, Fitzroy, 3065, Australia.
| | | |
Collapse
|
32
|
Kunugiza Y, Tomita T, Tomita N, Morishita R, Yoshikawa H. Inhibitory effect of ribbon-type NF-kappaB decoy oligodeoxynucleotides on osteoclast induction and activity in vitro and in vivo. Arthritis Res Ther 2007; 8:R103. [PMID: 16813665 PMCID: PMC1779370 DOI: 10.1186/ar1980] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 02/27/2006] [Accepted: 05/29/2006] [Indexed: 11/17/2022] Open
Abstract
In this study we examined the effect of ribbon-type (circular-type) NF-κB decoy oligodeoxynucleotides (RNODN) on osteoclast induction and activity. We extracted bone marrow cells from the femurs of rats and incubated non-adherent cells with receptor activator of nuclear factor κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). First, transfer efficiency into osteoclasts and their precursors, resistance to exonuclease, and binding activity of decoy to NF-κB were examined. Next, to examine the effect of RNODN on osteoclast induction and activity, osteoclast differentiation and pit formation assays were performed. RNODN were injected into the ankle joints of rats with collagen-induced arthritis. Joint destruction and osteoclast activity were examined by histological study. The resistance of RNODN to exonuclease and their binding activity on NF-κB were both greater than those of phosphorothionated NF-κB decoy oligodeoxynucleotides. The absolute number of multinucleate cells scoring positive for tartrate-resistant acid phosphatase was significantly decreased in the RNODN-treated group. The average calcified matrix resorbed area was significantly decreased in the RNODN-treated group. Histological study showed marked suppression of joint destruction and osteoclast activity by intra-articular injection of RNODN. These results suggest the inhibitory effect of RNODN on the induction and activity of osteoclasts. Direct intra-articular injection of RNODN into the joints may be an effective strategy for the treatment of arthritis.
Collapse
Affiliation(s)
- Yasuo Kunugiza
- Division of Clinical Gene Therapy, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
- Department of Orthopaedics, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Tetsuya Tomita
- Department of Orthopaedics, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Naruya Tomita
- Division of Nephrology, Department of Internal Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Ryuichi Morishita
- Division of Clinical Gene Therapy, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hideki Yoshikawa
- Department of Orthopaedics, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
33
|
Zwerina J, Tuerk B, Redlich K, Smolen JS, Schett G. Imbalance of local bone metabolism in inflammatory arthritis and its reversal upon tumor necrosis factor blockade: direct analysis of bone turnover in murine arthritis. Arthritis Res Ther 2007; 8:R22. [PMID: 16507121 PMCID: PMC1526585 DOI: 10.1186/ar1872] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 10/18/2005] [Accepted: 11/25/2005] [Indexed: 11/10/2022] Open
Abstract
Chronic arthritis typically leads to loss of periarticular bone, which results from an imbalance between bone formation and bone resorption. Recent research has focused on the role of osteoclastogenesis and bone resorption in arthritis. Bone resorption cannot be observed isolated, however, since it is closely linked to bone formation and altered bone formation may also affect inflammatory bone loss. To simultaneously assess bone resorption and bone formation in inflammatory arthritis, we developed a histological technique that allows visualization of osteoblast function by in-situ hybridization for osteocalcin and osteoclast function by histochemistry for tartrate-resistant acid phosphatase. Paw sections from human tumor necrosis factor transgenic mice, which develop an erosive arthritis, were analyzed at three different skeletal sites: subchondral bone erosions, adjacent cortical bone channels, and endosteal regions distant from bone erosions. In subchondral bone erosions, osteoclasts were far more common than osteoblasts. In contrast, cortical bone channels underneath subchondral bone erosions showed an accumulation of osteoclasts but also of functional osteoblasts resembling a status of high bone turnover. In contrast, more distant skeletal sites showed only very low bone turnover with few scattered osteoclasts and osteoblasts. Within subchondral bone erosions, osteoclasts populated the subchondral as well as the inner wall, whereas osteoblasts were almost exclusively found along the cortical surface. Blockade of tumor necrosis factor reversed the negative balance of bone turnover, leading to a reduction of osteoclast numbers and enhanced osteoblast numbers, whereas the blockade of osteoclastogenesis by osteoprotegerin also abrogated the osteoblastic response. These data indicate that bone resorption dominates at skeletal sites close to synovial inflammatory tissue, whereas bone formation is induced at more distant sites attempting to counter-regulate bone resorption.
Collapse
Affiliation(s)
- Jochen Zwerina
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Birgit Tuerk
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Kurt Redlich
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Josef S Smolen
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Georg Schett
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| |
Collapse
|
34
|
Schopf L, Savinainen A, Anderson K, Kujawa J, DuPont M, Silva M, Siebert E, Chandra S, Morgan J, Gangurde P, Wen D, Lane J, Xu Y, Hepperle M, Harriman G, Ocain T, Jaffee B. IKKbeta inhibition protects against bone and cartilage destruction in a rat model of rheumatoid arthritis. ACTA ACUST UNITED AC 2006; 54:3163-73. [PMID: 17009244 DOI: 10.1002/art.22081] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE The IKK complex regulates NF-kappaB activation, an important pathway implicated in the rheumatoid arthritis (RA) disease process. This study was undertaken to assess the efficacy of N-(6-chloro-7-methoxy-9H-beta-carbolin-8-yl)-2-methylnicotinamide (ML120B), a potent and selective small molecule inhibitor of IKKbeta. METHODS Polyarthritis was induced in rats by injection of Freund's complete adjuvant into the hind footpad. ML120B was administered orally twice daily, either prophylactically or therapeutically. Paw volumes and body weights were measured every 2-3 days throughout the study. We assessed bone erosions by several methods: histologic evaluation, quantitative micro-computed tomography (micro-CT) imaging analysis, and measurement of type I collagen fragments in the serum. Quantitative polymerase chain reaction was used to evaluate expression of messenger RNA for genes related to inflammation and to bone and cartilage integrity. RESULTS Oral administration of ML120B inhibited paw swelling in a dose-dependent manner (median effective dosage 12 mg/kg twice daily) and offered significant protection against arthritis-induced weight loss as well as cartilage and bone erosion. We were able to directly demonstrate that NF-kappaB activity in arthritic joints was reduced after ML120B administration. Also, we observed that down-regulation of the NF-kappaB pathway via IKKbeta inhibition dampened the chronic inflammatory process associated with rat adjuvant-induced arthritis. CONCLUSION The results of the present study suggest that IKKbeta inhibition is an effective therapeutic approach to treat both the inflammation and the bone/cartilage destruction observed in RA. Methods for the determination of serum markers for bone and cartilage destruction, as well as micro-CT analysis, may aid in predicting and evaluating the therapeutic efficacy of IKKbeta inhibition therapy in humans.
Collapse
Affiliation(s)
- Lisa Schopf
- Millennium Pharmaceuticals, Cambridge, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Geusens PP, Landewé RBM, Garnero P, Chen D, Dunstan CR, Lems WF, Stinissen P, van der Heijde DMFM, van der Linden S, Boers M. The ratio of circulating osteoprotegerin to RANKL in early rheumatoid arthritis predicts later joint destruction. ACTA ACUST UNITED AC 2006; 54:1772-7. [PMID: 16736519 DOI: 10.1002/art.21896] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is a chronic inflammatory disease that may result in debilitating joint deformities with destruction of bone and cartilage. Inflammation is still considered the pivotal inducer of both components of joint damage. Results of recent animal studies suggested a prominent contribution of osteoclastic bone resorption that could be dissociated from inflammation. RANKL and its natural decoy receptor, osteoprotegerin (OPG), play key roles in osteoclast activation. In a group of patients with early RA not treated with disease-modifying drugs, we tested the hypothesis that osteoclast activation, reflected by the serum OPG:RANKL ratio at baseline, is negatively associated with progression of bone damage, independent of inflammation. METHODS OPG and RANKL levels, together with a parameter of inflammation (first-year time-averaged erythrocyte sedimentation rate [tESR]), were measured in 92 patients with newly diagnosed early active RA who were participants in a randomized study. The tESR and the OPG:RANKL ratio were evaluated for the ability to predict 5-year radiographic progression of joint damage. RESULTS The first-year tESR and the OPG:RANKL ratio, as measured at baseline, independently predicted 5-year radiographic progression of joint damage (both P < or = 0.001). Progression of radiographic damage was greatest in patients with a high tESR and a low OPG:RANKL ratio and was lowest in patients with a low tESR and a high OPG:RANKL ratio. CONCLUSION This study in patients with early untreated RA is the first to confirm the findings in animal models of arthritis, that radiographic progression of the bone component of joint destruction is dependent on both inflammation (tESR) and osteoclast activation (the OPG:RANKL ratio).
Collapse
Affiliation(s)
- P P Geusens
- University Hospital, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kamijo S, Nakajima A, Ikeda K, Aoki K, Ohya K, Akiba H, Yagita H, Okumura K. Amelioration of bone loss in collagen-induced arthritis by neutralizing anti-RANKL monoclonal antibody. Biochem Biophys Res Commun 2006; 347:124-32. [PMID: 16815304 DOI: 10.1016/j.bbrc.2006.06.098] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2006] [Accepted: 06/11/2006] [Indexed: 12/20/2022]
Abstract
Receptor activator of NF-kappaB (RANK) and its ligand (RANKL) are pivotal regulators of osteoclast differentiation. RANK and RANKL also mediate T cell/dendritic cell (DC) interaction. Previous study has shown that RANK/RANKL interaction induces prolonged DC survival and antigen presentation. In the present study, we have newly established a hybridoma which produces neutralizing anti-RANKL monoclonal antibody (IK22-5). By treating collagen-induced arthritis (CIA) mice with IK22-5, we have investigated the role of RANKL in the pathogenesis of CIA. Although IK22-5 had no effect on immune responses or inflammation, it ameliorated bone loss at the site of inflammation. Histological analyses revealed that osteoclast formation was impaired at the site of joint inflammation in IK22-5-treated CIA mice. These results suggest the utility of anti-RANKL mAb for the prevention of osteoporosis associated with joint inflammation in RA.
Collapse
Affiliation(s)
- Seiji Kamijo
- Department of Immunology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Pettit AR, Walsh NC, Manning C, Goldring SR, Gravallese EM. RANKL protein is expressed at the pannus-bone interface at sites of articular bone erosion in rheumatoid arthritis. Rheumatology (Oxford) 2006; 45:1068-76. [PMID: 16490750 DOI: 10.1093/rheumatology/kel045] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Receptor activator of NF-kappaB ligand (RANKL) and osteoprotegerin (OPG) have been demonstrated to be critical regulators of osteoclast generation and activity. In addition, RANKL has been implicated as an important mediator of bone erosion in rheumatoid arthritis (RA). However, the expression of RANKL and OPG at sites of pannus invasion into bone has not been examined. The present study was undertaken to further elucidate the contribution of this cytokine system to osteoclastogenesis and subsequent bone erosion in RA by examining the pattern of protein expression for RANKL, OPG and the receptor activator of NF-kappaB (RANK) in RA at sites of articular bone erosion. METHODS Tissues from 20 surgical procedures from 17 patients with RA were collected as discarded materials. Six samples contained only synovium or tenosynovium remote from bone, four samples contained pannus-bone interface with adjacent synovium and 10 samples contained both synovium remote from bone and pannus-bone interface with adjacent synovium. Immunohistochemistry was used to characterize the cellular pattern of RANKL, RANK and OPG protein expression immediately adjacent to and remote from sites of bone erosion. RESULTS Cellular expression of RANKL protein was relatively restricted in the bone microenvironment; staining was focal and confined largely to sites of osteoclast-mediated erosion at the pannus-bone interface and at sites of subchondral bone erosion. RANK-expressing osteoclast precursor cells were also present in these sites. OPG protein expression was observed in numerous cells in synovium remote from bone but was more limited at sites of bone erosion, especially in regions associated with RANKL expression. CONCLUSIONS The pattern of RANKL and OPG expression and the presence of RANK-expressing osteoclast precursor cells at sites of bone erosion in RA contributes to the generation of a local microenvironment that favours osteoclast differentiation and activity. These data provide further evidence implicating RANKL in the pathogenesis of arthritis-induced joint destruction.
Collapse
Affiliation(s)
- A R Pettit
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | | | |
Collapse
|
38
|
Romas E. Bone loss in inflammatory arthritis: mechanisms and therapeutic approaches with bisphosphonates. Best Pract Res Clin Rheumatol 2006; 19:1065-79. [PMID: 16301197 DOI: 10.1016/j.berh.2005.06.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The inflammatory process in rheumatoid arthritis provokes intense bone resorption, evidenced as bone erosions, juxta-articular osteopenia and generalized osteoporosis. These types of bone loss share a common pathogenesis, and the role of osteoclasts in focal bone erosion was verified in elegant animal studies. The tumour necrosis factor (TNF) family of cytokines and receptors--specifically TNF-alpha, RANKL, RANK and OPG--are dominant regulators of osteoclastic bone resorption in rheumatoid arthritis. The confirmation of the osteoclast mechanism provides new insight into the structural joint protection afforded by disease-modifying drugs and suggests innovative approaches to limit bone destruction. Emerging treatment strategies for bone disease in rheumatoid arthritis are the use of monoclonal antibodies to neutralize RANKL, and powerful bisphosphonates that target pathogenic osteoclasts.
Collapse
Affiliation(s)
- Evan Romas
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, 41 Victoria Parade, Fitzroy, Vic. 3065, Australia.
| |
Collapse
|
39
|
Abstract
Rheumatoid arthritis, juvenile idiopathic arthritis, the seronegative spondyloarthropathies including psoriatic arthritis, and systemic lupus erythematosus are all examples of rheumatic diseases in which inflammation is associated with skeletal pathology. Although some of the mechanisms of skeletal remodeling are shared among these diseases, each disease has a unique impact on articular bone or on the axial or appendicular skeleton. Studies in human disease and in animal models of arthritis have identified the osteoclast as the predominant cell type mediating bone loss in arthritis. Many of the cytokines and growth factors implicated in the inflammatory processes in rheumatic diseases have also been demonstrated to impact osteoclast differentiation and function either directly, by acting on cells of the osteoclast-lineage, or indirectly, by acting on other cell types to modulate expression of the key osteoclastogenic factor receptor activator of nuclear factor (NF) kappaB ligand (RANKL) and/or its inhibitor osteoprotegerin (OPG). Further elucidation of the mechanisms responsible for inflammation-induced bone loss will potentially lead to the identification of novel therapeutic strategies for the prevention of bone loss in these diseases. In this review, we provide an overview of the cell types, inflammatory mediators, and mechanisms that are implicated in bone loss and new bone formation in inflammatory joint diseases.
Collapse
Affiliation(s)
- Nicole C Walsh
- Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute, Harvard Institutes of Medicine, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
40
|
Hayer S, Redlich K, Korb A, Hermann S, Smolen J, Schett G. Tenosynovitis and osteoclast formation as the initial preclinical changes in a murine model of inflammatory arthritis. ACTA ACUST UNITED AC 2006; 56:79-88. [PMID: 17195210 DOI: 10.1002/art.22313] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To determine the nature of the initial changes of joint inflammation occurring before, at the time of, and shortly after onset of clinically apparent arthritis. METHODS Human tumor necrosis factor (TNF)-transgenic mice were assessed for clinical, histologic, immunophenotypic, serologic, and molecular changes at the preclinical phase of arthritis, at the onset of disease, and at the stage of early clinical disease. In addition, the effects of a genetic osteoclast deficiency and pharmacologic inhibition of TNF were studied in these initial phases of disease. RESULTS Initial articular changes were observed even before the start of clinical symptoms. Infiltration of the tendon sheaths by granulocytes and macrophages as well as formation of osteoclasts next to the inflamed tendon sheaths were the first pathologic events. Tenosynovitis rapidly led to remodeling of the sheaths into pannus-like tissue, which formed osteoclasts that invaded the adjacent mineralized cartilage. Early lesions were associated with up-regulation of interleukin-1 (IL-1) and IL-6 as well as activation of p38 MAPK and ERK. In contrast, absence of osteoclasts led to uncoupling of tenosynovitis from invasion into cartilage and bone. TNF blockade also attenuated the pathologic changes associated with tenosynovitis. CONCLUSION Structural damage begins even before the onset of clinical symptoms of arthritis and involves the tendon sheaths as well as adjacent cartilage and bone. These results suggest that tenosynovitis is an initiating feature of arthritis and that joint destruction starts right from the onset of disease. Our findings thus underscore the importance of immediate initiation of an effective therapy in patients with rheumatoid arthritis.
Collapse
|
41
|
Nakamura T, Kukita T, Shobuike T, Nagata K, Wu Z, Ogawa K, Hotokebuchi T, Kohashi O, Kukita A. Inhibition of histone deacetylase suppresses osteoclastogenesis and bone destruction by inducing IFN-beta production. THE JOURNAL OF IMMUNOLOGY 2005; 175:5809-16. [PMID: 16237073 DOI: 10.4049/jimmunol.175.9.5809] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Osteoclasts are bone-resorptive multinucleated cells that are differentiated from hemopoietic cell lineages of monocyte/macrophages in the presence of receptor activator of NF-kappaB ligand (RANKL) and M-CSF. Downstream signaling molecules of the receptor of RANKL, RANK, modulate the differentiation and the activation of osteoclasts. We recently found that histone deacetylase inhibitors (HDIs), known as anticancer agents, selectively suppressed osteoclastogenesis in vitro. However, the molecular mechanism underlying inhibitory action of HDIs in osteoclastogenesis and the effect of HDIs on pathological bone destruction are still not remained to be elucidated. In this study, we show that a depsipeptide, FR901228, inhibited osteoclast differentiation by not only suppressing RANKL-induced nuclear translocation of NFATc1 but also increasing the mRNA level of IFN-beta, an inhibitor of osteoclastogenesis. The inhibition of osteoclast formation by FR901228 was abrogated by the addition of IFN-beta-neutralizing Ab. In addition, treatment of adjuvant-induced arthritis in rats revealed that FR901228 inhibited not only disease development in a prophylactic model but also bone destruction in a therapeutic model. Furthermore, immunostaining of the joints of therapeutically treated rats revealed significant production of IFN-beta in synovial cells. Taken together, these data suggest that a HDI inhibits osteoclastogenesis and bone destruction by a novel action to induce the expression of osteoclast inhibitory protein, IFN-beta.
Collapse
Affiliation(s)
- Takahiro Nakamura
- Department of Pathology and Biodefense, Faculty of Medicine, Saga University, Saga, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Schett G, Hayer S, Zwerina J, Redlich K, Smolen JS. Mechanisms of Disease: the link between RANKL and arthritic bone disease. ACTA ACUST UNITED AC 2005; 1:47-54. [PMID: 16932627 DOI: 10.1038/ncprheum0036] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Accepted: 08/18/2005] [Indexed: 11/09/2022]
Abstract
Chronic inflammation and bone loss are closely linked pathophysiologic events. The most typical example of inflammatory bone loss is seen in patients with rheumatoid arthritis who develop systemic osteopenia as well as local breakdown of bone in the direct vicinity of inflamed joints. Understanding the mechanisms of arthritic bone degradation is crucial for designing therapies that can specifically protect joints from structural damage. Since osteoclast differentiation and activity are key events in arthritic bone damage, the signals that trigger osteoclastogenesis are potential therapeutic targets. Receptor activator of nuclear factor-kappaB (RANK) is activated by its ligand, RANKL, an essential molecule for osteoclast development: in the absence of RANKL or RANK, osteoclast differentiation from monocyte precursors does not occur. RANKL is expressed on T cells and fibroblasts within the synovial inflammatory tissue of patients with RA and its expression is regulated by proinflammatory cytokines. In animal models of arthritis, blockade of RANKL-RANK interactions, or a genetic absence of RANKL or RANK, protects against joint damage despite the presence of joint inflammation. Therefore, inhibition of RANKL is regarded as a promising future strategy for inhibiting inflammatory bone loss in patients with chronic inflammatory arthritis.
Collapse
|
43
|
Receptor activator of nuclear ??B ligand and osteoprotegerin: where are we now and what about future treatment uses? ACTA ACUST UNITED AC 2005. [DOI: 10.1097/01.bco.0000176422.00241.d4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Abstract
Rheumatoid arthritis (RA), like other autoimmune diseases, has a complex genetic basis. Rapid technical advances in high-throughput genotyping and analysis have now reached a point where genes of low-to-moderate risk can be identified using a variety of study designs, including whole genome association studies. The availability of large, well-characterized populations of cases and controls are critical to the success of these efforts. A functional variant (R620W) of the intracellular protein tyrosine phosphatase N22 (PTPN22) has now been conclusively shown to confer approximately two-fold risk for seropositive RA as well as several other autoimmune disorders. PTPN22 appears to act primarily by setting thresholds for T-cell receptor signaling, and the current data suggest that the PTPN22 620W allele is likely to be a general risk factor for the development of humoral autoimmunity. PTPN22 is expressed widely in hematopoietic cells, but other than in T cells, its role is unknown. These results provide strong evidence for the longstanding hypothesis that common genes underlie different autoimmune phenotypes and emphasize that finding genes of only moderate risk can provide important insights into disease pathogenesis.
Collapse
Affiliation(s)
- Peter K Gregersen
- Robert S. Boas Center for Genomics and Human Genetics, The Institute for Medical Research at North Shore/LIJ, Manhasset, NY 11030, USA.
| |
Collapse
|
45
|
Juarranz Y, Abad C, Martinez C, Arranz A, Gutierrez-Cañas I, Rosignoli F, Gomariz RP, Leceta J. Protective effect of vasoactive intestinal peptide on bone destruction in the collagen-induced arthritis model of rheumatoid arthritis. Arthritis Res Ther 2005; 7:R1034-45. [PMID: 16207319 PMCID: PMC1257432 DOI: 10.1186/ar1779] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 05/17/2005] [Accepted: 06/02/2005] [Indexed: 12/04/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease of unknown etiology, characterized by the presence of inflammatory synovitis accompanied by destruction of joint cartilage and bone. Treatment with vasoactive intestinal peptide (VIP) prevents experimental arthritis in animal models by downregulation of both autoimmune and inflammatory components of the disease. The aim of this study was to characterize the protective effect of VIP on bone erosion in collagen-induced arthritis (CIA) in mice. We have studied the expression of different mediators implicated in bone homeostasis, such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), receptor activator of nuclear factor-κB (RANK), receptor activator of nuclear factor-κB ligand (RANKL), osteoprotegerin (OPG), IL-1, IL-4, IL-6, IL-10, IL-11 and IL-17. Circulating cytokine levels were assessed by ELISA and the local expression of mediators were determined by RT-PCR in mRNA extracts from joints. VIP treatment resulted in decreased levels of circulating IL-6, IL-1β and TNFα, and increased levels of IL-4 and IL-10. CIA-mice treated with VIP presented a decrease in mRNA expression of IL-17, IL-11 in the joints. The ratio of RANKL to OPG decreased drastically in the joint after VIP treatment, which correlated with an increase in levels of circulating OPG in CIA mice treated with VIP. In addition, VIP treatment decreased the expression of mRNA for RANK, iNOS and COX-2. To investigate the molecular mechanisms involved, we tested the activity of NFκB and AP-1, two transcriptional factors closely related to joint erosion, by EMSA in synovial cells from CIA mice. VIP treatment in vivo was able to affect the transcriptional activity of both factors. Our data indicate that VIP is a viable candidate for the development of treatments for RA.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/genetics
- Arthritis, Experimental/metabolism
- Bone and Bones/drug effects
- Bone and Bones/metabolism
- Cyclooxygenase 2/metabolism
- Cytokines/biosynthesis
- Cytokines/blood
- Cytokines/genetics
- Disease Models, Animal
- Drug Evaluation
- Gene Expression Profiling
- Glycoproteins/blood
- I-kappa B Proteins/blood
- Inflammation Mediators/blood
- JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors
- Male
- Mice
- Mice, Inbred DBA
- NF-KappaB Inhibitor alpha
- NF-kappa B/antagonists & inhibitors
- Nitric Oxide Synthase Type II/metabolism
- Osteoclasts/drug effects
- Osteoclasts/metabolism
- Osteolysis/etiology
- Osteolysis/metabolism
- Osteolysis/prevention & control
- Osteoprotegerin
- Protein Transport/drug effects
- Proto-Oncogene Proteins c-jun/blood
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptors, Cytoplasmic and Nuclear/blood
- Receptors, Tumor Necrosis Factor/blood
- Transcription Factor AP-1/metabolism
- Transcription, Genetic/drug effects
- Vasoactive Intestinal Peptide/pharmacology
- Vasoactive Intestinal Peptide/therapeutic use
Collapse
Affiliation(s)
- Yasmina Juarranz
- Departamento Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Catalina Abad
- Departamento Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Carmen Martinez
- Departamento Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Alicia Arranz
- Departamento Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Irene Gutierrez-Cañas
- Servicio de Reumatología y Unidad de Investigación, Hospital 12 de Octubre, Madrid, Spain
| | - Florencia Rosignoli
- Departamento Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Rosa P Gomariz
- Departamento Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Javier Leceta
- Departamento Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
46
|
Bezerra MC, Carvalho JF, Prokopowitsch AS, Pereira RMR. RANK, RANKL and osteoprotegerin in arthritic bone loss. Braz J Med Biol Res 2005; 38:161-70. [PMID: 15785827 DOI: 10.1590/s0100-879x2005000200004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Rheumatoid arthritis is characterized by the presence of inflammatory synovitis and destruction of joint cartilage and bone. Tissue proteinases released by synovia, chondrocytes and pannus can cause cartilage destruction and cytokine-activated osteoclasts have been implicated in bone erosions. Rheumatoid arthritis synovial tissues produce a variety of cytokines and growth factors that induce monocyte differentiation to osteoclasts and their proliferation, activation and longer survival in tissues. More recently, a major role in bone erosion has been attributed to the receptor activator of nuclear factor kappa B ligand (RANKL) released by activated lymphocytes and osteoblasts. In fact, osteoclasts are markedly activated after RANKL binding to the cognate RANK expressed on the surface of these cells. RANKL expression can be upregulated by bone-resorbing factors such as glucocorticoids, vitamin D3, interleukin 1 (IL-1), IL-6, IL-11, IL-17, tumor necrosis factor-alpha, prostaglandin E2, or parathyroid hormone-related peptide. Supporting this idea, inhibition of RANKL by osteoprotegerin, a natural soluble RANKL receptor, prevents bone loss in experimental models. Tumor growth factor-beta released from bone during active bone resorption has been suggested as one feedback mechanism for upregulating osteoprotegerin and estrogen can increase its production on osteoblasts. Modulation of these systems provides the opportunity to inhibit bone loss and deformity in chronic arthritis.
Collapse
Affiliation(s)
- M C Bezerra
- Departamento de Reumatologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
47
|
Neumann E, Gay S, Müller-Ladner U. The RANK/RANKL/osteoprotegerin system in rheumatoid arthritis: New insights from animal models. ACTA ACUST UNITED AC 2005; 52:2960-7. [PMID: 16200575 DOI: 10.1002/art.21361] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
48
|
van den Berg WB, van Riel PLCM. Uncoupling of inflammation and destruction in rheumatoid arthritis: Myth or reality? ACTA ACUST UNITED AC 2005; 52:995-9. [PMID: 15818666 DOI: 10.1002/art.20981] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Schett G, Stolina M, Bolon B, Middleton S, Adlam M, Brown H, Zhu L, Feige U, Zack DJ. Analysis of the kinetics of osteoclastogenesis in arthritic rats. ACTA ACUST UNITED AC 2005; 52:3192-201. [PMID: 16200623 DOI: 10.1002/art.21343] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To analyze the kinetics of osteoclastogenesis in 2 models of chronic immune-mediated arthritis and 1 model of acute arthritis. METHODS Adjuvant-induced arthritis (AIA) and collagen-induced arthritis (CIA) in Lewis rats were used as models of chronic arthritis. Acute arthritis was induced in Lewis rats by injecting carrageenan into the hind paw. Osteoclasts were identified by cathepsin K immunohistochemistry at various time points after the onset of arthritis. The location, size, and nucleation of osteoclasts were also analyzed. RESULTS In both AIA and CIA, multinucleated and cathepsin K-positive osteoclasts first were observed on the day of disease onset. Initially, osteoclasts were localized at the periosteum next to the synovial membrane and in subchondral bone channels. The number, size, and nucleation of osteoclasts rapidly increased, leading to severe bone loss within days after disease onset. In addition, numerous mononucleated cathepsin K-positive osteoclast precursor cells emerged in the synovial membrane. All osteoclasts (cathepsin K-positive, multinucleated, attached to bone) and osteoclast precursors (cathepsin K-positive, mononucleated or multinucleated, within synovial tissue) were also positive for a macrophage-specific marker. Upon induction of acute arthritis with carrageenan, osteoclasts formed transiently in subchondral bone, but regressed 7 days after disease onset. CONCLUSION Functional osteoclasts are generated at the earliest stage of arthritis, and new precursors are continuously formed in the synovial membrane to replenish the osteoclast pool. These data indicate that anti-resorptive therapies may provide the most effective bone protection, when treatment is started soon after the onset of arthritis.
Collapse
Affiliation(s)
- Georg Schett
- Amgen, Inc., Thousand Oaks, California 91320, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ishii T, Ohshima S, Ishida T, Mima T, Tabunoki Y, Kobayashi H, Maeda M, Uede T, Liaw L, Kinoshita N, Kawase I, Saeki Y. Osteopontin as a positive regulator in the osteoclastogenesis of arthritis. Biochem Biophys Res Commun 2004; 316:809-15. [PMID: 15033472 DOI: 10.1016/j.bbrc.2004.02.124] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Indexed: 10/26/2022]
Abstract
We examined the role of osteopontin (OPN) in the osteoclastogenesis of arthritis using collagen-induced arthritis (CIA). Cells from arthritic joints of wild-type (OPN +/+) mice spontaneously developed bone-resorbing osteoclast-like cells (OCLs). The cultured cells showed an enhanced expression of receptor activator of nuclear factor kappaB ligand (RANKL) and a decreased expression of osteoprotegerin (OPG). The addition of OPG reduced the number of OCLs, indicating that the osteoclastogenesis depends on the RANK/RANKL/OPG system. The cells also produced OPN abundantly and anti-OPN neutralizing antibodies suppressed the development of OCLs. Moreover, the addition of OPN increased the expression of RANKL and augmented differentiation of OCLs from OPN-deficient (OPN -/-) cells. OPN, like the combination of 1alpha,25-dihydroxyvitamin D(3) and dexamethasone, also enhanced the RANKL expression and decreased OPG expression in a stromal cell line, ST2. These results suggest that OPN acts as a positive regulator in the osteoclastogenesis of arthritis through the RANK/RANKL/OPG system.
Collapse
Affiliation(s)
- Taeko Ishii
- Department of Molecular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|