1
|
Chong JJH, Prince RL, Thompson PL, Thavapalachandran S, Ooi E, Devine A, Lim EEM, Byrnes E, Wong G, Lim WH, Lewis JR. Association Between Plasma Neutrophil Gelatinase-Associated Lipocalin and Cardiac Disease Hospitalizations and Deaths in Older Women. J Am Heart Assoc 2020; 8:e011028. [PMID: 30595080 PMCID: PMC6405726 DOI: 10.1161/jaha.118.011028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background Neutrophil gelatinase‐associated lipocalin (NGAL) or lipocalin 2 may promote atherosclerosis and plaque instability leading to increased risk of cardiac events. We investigated the relationships between plasma NGAL, cardiovascular disease biomarkers, and long‐term cardiac events. Methods and Results The study population consisted of 1131 ambulant older white women (mean age 75 years) without clinical coronary heart disease (CHD) and measures of plasma NGAL in the Perth Longitudinal Study of Ageing Women with 14.5‐year CHD and heart failure hospitalizations or death (events) captured using linked records. Over 14.5 years, 256 women had CHD events, while 118 had heart failure events. Per SD increase in log‐transformed NGAL there was a 35% to 37% increase in relative hazards for CHD and heart failure events in unadjusted analyses, which remained significant after adjustment for conventional risk factors for CHD events (hazard ratio 1.29, 95% CI 1.13–1.48, P<0.001) but not heart failure (P>0.05). Women in the highest 2 quartiles of NGAL had higher relative hazards for CHD events compared with women in the lowest quartile hazard ratio 1.61, 95% CI 1.08–2.39, P=0.019 and hazard ratio 1.97, 95% CI 1.33–3.93, P=0.001, respectively. These associations were independent of high‐sensitivity cardiac troponin I, homocysteine, and estimated renal function. NGAL correctly reclassified 1 in 4 women who sustained a CHD event up in risk and 1 in 10 women without CHD events down in risk. Conclusions NGAL was associated with increased risk of long‐term CHD events, independent of conventional risk factors and biomarkers. These findings provide mechanistic insight into the role of NGAL with cardiac events.
Collapse
Affiliation(s)
- James J H Chong
- 1 Centre for Heart Research Westmead Institute for Medical Research The University of Sydney Westmead New South Wales Australia.,2 Department of Cardiology Westmead Hospital Westmead New South Wales Australia.,3 Sydney Medical School The University of Sydney Sydney New South Wales Australia
| | - Richard L Prince
- 4 Medical School University of Western Australia Perth Australia.,6 Department of Endocrinology and Diabetes Sir Charles Gairdner Hospital Perth Australia
| | - Peter L Thompson
- 7 Department of Cardiology Sir Charles Gairdner Hospital Perth Australia
| | - Sujitha Thavapalachandran
- 1 Centre for Heart Research Westmead Institute for Medical Research The University of Sydney Westmead New South Wales Australia
| | - Esther Ooi
- 4 Medical School University of Western Australia Perth Australia.,5 School of Biomedical Sciences University of Western Australia Perth Australia
| | - Amanda Devine
- 10 School of Medical and Health Sciences Edith Cowan University Joondalup Western Australia Australia
| | - E E M Lim
- 9 PathWest Sir Charles Gairdner Hospital Perth Australia
| | | | - Germaine Wong
- 11 Centre for Kidney Research Children's Hospital at Westmead School of Public Health Sydney Medical School The University of Sydney Sydney Australia
| | - Wai H Lim
- 8 Department of Renal Medicine Sir Charles Gairdner Hospital Perth Australia
| | - Joshua R Lewis
- 4 Medical School University of Western Australia Perth Australia.,10 School of Medical and Health Sciences Edith Cowan University Joondalup Western Australia Australia.,11 Centre for Kidney Research Children's Hospital at Westmead School of Public Health Sydney Medical School The University of Sydney Sydney Australia
| |
Collapse
|
2
|
Szychowski KA, Gmiński J. The Elastin-Derived Peptide VGVAPG Does Not Activate the Inflammatory Process in Mouse Cortical Astrocytes In Vitro. Neurotox Res 2020; 37:136-145. [PMID: 31691186 PMCID: PMC6942026 DOI: 10.1007/s12640-019-00114-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023]
Abstract
During vascular aging or in pathological conditions in humans, elastin is degraded and its by-products, the elastin-derived peptides (EDPs), enter the blood circulation. EDPs may be detected in the serum of healthy subjects or people who suffered a stroke. Moreover, recent evidence suggests a potential role of inflammatory mechanisms in neurological conditions, which are usually not categorized as inflammatory. Therefore, the present in vitro study was conducted to investigate the impact of the VGVAPG peptide on the activation of inflammatory process in mouse primary astrocytes, which were maintained in phenol red-free DMEM/F12 supplemented with 10% fetal bovine serum. The cells were exposed to VGVAPG or VVGPGA peptides for 24 and 48 h; this was followed by the determination of the activity of caspase-1 and levels of SOD, CAT, PPARγ, NF-κB, IL-1β, and IL-1βR1. Furthermore, rosiglitazone-a PPARγ agonist-was applied. Our study pioneered the finding that the VGVAPG peptide increases caspase-1 activity in astrocytes in vitro. The VGVAPG peptide simultaneously decreases the release of IL-1β into the cell-culture medium from astrocytes. The ELISA method revealed that the VGVAPG peptide increases the protein expression of SOD1 whereas it decreases the expression of IL-1βR1, CAT, and NF-κB. Therefore, the available data suggest that the VGVAPG peptide (concentration 10 nM) synergistically acts with agonists of PPARγ in mouse astrocytes. However, given the lack of sufficient data to explain the molecular mechanism of action of the VGVAPG peptide in the nervous system, more studies in this area are necessary.
Collapse
Affiliation(s)
- Konrad A Szychowski
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medicine, University of Opole, Oleska 48, 45-052, Opole, Poland.
| | - Jan Gmiński
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland
| |
Collapse
|
3
|
Harasymowicz NS, Dicks A, Wu CL, Guilak F. Physiologic and pathologic effects of dietary free fatty acids on cells of the joint. Ann N Y Acad Sci 2019; 1440:36-53. [PMID: 30648276 DOI: 10.1111/nyas.13999] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/08/2018] [Accepted: 12/14/2018] [Indexed: 12/14/2022]
Abstract
Fatty acids (FAs) are potent organic compounds that not only can be used as an energy source during nutrient deprivation but are also involved in several essential signaling cascades in cells. Therefore, a balanced intake of different dietary FAs is critical for the maintenance of cellular functions and tissue homeostasis. A diet with an imbalanced fat composition creates a risk for developing metabolic syndrome and various musculoskeletal diseases, including osteoarthritis (OA). In this review, we summarize the current state of knowledge and mechanistic insights regarding the role of dietary FAs, such as saturated FAs, omega-6 polyunsaturated FAs (PUFAs), and omega-3 PUFAs on joint inflammation and OA pathogeneses. In particular, we review how different types of dietary FAs and their derivatives distinctly affect a variety of cells within the joint, including chondrocytes, osteoblasts, osteoclasts, and synoviocytes. Understanding the molecular mechanisms underlying the effects of FAs on metabolic behavior, anabolic, and catabolic processes, as well as the inflammatory response of joint cells, may help identify therapeutic targets for the prevention of metabolic joint diseases.
Collapse
Affiliation(s)
- Natalia S Harasymowicz
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri
| | - Amanda Dicks
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri.,Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| | - Chia-Lung Wu
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri.,Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| |
Collapse
|
4
|
Dunn SL, Wilkinson JM, Crawford A, Bunning RAD, Le Maitre CL. Expression of Cannabinoid Receptors in Human Osteoarthritic Cartilage: Implications for Future Therapies. Cannabis Cannabinoid Res 2016; 1:3-15. [PMID: 28861474 PMCID: PMC5576594 DOI: 10.1089/can.2015.0001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Introduction: Cannabinoids have shown to reduce joint damage in animal models of arthritis and reduce matrix metalloproteinase expression in primary human osteoarthritic (OA) chondrocytes. The actions of cannabinoids are mediated by a number of receptors, including cannabinoid receptors 1 and 2 (CB1 and CB2), G-protein-coupled receptors 55 and 18 (GPR55 and GPR18), transient receptor potential vanilloid-1 (TRPV1), and peroxisome proliferator-activated receptors alpha and gamma (PPARα and PPARγ). However, to date very few studies have investigated the expression and localization of these receptors in human chondrocytes, and expression during degeneration, and thus their potential in clinical applications is unknown. Methods: Human articular cartilage from patients with symptomatic OA was graded histologically and the expression and localization of cannabinoid receptors within OA cartilage and underlying bone were determined immunohistochemically. Expression levels across regions of cartilage and changes with degeneration were investigated. Results: Expression of all the cannabinoid receptors investigated was observed with no change with grade of degeneration seen in the expression of CB1, CB2, GPR55, PPARα, and PPARγ. Conversely, the number of chondrocytes within the deep zone of cartilage displaying immunopositivity for GPR18 and TRPV1 was significantly decreased in degenerate cartilage. Receptor expression was higher in chondrocytes than in osteocytes in the underlying bone. Conclusions: Chondrocytes from OA joints were shown to express a wide range of cannabinoid receptors even in degenerate tissues, demonstrating that these cells could respond to cannabinoids. Cannabinoids designed to bind to receptors inhibiting the catabolic and pain pathways within the arthritic joint, while avoiding psychoactive effects, could provide potential arthritis therapies.
Collapse
Affiliation(s)
- Sara L Dunn
- Faculty of Health and Wellbeing, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Jeremy Mark Wilkinson
- Academic Unit of Bone Metabolism, Department of Human Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Aileen Crawford
- Centre for Biomaterials and Tissue Engineering, School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Rowena A D Bunning
- Faculty of Health and Wellbeing, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Christine L Le Maitre
- Faculty of Health and Wellbeing, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| |
Collapse
|
5
|
Girard S, Heazell AEP, Derricott H, Allan SM, Sibley CP, Abrahams VM, Jones RL. Circulating cytokines and alarmins associated with placental inflammation in high-risk pregnancies. Am J Reprod Immunol 2014; 72:422-34. [PMID: 24867252 PMCID: PMC4369138 DOI: 10.1111/aji.12274] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 04/29/2014] [Indexed: 12/28/2022] Open
Abstract
Problem Inflammation during pregnancy has devastating consequences for the placenta and fetus. These events are incompletely understood, thereby hampering screening and treatment. Method of study The inflammatory profile of villous tissue was studied in pregnancies at high-risk of placental dysfunction and compared to uncomplicated pregnancies. The systemic inflammatory profile was assessed in matched maternal serum samples in cases of reduced fetal movements (RFM). Results Placentas from RFM pregnancies had a unique inflammatory profile characterized by increased interleukin (IL)-1 receptor antagonist and decreased IL-10 expression, concomitant with increased numbers of placental macrophages. This aberrant cytokine profile was evident in maternal serum in RFM, as were increased levels of alarmins (uric acid, HMGB1, cell-free fetal DNA). Conclusion This distinct inflammatory profile at the maternal-fetal interface, mirrored in maternal serum, could represent biomarkers of placental inflammation and could offer novel therapeutic options to protect the placenta and fetus from an adverse maternal environment.
Collapse
Affiliation(s)
- Sylvie Girard
- Maternal and Fetal Health Research Centre, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, St. Mary's Hospital, Central Manchester University Hospital NHS Foundation Trust, Manchester, UK; Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | | | | | | | | | | |
Collapse
|
6
|
Palma A, Sainaghi PP, Amoruso A, Fresu LG, Avanzi G, Pirisi M, Brunelleschi S. Peroxisome proliferator-activated receptor-gamma expression in monocytes/macrophages from rheumatoid arthritis patients: relation to disease activity and therapy efficacy--a pilot study. Rheumatology (Oxford) 2012; 51:1942-52. [PMID: 22829690 DOI: 10.1093/rheumatology/kes177] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES Peroxisome proliferator-activated receptor-gamma (PPARγ) is expressed by different cell types in the joints and plays a relevant anti-inflammatory role in various diseases. This pilot study aimed to evaluate PPARγ expression in monocytes/macrophages isolated from RA patients as compared with healthy subjects, the relationships between PPARγ expression, MMP-9 activity and disease, and the influence of therapy with anti-rheumatic drugs on these parameters. METHODS Thirty RA patients of both sexes (treated with CSs and MTX, mainly) and 15 healthy volunteers were enrolled in this study. Disease severity was evaluated by the 28-joint disease activity score (DAS-28). Monocytes and monocyte-derived macrophages (MDMs) were isolated by standard procedures. PPARγ protein and mRNA expression were assessed by immunoblotting and real-time PCR, respectively; MMP-9 activity was determined by gelatin zymography. Moreover, we checked the ability of 15-deoxy-Δ(12,14)-prostaglandin J(2) (15d-PGJ, a PPARγ agonist), MTX and methylprednisolone (MP) to affect PPARγ expression and lipopolysaccharide (LPS)-induced MMP-9 activity. RESULTS Monocytes/MDMs from RA patients have significantly enhanced PPARγ expression (both protein and mRNA) and MMP-9 activity as compared with healthy donors. Interestingly, cells from patients with less active disease (DAS-28 <3.2) present higher PPARγ protein expression and lower MMP-9 activity than RA patients with DAS-28 >3.2. At therapeutic concentrations, MTX and MP increase in vitro PPARγ protein expression and inhibit LPS-induced MMP-9 activity. CONCLUSION PPARγ expression in human monocytes/MDMs could represent an indicator of disease activity and therapy efficacy in RA because patients with a DAS-28 score <3.2 show the highest expression.
Collapse
Affiliation(s)
- Alessandra Palma
- Department of Sciences of Health, Via Solaroli 17, 28100 Novara, Italy
| | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
A key feature of osteoarthritis and rheumatoid arthritis is the loss of articular cartilage. Cartilage breakdown is mediated by complex interactions of proinflammatory cytokines, such as IL-1, inflammatory mediators, including nitric oxide and prostaglandin E2, and proteases, including matrix metalloproteinases and aggrecanases, such as ADAMTS-4 and -5. Cannabinoids have been shown to reduce joint damage in animal models of arthritis. They have also been shown to prevent IL-1-induced matrix breakdown of collagen and proteoglycan, indicating that cannabinoids may mediate chondroprotective effects. Cannabinoids produce their effects via several cannabinoid receptors and it is important to identify the key cannabinoids and their receptors that are involved in chondroprotection. This review aims to outline the current and future prospects of cannabinoids as anti-arthritic therapeutics, in terms of their ability to prevent cartilage breakdown.
Collapse
|
8
|
Zhao Z, Luo Z, Wang P, Sun J, Yu H, Cao T, Ni Y, Chen J, Yan Z, Liu D, Zhu Z. Rosiglitazone Restores Endothelial Dysfunction in a Rat Model of Metabolic Syndrome through PPARγ- and PPARδ-Dependent Phosphorylation of Akt and eNOS. PPAR Res 2011; 2011:291656. [PMID: 22190906 PMCID: PMC3236323 DOI: 10.1155/2011/291656] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/31/2011] [Accepted: 09/06/2011] [Indexed: 12/14/2022] Open
Abstract
Vascular endothelial dysfunction has been demonstrated in metabolic syndrome (MS). Chronic administration of rosiglitazone ameliorates endothelial dysfunction through PPARγ-mediated metabolic improvements. Recently, studies suggested that single dose of rosiglitazone also has direct vascular effects, but the mechanisms remain uncertain. Here we established a diet-induced rat model of MS. The impaired vasorelaxation in MS rats was improved by incubating arteries with rosiglitazone for one hour. Importantly, this effect was blocked by either inhibition of PPARγ or PPARδ. In cultured endothelial cells, acute treatment with rosiglitazone increased the phosphorylation of Akt and eNOS and the production of NO. These effects were also abolished by inhibition of PPARγ, PPARδ, or PI3K. In conclusion, rosiglitazone improved endothelial function through both PPARγ- and PPARδ-mediated phosphorylation of Akt and eNOS, which might help to reconsider the complex effects and clinical applications of rosiglitazone.
Collapse
Affiliation(s)
- Zhigang Zhao
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Zhidan Luo
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Peijian Wang
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Jing Sun
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Hao Yu
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Tingbing Cao
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Yinxing Ni
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Jing Chen
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Zhencheng Yan
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Daoyan Liu
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Zhiming Zhu
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| |
Collapse
|
9
|
Nien CJ, Massei S, Lin G, Nabavi C, Tao J, Brown DJ, Paugh JR, Jester JV. Effects of age and dysfunction on human meibomian glands. ACTA ACUST UNITED AC 2011; 129:462-9. [PMID: 21482872 DOI: 10.1001/archophthalmol.2011.69] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE To identify age-related changes in human meibomian glands that may be associated with meibomian gland dysfunction (MGD). METHODS Excess eyelid tissue from 36 patients (age range, 18-95 years, 19 female, 17 male) who underwent canthoplasty procedures were used. Dermatologic history, age, and presence of MGD were recorded. Samples were frozen, sectioned, and stained with specific antibodies against peroxisome proliferator-activated receptor γ (PPARγ) to identify meibocyte differentiation, Ki67 nuclear antigen to identify cycling cells, and CD45 to identify inflammatory cell infiltration. RESULTS Staining for PPARγ showed cytoplasmic and nuclear localization in the 2 youngest subjects (ages, 18 and 44 years). Older individuals (>60 years) showed predominantly nuclear staining, with cytoplasmic staining limited to the basal acinar cells in 17 of 31 subjects. The number of Ki67 positively stained basal cells were significantly elevated in the younger compared with older subjects based on linear regression analysis (r(2) = 0.35; P < .001). There was also a significant correlation between MG expression grade and CD45 cell infiltration (r = 0.414; P = .05). CONCLUSIONS These results indicate that aging human meibomian glands show decreased meibocyte differentiation and cell cycling that is associated with the development of MGD. Findings also suggest that altered PPARγ signaling may lead to acinar atrophy and development of an age-related hyposecretory MGD. CLINICAL RELEVANCE Meibomian gland dysfunction and evaporative dry eye are common age-related eyelid disorders. Understanding the underlying mechanism of MGD may lead to the development of novel therapeutic strategies to treat this disease.
Collapse
Affiliation(s)
- Chyong Jy Nien
- Gavin Herbert Eye Institute, Medical Center, University of California-Irvine, 101 The City Drive, Orange, CA 92868, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Shalhoub J, Falck-Hansen MA, Davies AH, Monaco C. Innate immunity and monocyte-macrophage activation in atherosclerosis. JOURNAL OF INFLAMMATION-LONDON 2011; 8:9. [PMID: 21526997 PMCID: PMC3094203 DOI: 10.1186/1476-9255-8-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 04/28/2011] [Indexed: 12/25/2022]
Abstract
Innate inflammation is a hallmark of both experimental and human atherosclerosis. The predominant innate immune cell in the atherosclerotic plaque is the monocyte-macrophage. The behaviour of this cell type within the plaque is heterogeneous and depends on the recruitment of diverse monocyte subsets. Furthermore, the plaque microenvironment offers polarisation and activation signals which impact on phenotype. Microenvironmental signals are sensed through pattern recognition receptors, including toll-like and NOD-like receptors - the latter of which are components of the inflammasome - thus dictating macrophage behaviour and outcome in atherosclerosis. Recently cholesterol crystals and modified lipoproteins have been recognised as able to directly engage these pattern recognition receptors. The convergent role of such pathways in terms of macrophage activation is discussed in this review.
Collapse
Affiliation(s)
- Joseph Shalhoub
- Cytokine Biology of Atherosclerosis, Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College London, UK.
| | | | | | | |
Collapse
|
11
|
Saidi S, Bouri F, Lencel P, Duplomb L, Baud'huin M, Delplace S, Leterme D, Miellot F, Heymann D, Hardouin P, Palmer G, Magne D. IL-33 is expressed in human osteoblasts, but has no direct effect on bone remodeling. Cytokine 2010; 53:347-54. [PMID: 21190867 DOI: 10.1016/j.cyto.2010.11.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 11/23/2010] [Accepted: 11/25/2010] [Indexed: 10/18/2022]
Abstract
The aim of the present study was to investigate the potential role of the recently discovered IL-1 family member IL-33 in bone remodeling. Our results indicate that IL-33 mRNA is expressed in osteocytes in non-inflammatory human bone. Moreover, IL-33 levels are increased by TNF-α and IL-1β in human bone marrow stromal cells, osteoblasts and adipocytes obtained from three healthy donors. Experiments with the inhibitor GW-9662 suggested that expression of IL-33, in contrast to that of IL-1β, is not repressed by PPARγ likely explaining why IL-33, but not IL-1β, is expressed in adipocytes. The IL-33 receptor ST2L is not constitutively expressed in human bone marrow stromal cells, osteoblasts or CD14-positive monocytes, and IL-33 has no effect on these cells. In addition, although ST2L mRNA is induced by TNF-α and IL-1β in bone marrow stromal cells, IL-33 has the same effects as TNF-α and IL-1β, and, therefore, the biological activity of IL-33 may be redundant in this system. In agreement with this hypothesis, MC3T3-E1 osteoblast-like cells constitutively express ST2L mRNA, and IL-33 and TNF-α/IL-1β similarly decrease osteocalcin RNA levels in these cells. In conclusion, our results suggest that IL-33 has no direct effects on normal bone remodeling.
Collapse
Affiliation(s)
- S Saidi
- Physiopathology of Inflammatory Bone Diseases, EA2603, University Lille North of France, Quai Masset, Bassin Napoléon BP120, 62327 Boulogne/Mer, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Peroxisome-proliferator-activated receptors γ and peroxisome-proliferator-activated receptors β/δ and the regulation of interleukin 1 receptor antagonist expression by pioglitazone in ischaemic brain. J Hypertens 2010; 28:1488-97. [DOI: 10.1097/hjh.0b013e3283396e4e] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Kim HJ, Kim MY, Hwang JS, Kim HJ, Lee JH, Chang KC, Kim JH, Han CW, Kim JH, Seo HG. PPARdelta inhibits IL-1beta-stimulated proliferation and migration of vascular smooth muscle cells via up-regulation of IL-1Ra. Cell Mol Life Sci 2010; 67:2119-30. [PMID: 20221783 PMCID: PMC11115654 DOI: 10.1007/s00018-010-0328-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 02/07/2010] [Accepted: 02/19/2010] [Indexed: 11/26/2022]
Abstract
Activation of peroxisome proliferator-activated receptor (PPAR) delta by GW501516, a specific PPARdelta ligand, significantly inhibited interleukin (IL)-1beta-induced proliferation and migration of vascular smooth muscle cells (VSMCs). This effect of GW501516 was dependent on transforming growth factor-beta, and was mediated through the up-regulation of IL-1 receptor antagonist. The inhibitory effect of GW501516 on VSMC proliferation was associated with cell cycle arrest at the G1 to S phase transition, which was accompanied by the induction of p21 and p53 along with decreased cyclin-dependent kinase 4 expression. Inhibition of cell migration by GW501516 was associated with the down-regulation of matrix metalloproteinase (MMP)-2 and MMP-9 in IL-1beta-treated VSMCs. Inhibition of extracellular signal-regulated kinase significantly reduced the GW501516-mediated inhibition of IL-1beta-stimulated VSMC proliferation. These results suggest that PPARdelta plays an important role in the pathophysiology of diseases associated with the proliferation and migration of VSMCs.
Collapse
Affiliation(s)
- H. J. Kim
- Department of Pharmacology, Gyeongsang Institute of Health Science, Gyeongsang National University School of Medicine, 92 Chilam-Dong, Jinju, 660-751 Korea
| | - M. Y. Kim
- Department of Pharmacology, Gyeongsang Institute of Health Science, Gyeongsang National University School of Medicine, 92 Chilam-Dong, Jinju, 660-751 Korea
| | - J. S. Hwang
- Department of Pharmacology, Gyeongsang Institute of Health Science, Gyeongsang National University School of Medicine, 92 Chilam-Dong, Jinju, 660-751 Korea
| | - H. J. Kim
- Department of Pharmacology, Gyeongsang Institute of Health Science, Gyeongsang National University School of Medicine, 92 Chilam-Dong, Jinju, 660-751 Korea
| | - J. H. Lee
- Department of Pharmacology, Gyeongsang Institute of Health Science, Gyeongsang National University School of Medicine, 92 Chilam-Dong, Jinju, 660-751 Korea
| | - K. C. Chang
- Department of Pharmacology, Gyeongsang Institute of Health Science, Gyeongsang National University School of Medicine, 92 Chilam-Dong, Jinju, 660-751 Korea
| | - J. -H. Kim
- Department of Animal Biotechnology, Kon-Kuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 143-701 Korea
| | - C. W. Han
- Department of Oriental Internal Medicine, College of Oriental Medicine, Kyung-Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul, 130-701 Korea
| | - J.-H. Kim
- Department of Biomedical Science, CHA Stem Cell Institute, College of Life Science, CHA University, Pochon-si, Gyeonggi-do, 487-010 Korea
| | - H. G. Seo
- Department of Pharmacology, Gyeongsang Institute of Health Science, Gyeongsang National University School of Medicine, 92 Chilam-Dong, Jinju, 660-751 Korea
| |
Collapse
|
14
|
Song JS, Kim CH, Heo JY, Cho YS. Rosiglitazone reduces a wide range of proinflammatory profiles in synovial fibroblast SW982 under spheroid culture. Immunol Lett 2010; 131:81-8. [PMID: 20211202 DOI: 10.1016/j.imlet.2010.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 02/02/2010] [Accepted: 02/28/2010] [Indexed: 11/17/2022]
Abstract
Rosiglitazone (RSG) has been known to play a role in the modulation of inflammatory responses. Therefore, we sought to elucidate the underlying molecular mechanism by which RSG regulates the development of rheumatoid arthritis. Firstly, we examined the preventive effect of RSG on the inflammatory mediators induced by spheroid culture of synovial sarcoma SW982. Expression of proinflammatory cytokines under spheroid culture was more elevated than that under monolayer culture while RSG abolished inflammatory responses. The upregulation of inflammation-related genes by spheroid culture was closely associated with NFkappaB (NFkappaB) activation. Also, activation of p38 and c-Jun N-terminal kinase (JNK) by spheroid culture was abrogated with RSG treatment. Lastly, it was demonstrated that RSG reduced the development of arthritis in mice immunized with collagen, improving the histology of inflamed joint. In summary, RSG reduces inflammatory responses of synovial fibroblast via not only inhibition of NFkappaB but also modulation of both p38 and JNK.
Collapse
Affiliation(s)
- Jin Sook Song
- Drug Discovery Platform Technology Team, Bio-organic Science Division, Korea Research Institute of Chemical Technology, Sinseongno 19, Yuseong-gu, Daejeon, South Korea
| | | | | | | |
Collapse
|
15
|
Jouzeau JY, Moulin D, Koufany M, Sebillaud S, Bianchi A, Netter P. [Pathophysiological relevance of peroxisome proliferators activated receptors (PPAR) to joint diseases - the pro and con of agonists]. ACTA ACUST UNITED AC 2008; 202:289-312. [PMID: 19094928 DOI: 10.1051/jbio:2008034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Peroxisome proliferators activated receptors (PPAR) are ligand-inducible nuclear transacting factors comprising three subtypes, PPARalpha, PPARbeta/delta and PPARgamma, which play a key role in lipids and glucose homeostasis. All PPAR subtypes have been identified in joint or inflammatory cells and their activation resulted in a transcriptional repression of pro-inflammatory cytokines (IL-1, TNFalpha), early inflammatory genes (NOS(2), COX-2, mPGES-1) or matrix metalloproteases (MMP-1, MMP-13), at least for the gamma subtype. PPAR full agonists were also shown to stimulate IL-1 receptor antagonist (IL-1Ra) production by cytokine-stimulated articular cells in a subtype-dependent manner. These anti-inflammatory and anti-catabolic properties were confirmed in animal models of joint diseases where PPAR agonists reduced synovial inflammation while preventing cartilage destruction or inflammatory bone loss, although many effects required much higher doses than needed to restore insulin sensitivity or to lower circulating lipid levels. However, these promising effects of PPAR full agonists were hampered by their ability to reduce the growth factor-dependent synthesis of extracellular matrix components or to induce chondrocyte apoptosis, by the possible contribution of immunosuppressive properties to their anti-arthritic effects, by the increased adipocyte differentiation secondary to prolonged stimulation of PPARgamma, and by a variable contribution of PPAR subtypes depending on the system. Clinical data are scarce in rheumatoid arthritis (RA) patients whereas thousands of patients worldwilde, treated with PPAR agonists for type 2 diabetes or dyslipidemia, are paradoxically prone to suffer from osteoarthritis (OA). Whereas high dosage of full agonists may expose RA patients to cardiovascular adverse effects, the proof of concept that PPAR agonists have therapeutical relevance to OA may benefit from an epidemiological follow-up of joint lesions in diabetic or hyperlipidemic patients treated for long periods of time with glitazones or fibrates. Additionally, cellular and animal studies are required to assess whether partial agonists of PPAR (SPPARMs) may preserve therapeutical properties with potentially less safety concern.
Collapse
|
16
|
Kirchmeyer M, Koufany M, Sebillaud S, Netter P, Jouzeau JY, Bianchi A. All-trans retinoic acid suppresses interleukin-6 expression in interleukin-1-stimulated synovial fibroblasts by inhibition of ERK1/2 pathway independently of RAR activation. Arthritis Res Ther 2008; 10:R141. [PMID: 19068145 PMCID: PMC2656246 DOI: 10.1186/ar2569] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 11/25/2008] [Accepted: 12/10/2008] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION Interleukin-6 (IL-6) is thought to play a pathogenic role in rheumatoid arthritis and synovium is a major source of IL-6 release. We investigated the ability of retinoids to suppress IL-6 expression in IL-1-stimulated synovial fibroblasts, with special care to the contribution of retinoic acid receptor (RAR) and retinoid X receptor (RXR) subtypes, and the implication of the mitogen-activated protein kinase (MAPK) pathway. METHODS RAR-alpha, -beta, and -gamma and RXR-alpha, -beta, and -gamma levels were determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) or Western blot in rat synovial fibroblasts stimulated with 10 ng/mL of IL-1beta. Stimulated levels of IL-6 were assessed by RT-qPCR or immunoassays in the presence or absence of 1 microM all-trans retinoic acid (ATRA) (RAR agonist) or 0.3 microM BMS-649 (RXR agonist). The contribution of RAR subtypes was checked with selective agonists or small interfering RNAs. The effect of ATRA on upstream MAPK (p38 MAPK, c-Jun N-terminal kinase [JNK], and extracellularly regulated kinase 1/2 [ERK1/2]) was assessed by Western blot, and the contribution of the ERK1/2 pathway to the activation of pro-inflammatory transcription factors was studied by TransAm assays. RESULTS Synovial fibroblasts expressed all RAR and RXR subtypes except RXR-gamma. In IL-1-stimulated cells, ATRA, but not BMS-649, reduced IL-6 expression whereas selective RAR agonists were inactive. The inhibitory effect of ATRA on IL-6 was not affected by the silencing of RAR subtypes. ATRA also reduced the phosphorylation of ERK1/2, but not of p38 MAPK or of JNK. The suppressive effect of ATRA on the activation of activator protein-1 (AP-1) and nuclear factor-IL-6 (NF-IL-6) was reproduced by the MEK1 (mitogen-activated protein extracellularly regulated kinase kinase 1) inhibitor PD-98059, whereas ATRA and PD-98059 had no effect on NF-kappaB activation. CONCLUSIONS Among RAR and RXR agonists, only ATRA inhibited IL-1-induced IL-6 expression in rat synovial fibroblasts by inhibiting ERK1/2 pathway and subsequent activation of AP-1 and NF-IL-6 independently of RAR.
Collapse
Affiliation(s)
- Mélanie Kirchmeyer
- Laboratoire de Physiopathologie et Pharmacologie Articulaires, UMR 7561 CNRS-Nancy Université, Vandoeuvre-lès-Nancy, France.
| | | | | | | | | | | |
Collapse
|
17
|
Mbalaviele G, Monahan JB. Mechanisms of the joint-protective effects of p38 MAPK inhibitors in rodent arthritis. Expert Opin Drug Discov 2008; 3:163-72. [DOI: 10.1517/17460441.3.2.163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Afif H, Benderdour M, Mfuna-Endam L, Martel-Pelletier J, Pelletier JP, Duval N, Fahmi H. Peroxisome proliferator-activated receptor gamma1 expression is diminished in human osteoarthritic cartilage and is downregulated by interleukin-1beta in articular chondrocytes. Arthritis Res Ther 2007; 9:R31. [PMID: 17386086 PMCID: PMC1906809 DOI: 10.1186/ar2151] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 02/26/2007] [Accepted: 03/26/2007] [Indexed: 01/16/2023] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor involved in the regulation of many cellular processes. We and others have previously shown that PPARγ activators display anti-inflammatory and chondroprotective properties in vitro and improve the clinical course and histopathological features in an experimental animal model of osteoarthritis (OA). However, the expression and regulation of PPARγ expression in cartilage are poorly defined. This study was undertaken to investigate the quantitative expression and distribution of PPARγ in normal and OA cartilage and to evaluate the effect of IL-1β, a prominent cytokine in OA, on PPARγ expression in cultured chondrocytes. Immunohistochemical analysis revealed that the levels of PPARγ protein expression were significantly lower in OA cartilage than in normal cartilage. Using real-time RT-PCR, we demonstrated that PPARγ1 mRNA levels were about 10-fold higher than PPARγ2 mRNA levels, and that only PPARγ1 was differentially expressed: its levels in OA cartilage was 2.4-fold lower than in normal cartilage (p < 0.001). IL-1 treatment of OA chondrocytes downregulated PPARγ1 expression in a dose- and time-dependent manner. This effect probably occurred at the transcriptional level, because IL-1 decreases both PPARγ1 mRNA expression and PPARγ1 promoter activity. TNF-α, IL-17, and prostaglandin E2 (PGE2), which are involved in the pathogenesis of OA, also downregulated PPARγ1 expression. Specific inhibitors of the mitogen-activated protein kinases (MAPKs) p38 (SB203580) and c-Jun N-terminal kinase (SP600125), but not of extracellular signal-regulated kinase (PD98059), prevented IL-1-induced downregulation of PPARγ1 expression. Similarly, inhibitors of NF-κB signaling (pyrrolidine dithiocarbamate, MG-132, and SN-50) abolished the suppressive effect of IL-1. Thus, our study demonstrated that PPARγ1 is downregulated in OA cartilage. The pro-inflammatory cytokine IL-1 may be responsible for this downregulation via a mechanism involving activation of the MAPKs (p38 and JNK) and NF-κB signaling pathways. The IL-1-induced downregulation of PPARγ expression might be a new and additional important process by which IL-1 promotes articular inflammation and cartilage degradation.
Collapse
Affiliation(s)
- Hassan Afif
- Osteoarthritis Research Unit, Centre Hospitalier de l'Université de Montréal (CHUM), Notre-Dame Hospital, Department of Medicine, University of Montreal, Montreal, 1560 Sherbrooke East, Pavillon J.A DeSève, Y-2628, Montreal, QC, H2L 4M1, Canada
| | - Mohamed Benderdour
- Centre de Recherche, Sacré-Coeur Hospital, 5400 Boulevard Gouin Ouest, Montréal, QC, H4J 1C5, Canada
| | - Leandra Mfuna-Endam
- Osteoarthritis Research Unit, Centre Hospitalier de l'Université de Montréal (CHUM), Notre-Dame Hospital, Department of Medicine, University of Montreal, Montreal, 1560 Sherbrooke East, Pavillon J.A DeSève, Y-2628, Montreal, QC, H2L 4M1, Canada
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit, Centre Hospitalier de l'Université de Montréal (CHUM), Notre-Dame Hospital, Department of Medicine, University of Montreal, Montreal, 1560 Sherbrooke East, Pavillon J.A DeSève, Y-2628, Montreal, QC, H2L 4M1, Canada
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, Centre Hospitalier de l'Université de Montréal (CHUM), Notre-Dame Hospital, Department of Medicine, University of Montreal, Montreal, 1560 Sherbrooke East, Pavillon J.A DeSève, Y-2628, Montreal, QC, H2L 4M1, Canada
| | - Nicholas Duval
- Centre de Convalescence, Pavillon de Charmilles, 1487 Boulevard des Laurentides, Montréal, QC, H7M 2Y3, Canada
| | - Hassan Fahmi
- Osteoarthritis Research Unit, Centre Hospitalier de l'Université de Montréal (CHUM), Notre-Dame Hospital, Department of Medicine, University of Montreal, Montreal, 1560 Sherbrooke East, Pavillon J.A DeSève, Y-2628, Montreal, QC, H2L 4M1, Canada
| |
Collapse
|
19
|
Poleni PE, Bianchi A, Etienne S, Koufany M, Sebillaud S, Netter P, Terlain B, Jouzeau JY. Agonists of peroxisome proliferators-activated receptors (PPAR) alpha, beta/delta or gamma reduce transforming growth factor (TGF)-beta-induced proteoglycans' production in chondrocytes. Osteoarthritis Cartilage 2007; 15:493-505. [PMID: 17140817 DOI: 10.1016/j.joca.2006.10.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 10/14/2006] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the potency of selective agonists of peroxisome proliferators-activated receptors' (PPAR) isotypes (alpha, beta/delta or gamma) to modulate the stimulating effect of transforming growth factor-beta1 (TGF-beta1) on proteoglycans' (PGs) synthesis in chondrocytes. METHOD Rat chondrocytes embedded in alginate beads and cultured under low serum conditions were exposed to TGF-beta1 (10 ng/ml), alone or in combination with the following agonists: Wy14643 for PPARalpha, GW501516 for PPARbeta/delta, rosiglitazone (ROSI) for PPARgamma, in the presence or absence of PPAR antagonists (GW6471 for PPARalpha, GW9662 for PPARgamma). PGs' synthesis was evaluated by radiolabelled sulphate incorporation and glycosaminoglycans' (GAGs) content by Alcian blue staining of beads and colorimetric 1.9 dimethyl-methylene blue assay after beads' solubilization. Phosphorylation of Extracellular Signal-related Kinase1/2 (ERK1/2), Smad2/3 and p38-MAPK was assessed by Western Blot and production of prostaglandin E2 (PGE2) by Enzyme immuno-assay (EIA). Levels of mRNA for PPAR target genes [acyl-CoA oxidase (ACO) for PPARalpha; mitochondrial carnitin palmitoyl transferase-1 (CPT-1) for PPARbeta/delta and adiponectin for PPARgamma], aggrecan, TGF-beta1 and genes controlling GAGs' side chains' synthesis were quantified by real time polymerase chain reaction and normalized over RP29 housekeeping gene. RESULTS ACO was selectively up-regulated by 100 microM of Wy14643, CPT-1 by 100 nM of GW501516 and adiponectin by 10 microM of ROSI without cell toxicity. TGF-beta1 increased PGs' synthesis by four-fold, GAGs' content and deposition by 3.5-fold and six-fold, respectively, while inducing aggrecan expression around 10-fold without modifying mRNA levels of GAGs' controlling enzymes. PPAR agonists inhibited the stimulating effect of TGF-beta1 by 24-44% on PGs' synthesis and over 75% on aggrecan, GAGs' content and deposition with the following rank order of potency: ROSI>GW501516> or =Wy14643. TGF-beta1-induced phosphorylation of Smad2/3 and ERK1/2 was reduced by ROSI over GW501516 but not by Wy14643 whereas stimulated PGE2 production was inhibited by Wy14643 over GW501516 but not by ROSI. The effect of PPAR agonists on PPAR target genes and TGF-beta1-induced aggrecan expression was reversed selectively by PPAR antagonists. CONCLUSION In chondrocytes' beads, PPAR agonists reduced the stimulating effect of TGF-beta1 on PGs by inhibiting TGF-beta1-induced aggrecan expression in an isotype-selective manner. Thus, PPAR agonists could be deleterious in situation of cartilage repair although being protective in situation of cartilage degradation.
Collapse
Affiliation(s)
- P E Poleni
- Laboratoire de Physiopathologie et Pharmacologie Articulaires (LPPA), UMR 7561 CNRS-UHP Nancy 1, Avenue de la Forêt de Haye, BP 184, 54505 Vandoeuvre-lès-Nancy Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Calkin AC, Allen TJ, Lassila M, Tikellis C, Jandeleit-Dahm KA, Thomas MC. Increased atherosclerosis following treatment with a dual PPAR agonist in the ApoE knockout mouse. Atherosclerosis 2007; 195:17-22. [PMID: 17214990 DOI: 10.1016/j.atherosclerosis.2006.11.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 11/09/2006] [Accepted: 11/10/2006] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Recent reports have suggested that dual peroxisome proliferator-activated receptor (PPAR) alpha/gamma agonists are associated with adverse cardiovascular events. This study aimed to investigate the actions of the non-thiazolidinedione PPARalpha/gamma agonist, compound 3q, on plaque development in the apolipoprotein E knockout (apoE KO) mouse, a recognised model of accelerated plaque development. METHODS Six-week-old male apoE KO mice were randomised to receive the dual PPARalpha/gamma agonist, compound 3q (3 mg/kg/day), the PPARgamma agonist, rosiglitazone (20 mg/kg/day), the PPARalpha agonist, gemfibrozil (100 mg/kg/day) by gavage or no treatment for 20 weeks (n=12/group). RESULTS Gemfibrozil and rosiglitazone significantly reduced lesion area. However, compound 3q was associated with a three-fold increase in total plaque area (versus control p<0.001). This was associated with an upregulation of markers of plaque instability including vascular cell adhesion molecule-1 (3.5-fold, p<0.001), P-selectin (3.4-fold, p<0.001) monocyte chemoattractant protein-1 (3.4-fold; p<0.001) as well as the scavenger receptor, CD36 (2-fold, p<0.01). These disparate effects were observed with the dual PPAR agonist despite lowering LDL cholesterol and improving insulin sensitivity to a similar extent to PPARalpha and gamma agonists used individually. CONCLUSION The finding of increased atherogenesis following a dual PPARalpha/gamma agonist is consistent with recent clinical findings. These data provide an important framework for further exploring the potential utility and safety of combinatorial approaches.
Collapse
Affiliation(s)
- Anna C Calkin
- Danielle Alberti Memorial Centre for Diabetic Complications, Baker Medical Research Institute, Melbourne, Australia.
| | | | | | | | | | | |
Collapse
|