1
|
Zhuang H, Ren X, Zhang Y, Li H, Zhou P. β-Hydroxybutyrate enhances chondrocyte mitophagy and reduces cartilage degeneration in osteoarthritis via the HCAR2/AMPK/PINK1/Parkin pathway. Aging Cell 2024; 23:e14294. [PMID: 39126207 PMCID: PMC11561673 DOI: 10.1111/acel.14294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/28/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Osteoarthritis (OA) is widely recognized as the prevailing joint disease associated with aging. The ketogenic diet (KD) has been postulated to impede the advancement of various inflammatory ailments. β-Hydroxybutyrate (βOHB), a prominent constituent of ketone bodies, has recently been proposed to possess crucial signaling capabilities. In this study, we propose to explore the role and mechanism of βOHB in OA. Tissue staining and inflammatory factor assay were employed to evaluate the impacts of KD and βOHB on OA rats. The oxidative stress conditions in chondrocytes were induced using tert-butyl hydroperoxide (TBHP). The mechanisms were determined using the siRNA of hydroxycarboxylic acid receptor 2 (HCAR2), the antagonist of adenosine monophosphate-activated protein kinase (AMPK), and the inhibitor of mitophagy. The administration of KD demonstrated a reduction in pathological damage to cartilage, as well as a decrease in plasma levels of inflammatory factors. Furthermore, it resulted in an increase in the concentration of βOHB in the blood and synovial fluid. In vitro experiments showed that βOHB facilitated mitophagy and adenosine triphosphate production. Besides, βOHB mitigated chondrocyte senescence, inflammatory factors secretion, extracellular matrix degradation, and apoptosis induced by TBHP. Subsequent investigations indicated that the protective effects of βOHB were no longer observed following the knockdown of HCAR2, the antagonist of AMPK, or the inhibitor of mitophagy. Moreover, in vivo studies suggested that βOHB played a protective role by targeting the HCAR2-AMPK-PINK1 axis. In conclusion, βOHB enhanced chondrocyte mitophagy through the HCAR2/AMPK/PINK1/Parkin pathway, offering a potential therapeutic approach for the treatment of OA.
Collapse
Affiliation(s)
- Huangming Zhuang
- Department of OrthopedicsRenmin Hospital of Wuhan UniversityWuhanChina
| | - Xunshan Ren
- Department of OrthopedicsRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yuelong Zhang
- Department of OrthopedicsRenmin Hospital of Wuhan UniversityWuhanChina
| | - Huajie Li
- Department of OrthopedicsRenmin Hospital of Wuhan UniversityWuhanChina
| | - Panghu Zhou
- Department of OrthopedicsRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
2
|
Yu S, Shu X, Wang X, Sheng Y, Li S, Wang Y, Zhang Y, Tao J, Jiang X, Wu C. The novel HSP90 monoclonal antibody 9B8 ameliorates articular cartilage degeneration by inhibiting glycolysis via the HIF-1 signaling pathway. Heliyon 2024; 10:e35603. [PMID: 39229534 PMCID: PMC11369415 DOI: 10.1016/j.heliyon.2024.e35603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/04/2024] [Accepted: 07/31/2024] [Indexed: 09/05/2024] Open
Abstract
Osteoarthritis (OA) is a prevalent chronic degenerative disease that affects the bones and joints, particularly in middle-aged and elderly individuals. It is characterized by progressive joint pain, swelling, stiffness, and deformity. Notably, treatment with a heat shock protein 90 (HSP90) inhibitor has significantly curtailed cartilage destruction in a rat model of OA. Although the monoclonal antibody 9B8 against HSP90 is recognized for its anti-tumor properties, its potential therapeutic impact on OA remains uncertain. This study investigated the effects of 9B8 on OA and its associated signaling pathways in interleukin-1β (IL-1β)-stimulated human chondrocytes and a rat anterior cruciate ligament transection (ACLT) model. A specific concentration of 9B8 preserved cell viability against IL-1β-induced reduction. In vitro, 9B8 significantly reduced the expression of extracellular matrix-degrading enzyme such as disintegrin and metallopeptidase-4 (ADAMTS4) of thrombospondin motifs, matrix metalloproteinase-13 (MMP-13), as well as cellular inflammatory factors such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), which were upregulated by IL-1β. In vivo, 9B8 effectively protected the articular cartilage and subchondral bone of the rat tibial plateau from ACLT-induced damage. Additionally, gene microarray analysis revealed that IL-1β substantially increased the expression of SLC2A1, PFKP, and ENO2 within the HIF-1 signaling pathway, whereas 9B8 suppressed the expression of these genes. Thus, 9B8 effectively mitigates ACLT-induced osteoarthritis in rats by modulating the HIF-1 signaling pathway, thereby inhibiting overexpression involved in glycolysis. These results collectively indicate that 9B8 is a promising novel drug for the prevention and treatment of OA.
Collapse
Affiliation(s)
- Shunan Yu
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, National Center for Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, PR China
| | - Xiong Shu
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, National Center for Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, PR China
| | - Xinyu Wang
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, National Center for Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, PR China
| | - Yueyang Sheng
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, National Center for Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, PR China
| | - Shan Li
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, National Center for Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, PR China
| | - Ying Wang
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, National Center for Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, PR China
| | - Yanzhuo Zhang
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, National Center for Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, PR China
| | - Jiangfeng Tao
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, National Center for Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, PR China
| | - Xu Jiang
- Department of Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing Research Institute of Traumatology and Orthopaedics, Beijing, 100035, PR China
| | - Chengai Wu
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, National Center for Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, PR China
| |
Collapse
|
3
|
Li Q, Yang Z, Zhu M, Zhang W, Chen L, Chen H, Kang P. Hypobaric hypoxia aggravates osteoarthritis via the alteration of the oxygen environment and bone remodeling in the subchondral zone. FASEB J 2024; 38:e23594. [PMID: 38573451 DOI: 10.1096/fj.202302368r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/05/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
A high prevalence of osteoarthritis (OA) has been observed among individuals living at high altitudes, and hypobaric hypoxia (HH) can cause bone mass and strength deterioration. However, the effect of HH on OA remains unclear. In this study, we aimed to explore the impact of HH on OA and its potential mechanisms. A rat knee OA model was established by surgery, and the rats were bred in an HH chamber simulating a high-altitude environment. Micro-computed tomography (Micro-CT), histological analysis, and RNA sequencing were performed to evaluate the effects of HH on OA in vivo. A hypoxic co-culture model of osteoclasts and osteoblasts was also established to determine their effects on chondrogenesis in vitro. Cartilage degeneration significantly worsened in the HH-OA group compared to that in the normoxia-OA (N-OA) group, 4 weeks after surgery. Micro-CT analysis revealed more deteriorated bone mass in the HH-OA group than in the N-OA group. Decreased hypoxia levels in the cartilage and enhanced hypoxia levels in the subchondral bone were observed in the HH-OA group. Furthermore, chondrocytes cultured in a conditioned medium from the hypoxic co-culture model showed decreased anabolism and extracellular matrix compared to those in the normoxic model. RNA sequencing analysis of the subchondral bone indicated that the glycolytic signaling pathway was highly activated in the HH-OA group. HH-related OA progression was associated with alterations in the oxygen environment and bone remodeling in the subchondral zone, which provided new insights into the pathogenesis of OA.
Collapse
Affiliation(s)
- Qianhao Li
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Zhouyuan Yang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Mengli Zhu
- Research Core Facility, West China Hospital, Sichuan University, Chengdu, China
| | - Wanli Zhang
- Research Core Facility, West China Hospital, Sichuan University, Chengdu, China
| | - Liyile Chen
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Hongying Chen
- Research Core Facility, West China Hospital, Sichuan University, Chengdu, China
| | - Pengde Kang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Zhao S, Xiu G, Wang J, Wen Y, Lu J, Wu B, Wang G, Yang D, Ling B, Du D, Xu J. Engineering exosomes derived from subcutaneous fat MSCs specially promote cartilage repair as miR-199a-3p delivery vehicles in Osteoarthritis. J Nanobiotechnology 2023; 21:341. [PMID: 37736726 PMCID: PMC10515007 DOI: 10.1186/s12951-023-02086-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/29/2023] [Indexed: 09/23/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease involving cartilage. Exosomes derived from Mesenchymal stem cells (MSCs) therapy improves articular cartilage repair, but subcutaneous fat (SC) stromal cells derived exosomes (MSCsSC-Exos), especially engineering MSCsSC-Exos for drug delivery have been rarely reported in OA therapy. This objective of this study was to clarify the underlying mechanism of MSCsSC-Exos on cartilage repair and therapy of engineering MSCsSC-Exos for drug delivery in OA. MSCsSC-Exos could ameliorate the pathological severity degree of cartilage via miR-199a-3p, a novel molecular highly enriched in MSCsSC-Exos, which could mediate the mTOR-autophagy pathway in OA rat model. Intra-articular injection of antagomiR-199a-3p dramatically attenuated the protective effect of MSCsSC-Exos-mediated on articular cartilage in vivo. Furthermore, to achieve the superior therapeutic effects of MSCsSC-Exos on injured cartilage, engineering exosomes derived from MSCsSC as the chondrocyte-targeting miR-199a-3p delivery vehicles were investigated in vitro and in vivo. The chondrocyte-binding peptide (CAP) binding MSCsSC-Exos could particularly deliver miR-199a-3p into the chondrocytes in vitro and into deep articular tissues in vivo, then exert the excellent protective effect on injured cartilage in DMM-induced OA mice. As it is feasible to obtain human subcutaneous fat from healthy donors by liposuction operation in clinic, meanwhile engineering MSCsSC-Exos to realize targeted delivery of miR-199a-3p into chondrocytes exerted excellent therapeutic effects in OA animal model in vivo. Through combining MSCsSC-Exos therapy and miRNA therapy via an engineering approach, we develop an efficient MSCsSC-Exos-based strategy for OA therapy and promote the application of targeted-MSCsSC-Exos for drug delivery in the future.
Collapse
Affiliation(s)
- Shu Zhao
- East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China, 200120
- Department of Plastic Surgery, Shanghai Fourth People's Hospital, School of Medicine,Tongji University, Shanghai, 200434, People's Republic of China
| | - Guanghui Xiu
- Department of Intensive Care Unit, Affiliated Hospital of Yunnan University (The Second People's Hospital of Yunnan Province), Yunnan University, Kunming, 650021, People's Republic of China
| | - Jian Wang
- East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China, 200120
| | - Yi Wen
- East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China, 200120
| | - Jinyuan Lu
- Department of Hematology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Baitong Wu
- East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China, 200120
| | - Guangming Wang
- East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China, 200120
| | - Danjing Yang
- East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China, 200120
| | - Bin Ling
- Department of Intensive Care Unit, Affiliated Hospital of Yunnan University (The Second People's Hospital of Yunnan Province), Yunnan University, Kunming, 650021, People's Republic of China.
| | - Dajiang Du
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China.
| | - Jun Xu
- East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China, 200120.
| |
Collapse
|
5
|
Zhao S, Liu Y, Wang J, Wen Y, Wu B, Yang D, Wang G, Xiu G, Ling B, Du D, Xu J. ADSCs increase the autophagy of chondrocytes through decreasing miR-7-5p in Osteoarthritis rats by targeting ATG4A. Int Immunopharmacol 2023; 120:110390. [PMID: 37262955 DOI: 10.1016/j.intimp.2023.110390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is a highly degenerative joint disease, mainly companying with progressive destruction of articular cartilage. Adipose-derived stromal cells (ADSCs) therapy enhances articular cartilage repair, extracellular matrix (ECM) synthesis and attenuates joints inflammation, but specific mechanisms of therapeutic benefit remain poorly understood. This study aimed to clarify the therapeutic effects and mechanisms of ADSCs on cartilage damage in the keen joint of OA rat model. METHODS Destabilization of the medial meniscus (DMM) and anterior cruciate ligament transection (ACLT) surgery-induced OA rats were treated with allogeneic ADSCs by intra-articular injections for 6 weeks. The protective effect of ADSCs in vivo was measured using Safranin O and fast green staining, immunofluorescence and western blot analysis. Meanwhile, the miRNA-7-5p (miR-7-5p) expression was assessed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The mechanism of increased autophagy with ADSCs addition through decreasing miR-7-5p was revealed using oligonucleotides, and adenovirus in rat chondrocytes. The luciferase reporter assay revealed the molecular role of miR-7-5p and autophagy related 4A (ATG4A). The substrate of mTORC1 pathway: (p-)p70S6 and (p-)S6 in OA models with ADSCs addition were detected by western blotting. RESULTS The ADSCs treatment repaired the articular cartilage and maintained chondrocytes ECM homeostasis through modulating chondrocytes autophagy in the OA model, indicators of the change of autophagic proteins expression and autophagic flux. Meanwhile, the increased autophagy induced by ADSCs treatment was closely related to the decreased expression of host-derived miR-7-5p, a negative modulator of OA progression. Functional genomics (overexpression of genes) in vitro studies demonstrate the inhibition of host-derived miR-7-5p in mediating the benefit of ADSCs administration in OA model. Then ATG4A was defined as a target gene of miR-7-5p, and the negative relation between miR-7-5p and ATG4A was investigated in the OA model treated with ADSCs. Furthermore, miR-7-5p mediated chondrocyte autophagy by targeting ATG4A in the OA model treated with ADSCs was confirmed with the rescue trial of ATG4A/miR-7-5p overexpression on rat chondrocyte. Finally, the mTORC1 signaling pathways mediated by host-derived miR-7-5p with ADSCs treatment were decreased in OA rats. CONCLUSIONS ADSCs promote the chondrocytes autophagy by decreasing miR-7-5p in articular cartilage by targeting ATG4A and a potential role for ADSCs based therapeutics for preventing of articular cartilage destruction and extracellular matrix (ECM) degradation in OA.
Collapse
Affiliation(s)
- Shu Zhao
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu'e Liu
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jian Wang
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Wen
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Baitong Wu
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Danjing Yang
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guangming Wang
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guanghui Xiu
- Department of Intensive Care Unit, Affiliated Hospital of Yunnan University (The Second People's Hospital of Yunnan Province),Yunnan University, Kunming, China
| | - Bin Ling
- Department of Intensive Care Unit, Affiliated Hospital of Yunnan University (The Second People's Hospital of Yunnan Province),Yunnan University, Kunming, China
| | - Dajiang Du
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Jun Xu
- East Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
6
|
Sirt6 attenuates chondrocyte senescence and osteoarthritis progression. Nat Commun 2022; 13:7658. [PMID: 36496445 PMCID: PMC9741608 DOI: 10.1038/s41467-022-35424-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Sirt6 has been implicated as a key regulator in aging-related diseases, including osteoarthritis. However, its functional role and molecular mechanism in chondrocyte senescence and osteoarthritis pathophysiology remain largely undefined. Here we show that Sirt6 deficiency exaggerates chondrocyte senescence and osteoarthritis progression, whereas intra-articular injection of adenovirus-Sirt6 markedly attenuates surgical destabilization of medial meniscus-induced osteoarthritis. Mechanistically, Sirt6 can directly interact with STAT5 and deacetylate STAT5, thus inhibiting the IL-15/JAK3-induced STAT5 translocation from cytoplasm to nucleus, which inactivates IL-15/JAK3/STAT5 signaling. Mass spectrometry revealed that Sirt6 deacetylated conserved lysine 163 on STAT5. Mutation of lysine 163 to arginine in STAT5 abolished the regulatory effect of Sirt6. In vivo, specific ablation of Sirt6 in chondrocytes exacerbated osteoarthritis. Pharmacological activation of Sirt6 substantially alleviated chondrocyte senescence. Taken together, Sirt6 attenuates chondrocyte senescence by inhibiting IL-15/JAK3/STAT5 signaling. Targeting Sirt6 represents a promising new approach for osteoarthritis.
Collapse
|
7
|
Wu X, Liyanage C, Plan M, Stark T, McCubbin T, Barrero RA, Batra J, Crawford R, Xiao Y, Prasadam I. Dysregulated energy metabolism impairs chondrocyte function in osteoarthritis. Osteoarthritis Cartilage 2022; 31:613-626. [PMID: 36410637 DOI: 10.1016/j.joca.2022.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Metabolic pathways are a series of chemical reactions by which cells take in nutrient substrates for energy and building blocks needed to maintain critical cellular processes. Details of chondrocyte metabolism and how it rewires during the progression of osteoarthritis (OA) are unknown. This research aims to identify what changes in the energy metabolic state occur in OA cartilage. METHODS Patient matched OA and non-OA cartilage specimens were harvested from total knee replacement patients. Cartilage was first collected for metabolomics, proteomics, and transcriptomics analyses to study global alterations in OA metabolism. We then determined the metabolic routes by tracking [U-13C] isotope with liquid chromatography-mass spectrometry (LC-MS). We further evaluated cellular bioenergetic profiles by measuring oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) and investigated the effects of low-dose and short-term effects of 2-deoxyglucose (2DG) on chondrocytes. RESULTS OA chondrocytes showed increased basal ECAR and more lactate production compared to non-OA chondrocytes. [U-13C] glucose labelling revealed that less glucose-derived carbon entered the tricarboxylic acid (TCA) cycle. On the other hand, mitochondrial respiratory rates were markedly decreased in the OA chondrocytes compared to non-OA chondrocytes. These changes were accompanied by decreased cellular ATP production, mitochondrial membrane potential and disrupted mitochondrial morphology. We further demonstrated in vitro that short-term inhibition of glycolysis suppressed matrix degeneration gene expression in chondrocytes and bovine cartilage explants cultured under inflammatory conditions. CONCLUSION This study represents the first comprehensive comparative analysis of metabolism in OA chondrocytes and lays the groundwork for therapeutic targeting of metabolism in OA.
Collapse
Affiliation(s)
- X Wu
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia; Department of Orthopaedic Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - C Liyanage
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia; Australian Prostate Cancer Research Centre-Queensland, Translational Research Institute, Queensland University of Technology, Brisbane, QLD 4102, Australia
| | - M Plan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia; Metabolomics Australia (Queensland Node), AIBN, The University of Queensland, Brisbane, QLD 4072, Australia
| | - T Stark
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia; Metabolomics Australia (Queensland Node), AIBN, The University of Queensland, Brisbane, QLD 4072, Australia
| | - T McCubbin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia; Metabolomics Australia (Queensland Node), AIBN, The University of Queensland, Brisbane, QLD 4072, Australia
| | - R A Barrero
- eResearch Office, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - J Batra
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia; Australian Prostate Cancer Research Centre-Queensland, Translational Research Institute, Queensland University of Technology, Brisbane, QLD 4102, Australia
| | - R Crawford
- The Prince Charles Hospital, Chermside, Brisbane, QLD 4032, Australia
| | - Y Xiao
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia; Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - I Prasadam
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia.
| |
Collapse
|
8
|
Kuwahara M, Akasaki Y, Kurakazu I, Sueishi T, Toya M, Uchida T, Tsutsui T, Hirose R, Tsushima H, Teramura T, Nakashima Y. C10orf10/DEPP activates mitochondrial autophagy and maintains chondrocyte viability in the pathogenesis of osteoarthritis. FASEB J 2022; 36:e22145. [PMID: 34997944 DOI: 10.1096/fj.202100896r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA), the most prevalent joint disease, is characterized by the progressive loss of articular cartilage. Autophagy, a lysosomal degradation pathway, maintains cellular homeostasis, and autophagic dysfunction in chondrocytes is a hallmark of OA pathogenesis. However, the cause of autophagic dysfunction in OA chondrocytes remains incompletely understood. Recent studies have reported that decidual protein induced by progesterone (C10orf10/DEPP) positively regulates autophagic functions. In this study, we found that DEPP was involved in mitochondrial autophagic functions of chondrocytes, as well as in OA pathogenesis. DEPP expression decreased in human OA chondrocytes in the absence or presence of pro-inflammatory cytokines, and was induced by starvation, hydrogen peroxide (H2 O2 ), and hypoxia (cobalt chloride). For functional studies, DEPP knockdown decreased autophagic flux induced by H2 O2 , whereas DEPP overexpression increased autophagic flux and maintained cell viability following H2 O2 treatment. DEPP was downregulated by knockdown of forkhead box class O (FOXO) transcription factors and modulated the autophagic function regulated by FOXO3. In an OA mouse model by destabilization of the medial meniscus, DEPP-knockout mice exacerbated the progression of cartilage degradation with TUNEL-positive cells, and chondrocytes isolated from knockout mice were decreased autophagic flux and increased cell death following H2 O2 treatment. Subcellular fractionation analysis revealed that mitochondria-located DEPP activated mitochondrial autophagy via BCL2 interacting protein 3. Taken together, our data demonstrate that DEPP is a major stress-inducible gene involved in the activation of mitochondrial autophagy in chondrocytes, and maintains chondrocyte viability during OA pathogenesis. DEPP represents a potential therapeutic target for enhancing autophagy in patients with OA.
Collapse
Affiliation(s)
- Masanari Kuwahara
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Yukio Akasaki
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Ichiro Kurakazu
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Takuya Sueishi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Masakazu Toya
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Taisuke Uchida
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Tomoaki Tsutsui
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Ryota Hirose
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Hidetoshi Tsushima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Takeshi Teramura
- Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| |
Collapse
|
9
|
Ji ML, Jiang H, Wu F, Geng R, Ya LK, Lin YC, Xu JH, Wu XT, Lu J. Precise targeting of miR-141/200c cluster in chondrocytes attenuates osteoarthritis development. Ann Rheum Dis 2020; 80:356-366. [PMID: 33109602 DOI: 10.1136/annrheumdis-2020-218469] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/24/2020] [Accepted: 10/06/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Despite preclinical studies involving miRNA therapeutics conducted in osteoarthritis (OA) over the years, none of these miRNAs have yet translated to clinical applications, owing largely to the lack of efficient intra-articular (IA) delivery systems. Here, we investigated therapeutic efficacy of the chondrocyte-specific aptamer-decorated PEGylated polyamidoamine nanoparticles (NPs)-based miRNAs delivery for OA. METHODS The role of miR-141/200c cluster during skeletal and OA development was examined by miR-141/200cflox/flox mice and Col2a1-CreERT2; miR-141/200cflox/flox mice. Histological analysis was performed in mouse joints and human cartilage specimens. Chondrocyte-specific aptamer-decorated NPs was designed, and its penetration, stability and safety were evaluated. OA progression was assessed by micro-CT analysis, X-ray and Osteoarthritis Research Society International scores after destabilising the medial meniscus surgery with miR-141/200c manipulation by NPs IA injection. Mass spectrometry analysis, molecular docking and molecular dynamics simulations were performed to investigate the interaction between aptamer and receptor. RESULTS Increased retention of NPs inside joint space is observed. The NPs are freely and deeply penetrant to mice and human cartilage, and unexpectedly persist in chondrocytes for at least 5 weeks. OA chondrocytes microenviroment improves endo/lysosomal escape of microRNAs (miRNAs). Therapeutically, IA injection of miR-141/200c inhibitors provides strong chondroprotection, whereas ectopic expression of miR-141/200c exacerbates OA. Mechanistically, miR-141/200c promotes OA by targeting SIRT1, which acetylates histone in the promoters of interleukin 6 (IL-6), thereby activating IL-6/STAT3 pathway. CONCLUSIONS Our findings indicate that this nanocarrier can optimise the transport kinetics of miR-141/200c into chondrocytes, fostering miRNA-specific disease-modifying OA drugs development.
Collapse
Affiliation(s)
- Ming-Liang Ji
- The department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hua Jiang
- Department of Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fei Wu
- The department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Rui Geng
- The department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Li Kun Ya
- The department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yu Cheng Lin
- The department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ji Hao Xu
- The department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiao Tao Wu
- The department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jun Lu
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
10
|
The role of sirtuin 1 and its activator, resveratrol in osteoarthritis. Biosci Rep 2019; 39:BSR20190189. [PMID: 30996115 PMCID: PMC6509056 DOI: 10.1042/bsr20190189] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/05/2019] [Accepted: 04/15/2019] [Indexed: 12/19/2022] Open
Abstract
Osteoarthitis (OA) is the most common aging-related joint pathology; the aging process results in changes to joint tissues that ultimately contribute to the development of OA. Articular chondrocytes exhibit an aging-related decline in their proliferative and synthetic capacity. Sirtuin 1 (SIRT 1), a longevity gene related to many diseases associated with aging, is a nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylase and master metabolic regulator. Along with its natural activator resveratrol, SIRT 1 actively participates in the OA pathological progress. SIRT 1 expression in osteoarthritic cartilage decreases in the disease progression of OA; it appears to play a predominantly regulatory role in OA. SIRT 1 can regulate the expression of extracellular matrix (ECM)-related proteins; promote mesenchymal stem cell differentiation; play anti-catabolic, anti-inflammatory, anti-oxidative stress, and anti-apoptosis roles; participate in the autophagic process; and regulate bone homeostasis in OA. Resveratrol can activate SIRT 1 in order to inhibit OA disease progression. In the future, activating SIRT 1 via resveratrol with improved bioavailability may be an appropriate therapeutic approach for OA.
Collapse
|
11
|
Alterations of autophagy in knee cartilage by treatment with treadmill exercise in a rat osteoarthritis model. Int J Mol Med 2018; 43:336-344. [PMID: 30365059 PMCID: PMC6257837 DOI: 10.3892/ijmm.2018.3948] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022] Open
Abstract
The aim of the present study was to investigate potential alterations in the articular cartilage in a rat model of monosodium iodoacetate (MIA)-induced osteoarthritis (OA) with or without treatment with moderate treadmill exercise. A total of 30 male Sprague-Dawley rats were randomly divided into three groups (n=10), including the control, OA and OA with treadmill exercise (OAE) groups. Rats were evaluated upon completing the treadmill exercise program (speed, 18 m/min; 30 min/day; 5 days/week for 4 weeks). Interleukin (IL)-1β and IL-4 levels in the serum and intra-articular lavage fluid (IALF) were measured by ELISA. Alterations in articular cartilage and synovium were also evaluated by histology, immunohistochemistry, western blotting and reverse transcription-quantitative polymerase chain reaction. The results revealed that IL-1β in the serum and IALF decreased in the OAE group, whereas IL-4 increased, and histological evaluation indicated that the OAE group had a clear treatment response. However, the expression of type II collagen in the articular cartilage increased in the OAE group as compared with the OA group, whereas ADAMTS5 expression decreased. In contrast to light chain 3B (LC3B), the protein expression levels of BECLIN1 and sequestosome 1 (SQSTM1) were increased in the OA group. In addition, a significant increase was observed between OA and OAE groups in LC3B and SQSTM1 protein levels, whereas no change was observed in BECLIN1 levels between the OA and OAE groups in the superficial and deep zones. The results of western blotting demonstrated that LC3II was notably decreased in the OA group and partially increased in the OAE group. The mRNA expression levels of LC3B and SQSTM1 increased in the OA and OAE groups, with a significant difference observed between the two groups, while a concomitant decrease was detected in BECLIN1 levels. In conclusion, 30 min of treadmill exercise had an evident protective effect in the articular cartilage of rats with MIA-induced OA and may promote autophagy in the articular cartilage.
Collapse
|
12
|
A novel rabbit model of early osteoarthritis exhibits gradual cartilage degeneration after medial collateral ligament transection outside the joint capsule. Sci Rep 2016; 6:34423. [PMID: 27756901 PMCID: PMC5069470 DOI: 10.1038/srep34423] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 09/13/2016] [Indexed: 01/03/2023] Open
Abstract
Though many surgical animal models have been used to induce osteoarthritis (OA) of the knee joint, they always open the capsule of the joint. Any surgical procedures that incises the capsule may cause inflammation, pain, and possibly altered gait. One common disadvantage of these surgically induced animal models is that they may affect the initial structures and synovial fluid in joint. These animal models may not be suitable for research into synovial fluid changes during early OA. This study aimed to create an animal model of early OA by resecting the medial collateral ligament (MCL) outside of the capsule. At 1, 2, 3, 4, 5 and 6 weeks after surgery, eight knees from each group were harvested. The joint gap was measured on posteroanterior radiographs after MCL-transection (MCLT). Gross examination and histological analysis were performed to evaluate cartilage damage to the medial femoral condyles, and knee joints were scanned using a Micro-CT system. The MCLT group experienced early stage OA from 3 to 6 weeks according to the histological scores. IL-6, MMP-1 and MMP-13 content in the synovial fluid were higher after MCLT than anterior cruciate ligament transection (ACLT) at 1 and 2 weeks.
Collapse
|
13
|
Li YS, Zhang FJ, Zeng C, Luo W, Xiao WF, Gao SG, Lei GH. Autophagy in osteoarthritis. Joint Bone Spine 2016; 83:143-8. [DOI: 10.1016/j.jbspin.2015.06.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/21/2015] [Indexed: 01/15/2023]
|
14
|
Collins JA, Moots RJ, Clegg PD, Milner PI. Resveratrol and N-acetylcysteine influence redox balance in equine articular chondrocytes under acidic and very low oxygen conditions. Free Radic Biol Med 2015; 86:57-64. [PMID: 25998424 PMCID: PMC4562226 DOI: 10.1016/j.freeradbiomed.2015.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 05/05/2015] [Accepted: 05/08/2015] [Indexed: 12/16/2022]
Abstract
Mature articular cartilage is an avascular tissue characterized by a low oxygen environment. In joint disease, acidosis and further reductions in oxygen levels occur, compromising cartilage integrity.This study investigated how acidosis and very low oxygen levels affect components of the cellular redox system in equine articular chondrocytesand whether the antioxidants resveratrol and N-acetylcysteine could modulate this system. We used articular chondrocytes isolated from nondiseased equine joints and cultured them in a 3-D alginate bead system for 48h in <1, 2, 5, and 21% O2 at pH 7.2 or 6.2 in the absence or presence of the proinflammatory cytokine, interleukin-1β (10ng/ml).In addition, chondrocytes were cultured with resveratrol (10µM) or N-acetylcysteine (NAC) (2mM).Cell viability, glycosaminoglycan (GAG) release, mitochondrial membrane potential (ΔΨm), reactive oxygen species (ROS), GSH:GSSG ratio, and SOD1 and SOD2 protein expression were measured. Very low levels of oxygen (<1%), acidosis (pH 6.2), and exposure to IL-1β led to reductions in cell viability, increased GAG release, alterations in ΔΨm and ROS levels, and reduced GSH:GSSG ratio. In addition, SOD1 and SOD2 protein expressions were reduced. Both resveratrol and NAC partially restored ΔΨm and ROS levels and prevented GAG release and cell loss and normalized SOD1 and SOD2 protein expression. In particular NAC was highly effective at restoring the GSH:GSSG ratio.These results show that the antioxidants resveratrol and N-acetylcysteine can counteract the redox imbalance in articular chondrocytes induced by low oxygen and acidic conditions.
Collapse
Affiliation(s)
- John A Collins
- Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Campus, Cheshire, UK, CH64 7TE
| | - Robert J Moots
- Institute of Ageing and Chronic Disease, University of Liverpool, University Hospital Aintree, Liverpool, UK, L9 7AL
| | - Peter D Clegg
- Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Campus, Cheshire, UK, CH64 7TE
| | - Peter I Milner
- Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Campus, Cheshire, UK, CH64 7TE.
| |
Collapse
|
15
|
Cheng C, Zhang FJ, Tian J, Tu M, Xiong YL, Luo W, Li YS, Song BB, Gao SG, Lei GH. Osteopontin inhibits HIF-2α mRNA expression in osteoarthritic chondrocytes. Exp Ther Med 2015; 9:2415-2419. [PMID: 26136997 DOI: 10.3892/etm.2015.2434] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 03/26/2015] [Indexed: 12/16/2022] Open
Abstract
The aim of the present study was to investigate the in vitro effect of osteopontin (OPN) on the expression of hypoxia-inducible factor-2α (HIF-2α) in chondrocytes and the role of OPN in osteoarthritis (OA). Cartilage was purified from the tibial surfaces of patients with OA of the knee and cultured in vitro to obtain chondrocytes. Recombinant human OPN (rhOPN) and OPN small interfering RNA (siRNA) were used to treat the chondrocytes, and the changes in the expression levels of the HIF-2α gene were measured. An anti-CD44 blocking monoclonal antibody (mAb) was used to determine the probable ligand-receptor interactions. Reverse transcription-quantitative polymerase chain reaction assays were designed and validated with SYBR® Green dyes for the simultaneous quantification of the mRNA expression levels of OPN and HIF-2α. The mRNA expression level of HIF-2α was markedly decreased in the rhOPN-treated group compared with that in the control group; by contrast, OPN siRNA increased HIF-2α gene expression. CD44 blocking mAb suppressed the inhibitory effect of OPN on HIF-2α mRNA expression. The results of the present study suggest that OPN may play a protective role in OA by inhibiting HIF-2α gene expression in osteoarthritic chondrocytes through CD44 interaction.
Collapse
Affiliation(s)
- Chao Cheng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Fang-Jie Zhang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Jian Tian
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Min Tu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Yi-Lin Xiong
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Wei Luo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Yu-Sheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Bing-Bing Song
- Hunan Province Environmental Monitoring Center, Changsha, Hunan 410019, P.R. China
| | - Shu-Guang Gao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China ; Orthopaedics Institute of Central South University, Changsha, Hunan 410008, P.R. China
| | - Guang-Hua Lei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China ; Orthopaedics Institute of Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
16
|
Zhang FJ, Luo W, Lei GH. Role of HIF-1α and HIF-2α in osteoarthritis. Joint Bone Spine 2014; 82:144-7. [PMID: 25553838 DOI: 10.1016/j.jbspin.2014.10.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 10/01/2014] [Indexed: 01/21/2023]
Abstract
The hallmark of OA is cartilage destruction, several factors such as catabolic enzymes and chondrocyte death include apoptosis and/or autophagy are considered for the pathogenesis. Articular cartilage is maintained in a low oxygen environment throughout life. Chondrocytes are therefore adapted to these hypoxic conditions. The increased HIF-1α and HIF-2α mediate the response of chondrocytes to hypoxia. HIF-1α regulates chondrogenesis by regulating SOX9 expression in the genetic level, HIF-1 also serves to regulate both autophagy and apoptosis. Therefore, HIF-1α may protect articular cartilage by promoting the chondrocyte phenotype, maintaining chondrocyte viability, and supporting metabolic adaptation to a hypoxic environment. In contrast with HIF-1α, HIF-2α is a catabolic factor in the osteoarthritic process. Although HIF-2α is essential for hypoxic induction of the human articular chondrocyte phenotype, HIF-2α directly induces the expression of catabolic factors in chondrocytes, and HIF-2α enhances Fas expression to mediate chondrocyte apoptosis and regulates autophagy in maturing chondrocytes. Taken together, manipulation of HIF-1α and HIF-2α could represent a promising approach to the treatment of OA. Further study should elucidate the exact machnism of HIF-1α and HIF-2α in cartilage and determine which is predominant in osteoarthritic process.
Collapse
Affiliation(s)
- Fang-Jie Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008 Hunan, China
| | - Wei Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008 Hunan, China
| | - Guang-Hua Lei
- Department of Orthopedics, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008 Hunan, China.
| |
Collapse
|
17
|
Collins J, Moots R, Winstanley R, Clegg P, Milner P. Oxygen and pH-sensitivity of human osteoarthritic chondrocytes in 3-D alginate bead culture system. Osteoarthritis Cartilage 2013; 21:1790-8. [PMID: 23850530 PMCID: PMC3807787 DOI: 10.1016/j.joca.2013.06.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 06/25/2013] [Accepted: 06/27/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To identify the effect of alterations in physical parameters such as oxygen and pH on processes associated with cellular redox balance in osteoarthritic chondrocytes. METHOD Human osteoarthritic chondrocytes (HOAC) were isolated from total knee arthroplasty samples and cultured in 3-D alginate beads in four different oxygen tensions (<1%, 2%, 5% and 21% O2), at pH 7.2 and 6.2 and in the presence or absence of 10 ng/ml, interleukin-1β (IL-1β). Cell viability, media glycosaminoglycan (GAG) levels, media nitrate/nitrate levels, active matrix metalloproteinase (MMP)-13 and intracellular adenosine triphosphate (ATPi) were measured over a 96-h time course. Intracellular reactive oxygen species (ROS), mitochondrial membrane potential, intracellular pH and reduced/oxidised glutathione (GSH/GSSG) were additionally measured after 48-h incubation under these experimental conditions. RESULTS Hypoxia (2% O2) and anoxia (<1% O2), acidosis (pH 6.2) and 10 ng/ml IL-1β reduced HOAC cell viability and increased GAG media levels. Acidosis and IL-1β increased nitrite/nitrate release, but increases were moderate at 2% O2 and significantly reduced at <1% O2. ATPi was significantly reduced following hypoxia and anoxia and acidosis. At 48 h cellular ROS levels were increased by acidosis and IL-1β but reduced in hypoxia and anoxia. Mitochondrial membrane potential was reduced in low oxygen, acidosis and IL-1β. Anoxia also resulted in intracellular acidosis. GSH/GSSG ratio was reduced in low oxygen conditions, acidosis and IL-1β. CONCLUSIONS This study shows that oxygen and pH affect elements of the redox system in HOAC including cellular anti-oxidants, mitochondrial membrane potential and ROS levels.
Collapse
Affiliation(s)
- J.A. Collins
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Campus, Neston, Cheshire CH64 7TE, UK
| | - R.J. Moots
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, University Hospital, Aintree, Liverpool L9 7AL, UK
| | - R. Winstanley
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Campus, Neston, Cheshire CH64 7TE, UK
| | - P.D. Clegg
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Campus, Neston, Cheshire CH64 7TE, UK
| | - P.I. Milner
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Campus, Neston, Cheshire CH64 7TE, UK,Address correspondence and reprint requests to: P.I. Milner, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Campus, Neston, Cheshire CH64 7TE, UK. Tel: 44-151-7946041; Fax: 44-151-7946034.
| |
Collapse
|
18
|
Cillero-Pastor B, Rego-Pérez I, Oreiro N, Fernandez-Lopez C, Blanco FJ. Mitochondrial respiratory chain dysfunction modulates metalloproteases -1, -3 and -13 in human normal chondrocytes in culture. BMC Musculoskelet Disord 2013; 14:235. [PMID: 23937653 PMCID: PMC3750811 DOI: 10.1186/1471-2474-14-235] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 08/05/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mitochondrion has an important role in the osteoarthritis (OA) pathology. We have previously demonstrated that the alteration of the mitochondrial respiratory chain (MRC) contributes to the inflammatory response of the chondrocyte. However its implication in the process of cartilage destruction is not well understood yet. In this study we have investigated the relationship between the MRC dysfunction and the regulation of metalloproteases (MMPs) in human normal chondrocytes in culture. METHODS Human normal chondrocytes were isolated from human knees obtained form autopsies of donors without previous history of rheumatic disease. Rotenone, 3-Nitropropionic acid (NPA), Antimycin A (AA), Sodium azide and Oligomycin were used to inhibit the activity of the mitochondrial complexes I, II, III, IV and V respectively. The mRNA expression of MMPs -1, -3 and -13 was studied by real time PCR. The intracellular presence of MMP proteins was evaluated by western blot. The liberation of these proteins to the extracellular media was evaluated by ELISA. The presence of proteoglycans in tissue was performed with tolouidin blue and safranin/fast green. Immunohistochemistry was used for evaluating MMPs on tissue. RESULTS Firstly, cells were treated with the inhibitors of the MRC for 24 hours and mRNA expression was evaluated. An up regulation of MMP-1 and -3 mRNA levels was observed after the treatment with Oligomycin 5 and 100 μg/ml (inhibitor of the complex V) for 24 hours. MMP-13 mRNA expression was reduced after the incubation with AA 20 and 60 μg/ml (inhibitor of complex III) and Oligomycin. Results were validated at protein level observing an increase in the intracellular levels of MMP-1 and -3 after Oligomycin 25 μg/ml stimulation [(15.20±8.46 and 4.59±1.83 vs. basal=1, respectively (n=4; *P<0.05)]. However, AA and Oligomycin reduced the intracellular levels of the MMP-13 protein (0.70±0.16 and 0.3±0.24, respectively vs. basal=1). In order to know whether the MRC dysfunction had an effect on the liberation of MMPs, their levels were evaluated in the supernatants. After 36 hours of stimulation, values were: MMP-1=18.06±10.35 with Oligomycin 25 μg/ml vs. basal=1, and MMP-3=8.49±4.32 with Oligomycin 5 μg/ml vs. basal=1 (n=5; *P<0.05). MMP-13 levels in the supernatants were reduced after AA 60 μg/ml treatment (0.50±0.13 vs. basal=1) and Oligomycin 25 μg/ml (0.41±0.14 vs. basal=1); (n=5; *P<0.05). The treatment of explants with Oligomycin, showed an increase in the positivity of MMP-1 and -3. Explants stimulated with AA or Oligomycin revealed a decrease in MMP-13 expression. Proteoglycan staining demonstrated a reduction of proteoglycan levels in the tissues treated with Oligomycin. CONCLUSIONS These results reveal that MRC dysfunction modulates the MMPs expression in human normal chondrocytes demonstrating its role in the regulation of the cartilage destruction.
Collapse
|
19
|
Thoms BL, Dudek KA, Lafont JE, Murphy CL. Hypoxia promotes the production and inhibits the destruction of human articular cartilage. ACTA ACUST UNITED AC 2013; 65:1302-12. [PMID: 23334958 DOI: 10.1002/art.37867] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/08/2013] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To determine the effects of hypoxia on both anabolic and catabolic pathways of metabolism in human articular cartilage and to elucidate the roles played by hypoxia-inducible factors (HIFs) in these responses. METHODS Normal human articular cartilage from a range of donors was obtained at the time of above-the-knee amputations due to sarcomas not involving the joint space. Fresh cartilage tissue explants and isolated cells were subjected to hypoxia and treatment with interleukin-1α. Cell transfections were performed on isolated human chondrocytes. RESULTS Using chromatin immunoprecipitation, we found that hypoxia induced cartilage production in human tissue explants through direct binding of HIF-2α to a specific site in the master-regulator gene SOX9. Importantly, hypoxia also suppressed spontaneous and induced destruction of human cartilage in explant culture. We found that anticatabolic responses were predominantly mediated by HIF-1α. Manipulation of the hypoxia-sensing pathway through depletion of HIF-targeting prolyl hydroxylase-containing protein 2 (PHD-2) further enhanced cartilage responses as compared to hypoxia alone. Hypoxic regulation of tissue-specific metabolism similar to that in human cartilage was observed in pig, but not mouse, cartilage. CONCLUSION We found that resident chondrocytes in human cartilage are exquisitely adapted to hypoxia and use it to regulate tissue-specific metabolism. Our data revealed that while fundamental regulators, such as SOX9, are key molecules both in mice and humans, the way in which they are controlled can differ. This is all the more important since it is upstream regulators such as this that need to be directly targeted for therapeutic benefit. HIF-specific hydroxylase PHD-2 may represent a relevant target for cartilage repair.
Collapse
Affiliation(s)
- Brendan L Thoms
- Kennedy Institute of Rheumatology and University of Oxford, London, UK
| | | | | | | |
Collapse
|
20
|
Haem oxygenase-1 induction reverses the actions of interleukin-1β on hypoxia-inducible transcription factors and human chondrocyte metabolism in hypoxia. Clin Sci (Lond) 2013; 125:99-108. [PMID: 23406266 DOI: 10.1042/cs20120491] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
HO-1 (haem oxygenase-1) catalyses the degradation of haem and possesses anti-inflammatory and cytoprotective properties. The role of inflammatory mediators in the pathogenesis of OA (osteoarthritis) is becoming increasingly appreciated. In the present study, we investigated the effects of HO-1 induction in OA and healthy HACs (human articular chondrocytes) in response to inflammatory cytokine IL-1 β (interleukin-1β) under hypoxic conditions. Hypoxia was investigated as it is a more physiological condition of the avascular cartilage. Hypoxic signalling is mediated by HIFs (hypoxia-inducible factors), of which there are two main isoforms, HIF-1α and HIF-2α. Normal and OA chondrocytes were stimulated with IL-1β. This cytokine suppresses HO-1 expression and exerts both catabolic and anti-anabolic effects, while increasing HIF-1α and suppressing HIF-2α protein levels in OA chondrocytes in hypoxia. Induction of HO-1 by CoPP (cobalt protoporphyrin IX) reversed these IL-1β actions. The hypoxia-induced anabolic pathway involving HIF-2α, SOX9 [SRY (sex determining region Y)-box 9] and COL2A1 (collagen type II α1) was suppressed by IL-1β, but importantly, levels were restored by HO-1 induction, which down-regulated TNFα (tumour necrosis factor α), MMP (matrix metalloproteinase) activity and MMP-13 protein levels. Depletion of HO-1 using siRNA (small interfering RNA) abolished the CoPP effects, further demonstrating that these were due to HO-1. The results of the present study reveal the different mechanisms by which HO-1 exerts protective effects on chondrocytes in physiological levels of hypoxia.
Collapse
|
21
|
Yodmuang S, Gadjanski I, Chao PHG, Vunjak-Novakovic G. Transient hypoxia improves matrix properties in tissue engineered cartilage. J Orthop Res 2013. [PMID: 23203946 PMCID: PMC4136653 DOI: 10.1002/jor.22275] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Adult articular cartilage is a hypoxic tissue, with oxygen tension ranging from <10% at the cartilage surface to <1% in the deepest layers. In addition to spatial gradients, cartilage development is also associated with temporal changes in oxygen tension. However, a vast majority of cartilage tissue engineering protocols involves cultivation of chondrocytes or their progenitors under ambient oxygen concentration (21% O(2)), that is, significantly above physiological levels in either developing or adult cartilage. Our study was designed to test the hypothesis that transient hypoxia followed by normoxic conditions results in improved quality of engineered cartilaginous ECM. To this end, we systematically compared the effects of normoxia (21% O(2) for 28 days), hypoxia (5% O(2) for 28 days) and transient hypoxia--reoxygenation (5% O(2) for 7 days and 21% O(2) for 21 days) on the matrix composition and expression of the chondrogenic genes in cartilage constructs engineered in vitro. We demonstrated that reoxygenation had the most effect on the expression of cartilaginous genes including COL2A1, ACAN, and SOX9 and increased tissue concentrations of amounts of glycosaminoglycans and type II collagen. The equilibrium Young's moduli of tissues grown under transient hypoxia (510.01 ± 28.15 kPa) and under normoxic conditions (417.60 ± 68.46 kPa) were significantly higher than those measured under hypoxic conditions (279.61 ± 20.52 kPa). These data suggest that the cultivation protocols utilizing transient hypoxia with reoxygenation have high potential for efficient cartilage tissue engineering, but need further optimization in order to achieve higher mechanical functionality of engineered constructs.
Collapse
Affiliation(s)
- Supansa Yodmuang
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Ivana Gadjanski
- Department of Biomedical Engineering, Columbia University, New York, New York
- R&D Center for Bioengineering, Metropolitan University Belgrade, Prvoslava Stojanovica 6, Kragujevac 34000, Serbia
| | - Pen-hsiu Grace Chao
- Institute of Biomedical Engineering, School of Engineering and School of Medicine, National Taiwan University, Taipei, Taiwan
| | | |
Collapse
|
22
|
Abstract
The degenerative joint disease osteoarthritis (OA) is the most prevalent form of chronic musculoskeletal disease worldwide, and it commonly afflicts the elderly population. OA-induced impairment of joint function can debilitate normal physical activity, and in more severe cases, it can lead to complete joint destruction and loss of independence or even mobility. The pathophysiology of OA remains to be fully elucidated, despite the extensive research efforts into this complex disease. Studies have revealed that reactive oxygen species (ROS) can contribute to the onset and progression of OA by inducing indispensable chondrocyte death and matrix degradation. However, ROS are also key components of many normal physiological processes, and at moderate levels, they act as indispensable second messengers. This review focuses on the dual role of ROS in cartilage, with the aim of gaining insights into how ROS can be regulated such that its beneficial effects are maintained and its detrimental effects are eliminated.
Collapse
|
23
|
Milner PI, Smith HC, Robinson R, Wilkins RJ, Gibson JS. Growth factor regulation of intracellular pH homeostasis under hypoxic conditions in isolated equine articular chondrocytes. J Orthop Res 2013; 31:197-203. [PMID: 22987771 DOI: 10.1002/jor.22221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 08/07/2012] [Indexed: 02/04/2023]
Abstract
Hypoxia and acidosis are recognized features of inflammatory arthroses. This study describes the effects of IGF-1 and TGF-β(1) on pH regulatory mechanisms in articular cartilage under hypoxic conditions. Acid efflux, reactive oxygen species (ROS), and mitochondrial membrane potential were measured in equine articular chondrocytes isolated in the presence of serum (10% fetal calf serum), IGF-1 (1, 10, 50, 100 ng/ml) or TGF-β(1) (0.1, 1, 10 ng/ml) and then exposed to a short-term (3 h) hypoxic insult (1% O(2)). Serum and 100 ng/ml IGF-1 but not TGF-β(1) attenuated hypoxic regulation of pH homeostasis. IGF-1 appeared to act through mitochondrial membrane potential stabilization and maintenance of intracellular ROS levels in very low levels of oxygen. Using protein phosphorylation inhibitors PD98059 (25 µM) and wortmannin (200 nM) and Western blotting, ERK1/2 and PI-3 kinase pathways are important for the effect of IGF-1 downstream to ROS generation in normoxia but only PI-3 kinase is implicated in hypoxia. These results show that oxygen and growth factors interact to regulate pH recovery in articular chondrocytes by modulating intracellular oxygen metabolites.
Collapse
Affiliation(s)
- Peter I Milner
- Faculty of Health and Life Sciences, Department of Musculoskeletal Biology, University of Liverpool, Leahurst Campus, Neston CH64 7TE, United Kingdom.
| | | | | | | | | |
Collapse
|
24
|
Qusous A, Kaneva M, Can VC, Getting SJ, Kerrigan MJP. The phenotypic characterization of A13/BACii, a novel bovine chondrocytic cell line with differentiation potential. Cells Tissues Organs 2012; 196:251-61. [PMID: 22398355 DOI: 10.1159/000332144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2011] [Indexed: 11/19/2022] Open
Abstract
In cartilage research bovine articular cartilage is used as an alternative to human tissue. However, animal material is subject to availability and primary cultures undergo senescence, limiting their use. Here we report the immortalization of primary bovine chondrocytes, which could be used as a surrogate for freshly isolated chondrocytes. Chondrocytes were isolated from cartilage explants and immortalized using 1.0 µg/ml benzo[alpha]pyrene. For 3-dimensional culture, chondrocytes were resuspended in 0.5% low-melt agarose at high density (HD) and cultured for 24 h prior to determining changes in expression profile and morphology. A13/BACii chondrocytes acquired a 'flat' irregular morphology and a foetal-like cell volume (1,509.59 ± 182.04 µm(3)). The human cell line C-20/A4 showed a statistically similar volume and length to A13/BACii. Two-dimensional-cultured A13/BACii expressed elevated levels of type I collagen (col1), reduced levels of type II collagen (col2) compared to freshly isolated chondrocytes and an overall col2 to col1 expression ratio (col2:col1) of 0.11 ± 0.01. Upon 3-dimensional encapsulation, there was a significant rise in col2 expression in both A13/BACii and C-20/A4, suggesting a capacity for redifferentiation in both cell lines with a return of col2:col1 values of A13/BACii to values previously observed in primary chondrocytes. A13/BACii chondrocytes expressed aggrecan, matrix metalloproteinase (MMP)-3, MMP-9 and MMP-13, further supporting indications of the differentiated phenotype. Here we report the creation of a novel chondrocytic cell line and demonstrate its strong potential for redifferentiation upon HD 3-dimensional encapsulation, providing an alternative to conventional dedifferentiated cell lines and primary culture.
Collapse
Affiliation(s)
- Ala Qusous
- School of Life Sciences, University of Dundee, Dundee, UK.
| | | | | | | | | |
Collapse
|
25
|
Hübner S, Efthymiadis A. Recent progress in histochemistry and cell biology. Histochem Cell Biol 2012; 137:403-57. [PMID: 22366957 DOI: 10.1007/s00418-012-0933-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2012] [Indexed: 01/06/2023]
Abstract
Studies published in Histochemistry and Cell Biology in the year 2011 represent once more a manifest of established and newly sophisticated techniques being exploited to put tissue- and cell type-specific molecules into a functional context. The review is therefore the Histochemistry and Cell Biology's yearly intention to provide interested readers appropriate summaries of investigations touching the areas of tissue biology, developmental biology, the biology of the immune system, stem cell research, the biology of subcellular compartments, in order to put the message of such studies into natural scientific-/human- and also pathological-relevant correlations.
Collapse
Affiliation(s)
- Stefan Hübner
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany.
| | | |
Collapse
|
26
|
Schultz M, Jin W, Waheed A, Moed BR, Sly W, Zhang Z. Expression profile of carbonic anhydrases in articular cartilage. Histochem Cell Biol 2011; 136:145-51. [PMID: 21739214 DOI: 10.1007/s00418-011-0836-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2011] [Indexed: 12/30/2022]
Abstract
Carbonic anhydrases (CAs), which catalyze the reversible reaction of carbonate hydration, are important for cartilage homeostasis. The full spectrum of CA activity of all 13 isoenzymes in articular cartilage is unknown. This study quantified the mRNA profile of CAs in rat articular cartilage, using quantitative polymerase chain reactions. Among the 13 functional CAs, CAs II, III, Vb, IX, XII and XIII were significantly expressed at mRNA level by the chondrocytes in articular cartilage. To verify these significantly expressed CAs in articular cartilage at protein level, immunohistochemistry was performed. While CAs III, Vb and XII distributed in the full-thickness of cartilage, including the calcified zone of cartilage, CA II was mainly localized in the proliferative zone of cartilage. CA IX was limited in the superficial zone of cartilage and CA XIII expressed in the superficial and partially mid zone. These results provide a framework for understanding individual CAs as well as the integrated CA family in cartilage biology, including matrix mineralization.
Collapse
Affiliation(s)
- Melissa Schultz
- Center for Anatomical Science and Education, Saint Louis University, St. Louis, MO, USA
| | | | | | | | | | | |
Collapse
|
27
|
Fermor B, Gurumurthy A, Diekman BO. Hypoxia, RONS and energy metabolism in articular cartilage. Osteoarthritis Cartilage 2010; 18:1167-73. [PMID: 20633670 PMCID: PMC2929267 DOI: 10.1016/j.joca.2010.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 06/08/2010] [Accepted: 06/09/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Increased pro-inflammatory cytokines and reactive oxygen and nitrogen species (RONS) occur in osteoarthritis (OA). Oxygen tension can alter the levels of RONS induced by interleukin-1 (IL-1). RONS such as nitric oxide (NO) can alter energy metabolism. The aim of this study was to determine if oxygen tension alters energy metabolism, in articular cartilage, in response to IL-1 or NO and to determine if cell death occurred. DESIGN Porcine articular chondrocytes were incubated with IL-1 or the NO donor NOC-18 for 48 h in either 1, 5 or 20% O(2). Adenosine triphosphate (ATP) levels were measured and immunoblots for adenosine monophosphate-activated protein kinase (AMPK) were done. Protein translation was measured by S6 activation. Senescence and autophagy were determined by increased caveolin or conversion of LC3-I to LC3-II respectively. RESULTS One percent O(2) significantly reduced ATP levels compared with 20% O(2). Five percent O(2) significantly increased ATP levels compared with 20% O(2). One percent O(2) significantly increased phospho-AMPK (pAMPK) protein expression compared with 5 or 20% O(2). Oxygen tension had no effects on pS6, caveolin or LC3-II levels. IL-1-induced NO production was significantly reduced with decreased oxygen tension, and significantly reduced ATP levels at all oxygen tensions, but pAMPK was only significantly increased at 5% O(2). IL-1 significantly reduced pS6 at all oxygen tensions. IL-1 had no effects on caveolin and significantly increased LC3-II at 20% O(2) only. NOC-18 significantly reduced ATP levels at all oxygen tensions, and significantly increased pAMPK at 5% O(2) only, and significantly decreased pAMPK at 1% O(2). NOC-18 significantly reduced pS6 at 1% O(2) and significantly increased caveolin at 5% O(2), and LC3-II at 1% O(2). CONCLUSION Our data suggest 5% O(2) is optimal for energy metabolism and protective to some effects of IL-1 and NO. NO has the greatest effects on ATP levels and the induction of autophagy at 1% O(2).
Collapse
|
28
|
White R, Gibson JS. The effect of oxygen tension on calcium homeostasis in bovine articular chondrocytes. J Orthop Surg Res 2010; 5:27. [PMID: 20420658 PMCID: PMC2873548 DOI: 10.1186/1749-799x-5-27] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 04/26/2010] [Indexed: 01/11/2023] Open
Abstract
Background Articular chondrocytes normally experience a lower O2 tension compared to that seen by many other tissues. This level may fall further in joint disease. Ionic homeostasis is essential for chondrocyte function but, at least in the case of H+ ions, it is sensitive to changes in O2 levels. Ca2+ homeostasis is also critical but the effect of changes in O2 tension has not been investigated on this parameter. Here we define the effect of hypoxia on Ca2+ homeostasis in bovine articular chondrocytes. Methods Chondrocytes from articular cartilage slices were isolated enzymatically using collagenase. Cytoplasmic Ca2+ levels ([Ca2+]i) were followed fluorimetrically using Fura-2 to determine the effect of changes in O2 tension. The effects of ion substitution (replacing extracellular Na+ with NMDG+ and chelating Ca2+ with EGTA) were tested. Levels of reactive oxygen species (ROS) and the mitochondrial membrane potential were measured and correlated with [Ca2+]i. Results A reduction in O2 tension from 20% to 1% for 16-18 h caused [Ca2+]i to approximately double, reaching 105 ± 23 nM (p < 0.001). Ion substitutions indicated that Na+/Ca2+ exchange activity was not inhibited at low O2 levels. At 1% O2, ROS levels fell and mitochondria depolarised. Restoring ROS levels (with an oxidant H2O2, a non-specific ROS generator Co2+ or the mitochondrial complex II inhibitor antimycin A) concomitantly reduced [Ca2+]i. Conclusions O2 tension exerts a significant effect on [Ca2+]i. The proposed mechanism involves ROS from mitochondria. Findings emphasise the importance of using realistic O2 tensions when studying the physiology and pathology of articular cartilage and the potential interactions between O2, ROS and Ca2+.
Collapse
Affiliation(s)
- Rachel White
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 OES, UK.
| | | |
Collapse
|
29
|
Thoms BL, Murphy CL. Inhibition of hypoxia-inducible factor-targeting prolyl hydroxylase domain-containing protein 2 (PHD2) enhances matrix synthesis by human chondrocytes. J Biol Chem 2010; 285:20472-80. [PMID: 20404338 DOI: 10.1074/jbc.m110.115238] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human articular cartilage is an avascular tissue, and therefore it functions in a hypoxic environment. Cartilage cells, the chondrocytes, have adapted to this and actually use hypoxia to drive tissue-specific functions. We have previously shown that human chondrocytes enhance cartilage matrix synthesis in response to hypoxia specifically through hypoxia-inducible factor 2alpha (HIF-2alpha)-mediated up-regulation of master regulator transcription factor SOX9, which in turn drives expression of the main cartilage-specific extracellular matrix genes. HIF-alpha isoforms are themselves regulated by specific prolyl hydroxylase domain-containing proteins, which target them for proteosomal degradation. In fact, prolyl hydroxylase domains are the direct oxygen sensors because they require molecular oxygen as a co-substrate. Here, we have identified PHD2 as the dominant isoenzyme regulating HIF-2alpha stability in human chondrocytes. Moreover, specific inhibition of PHD2 using RNA interference-mediated depletion caused an up-regulation of SOX9 and enhanced extracellular matrix protein production. Depletion of PHD2 resulted in greater HIF-2alpha levels and therefore enhanced SOX9-induced cartilage matrix production compared with the levels normally found in hypoxia (1% oxygen) implying that PHD2 inhibition offers a novel means to enhance cartilage repair in vivo. The need for HIF-specific hydroxylase inhibition was highlighted because treatment with the 2-oxoglutarate analogue dimethyloxalylglycine (which also inhibits the collagen prolyl 4-hydroxylases) prevented secretion of type II collagen, a critical cartilage matrix component.
Collapse
Affiliation(s)
- Brendan L Thoms
- From The Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College London, 65 Aspenlea Road, London W6 8LH, United Kingdom
| | | |
Collapse
|
30
|
Rastmanesh R. Hypothetical hormonal mechanism by which potassium-rich diets benefit patients with rheumatoid arthritis. Med Hypotheses 2009; 73:564-8. [DOI: 10.1016/j.mehy.2009.05.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Revised: 05/10/2009] [Accepted: 05/13/2009] [Indexed: 11/26/2022]
|
31
|
Boubriak OA, Brooks JTS, Urban JPG. Cytochrome c oxidase levels in chondrocytes during monolayer expansion and after return to three dimensional culture. Osteoarthritis Cartilage 2009; 17:1084-92. [PMID: 19303470 DOI: 10.1016/j.joca.2009.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 02/12/2009] [Accepted: 03/04/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Here we investigate whether monolayer culture or culture at 21% oxygen influences activity of cytochrome c oxidase, the terminal enzyme in the respiratory chain whose activity is essential for oxidative metabolism and whether return to three dimensional (3-D) culture restores cytochrome c oxidase activity to original levels. METHODS Primary bovine articular chondrocytes were cultured in alginate beads (3-D) for 4 weeks or in monolayer under 1% and 21% oxygen for up to 9 days and then returned to 3-D culture for up to 4 weeks. Cells were stained to localise cytochrome c oxidase within the cells. Mitochondrial protein content and cytochrome c oxidase enzymatic activity were determined. Expression of cytochrome c oxidase subunits, COXI and COXIV, was assessed by qRT-PCR. RESULTS Cytochrome c oxidase staining remained minimal in chondrocytes cultured in alginate for 4 weeks under 21% oxygen. Mitochondrial protein content and cytochrome c oxidase activity increased significantly during 9 days of chondrocyte expansion in monolayer, accompanied by up-regulation of the COXI mitochondrial gene but not the COXIV nuclear-encoded gene. Cytochrome c oxidase staining increased from day 5 of monolayer culture and remained high even after the cells were returned to 3-D culture for 4 weeks. CONCLUSIONS Culture of chondrocytes in monolayer leads to a rapid increase in mitochondrial protein content and cytochrome c oxidase activity. The increase in cytochrome c oxidase activity is not reversed even after chondrocytes are returned to 3-D culture for 4 weeks; high oxygen tension alone does not appear to stimulate cytochrome c oxidase activity.
Collapse
Affiliation(s)
- O A Boubriak
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK.
| | | | | |
Collapse
|
32
|
Gibson JS, McCartney D, Sumpter J, Fairfax TPA, Milner PI, Edwards HL, Wilkins RJ. Rapid effects of hypoxia on H+ homeostasis in articular chondrocytes. Pflugers Arch 2009; 458:1085-92. [PMID: 19629519 DOI: 10.1007/s00424-009-0695-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 06/23/2009] [Accepted: 06/25/2009] [Indexed: 10/20/2022]
Abstract
Articular chondrocytes experience low oxygen (O(2)) levels compared with many other tissues, and values fall further in disease states. Chondrocyte intracellular pH (pH(i)) is a powerful modulator of matrix synthesis and is principally regulated by Na(+)-H(+) exchange (NHE). In equine chondrocytes, NHE is inhibited when cells are incubated for 3 h at low O(2), leading to intracellular acidosis. O(2)-dependent changes in reactive oxygen species (ROS) levels appear to underlie this effect. The present study examines whether hypoxia can influence chondrocyte NHE activity and pH(i) over shorter timescales using the pH-sensitive fluoroprobe BCECF in cells isolated not only from equine cartilage but also from bovine tissue. O(2) levels in initially oxygenated solutions gassed with N(2) fell to approximately 1% within 2 h. A progressive fall in pH(i) and acid extrusion capacity was observed, with statistically significant effects (P < 0.05) apparent within 3 h. For equine and bovine cell populations subjected to step change in O(2) by resuspension in hypoxic (1%) solutions, a decline in acid extrusion and pH(i) was observed within 10 min and continued throughout the recording period. This effect represented inhibition of the NHE-mediated fraction of acid extrusion. Cells subjected to hypoxic solutions supplemented with CoCl(2) (100 microM) or antimycin A (100 microM) to raise levels of ROS did not acidify. The conserved nature and rapidity of the response to hypoxia has considerable implications for chondrocyte homeostasis and potentially for the maintenance of cartilage integrity.
Collapse
Affiliation(s)
- John S Gibson
- Department of Veterinary Medicine, Madingley Road, Cambridge, CB3 OES, UK
| | | | | | | | | | | | | |
Collapse
|
33
|
Pfander D, Gelse K. Hypoxia and osteoarthritis: how chondrocytes survive hypoxic environments. Curr Opin Rheumatol 2007; 19:457-62. [PMID: 17762611 DOI: 10.1097/bor.0b013e3282ba5693] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW This review summarizes the current knowledge about hypoxia and hypoxia-inducible factor-1 (HIF-1) for chondrocyte survival, energy generation and matrix synthesis of articular chondrocytes during cartilage homeostasis and disease. RECENT FINDINGS In recent years increasing evidence of a pivotal role of hypoxia and the transcription factor HIF-1alpha in cartilaginous tissues has been published. Growth plates with functionally inactivated hypoxia-inducible factor-1alpha display great defects in their central areas caused by massive cell death. This very important observation indicates that hypoxia-inducible factor-1alpha is absolutely necessary for chondrocytes to survive extremely low oxygen tensions. Furthermore, hypoxia-inducible factor-1alpha has been shown to have very important functions for the regulation of glucose transport, anaerobic energy generation and matrix synthesis by articular chondrocytes. Besides hypoxia, other factors such as proinflammatory mediators and mechanical load have been shown to increase hypoxia-inducible factor-1alpha activity in articular chondrocytes. All these factors are known to be involved in the pathogenesis of osteoarthritis. Thus, a dependence of osteoarthritis chondrocytes on hypoxia-inducible factor-1alpha to survive and function properly is a reasonable assumption. SUMMARY Low oxygen tensions and hypoxia-inducible factor-1alpha are important factors in articular chondrocyte behaviour during cartilage homeostasis and osteoarthritis. Hypoxia-inducible factor-1alpha is a highly conserved transcription factor that has key functions in controlling energy generation, cell survival and matrix synthesis by articular and growth-plate chondrocytes.
Collapse
Affiliation(s)
- David Pfander
- Department of Orthopaedic Rehabilitation, Medical Park Bad Rodach, Bad Rodach, Germany.
| | | |
Collapse
|
34
|
Gibson JS, Milner PI, White R, Fairfax TPA, Wilkins RJ. Oxygen and reactive oxygen species in articular cartilage: modulators of ionic homeostasis. Pflugers Arch 2007; 455:563-73. [PMID: 17849146 DOI: 10.1007/s00424-007-0310-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 06/20/2007] [Indexed: 11/26/2022]
Abstract
Articular cartilage is an avascular tissue dependent on diffusion mainly from synovial fluid to service its metabolic requirements. Levels of oxygen (O(2)) in the tissue are low, with estimates of between 1 and 6%. Metabolism is largely, if not entirely, glycolytic, with little capacity for oxidative phosphorylation. Notwithstanding, the tissue requires O(2) and consumes it, albeit at low rates. Changes in O(2) tension also have profound effects on chondrocytes affecting phenotype, gene expression, and morphology, as well as response to, and production of, cytokines. Although chondrocytes can survive prolonged anoxia, low O(2) levels have significant metabolic effects, inhibiting glycolysis (the negative Pasteur effect), and also notably matrix production. Why this tissue should respond so markedly to reduction in O(2) tension remains a paradox. Ion homeostasis in articular chondrocytes is also markedly affected by the extracellular matrix in which the cells reside. Recent work has shown that ion homeostasis also responds to changes in O(2) tension, in such a way as to produce significant effects on cell function. For this purpose, O(2) probably acts via alteration in levels of reactive oxygen species. We discuss the possibility that O(2) consumption by this tissue is required to maintain levels of ROS, which are then used physiologically as an intracellular signalling device. This postulate may go some way towards explaining why the tissue is dependent on O(2) and why its removal has such marked effects. Understanding the role of oxygen has implications for disease states in which O(2) or ROS levels may be perturbed.
Collapse
Affiliation(s)
- J S Gibson
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, England
| | | | | | | | | |
Collapse
|
35
|
|
36
|
Milner PI, Wilkins RJ, Gibson JS. The role of mitochondrial reactive oxygen species in pH regulation in articular chondrocytes. Osteoarthritis Cartilage 2007; 15:735-42. [PMID: 17306992 DOI: 10.1016/j.joca.2007.01.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Accepted: 01/06/2007] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To examine the effect of O(2) and the role, and source, of reactive oxygen species (ROS) on pH regulation in articular chondrocytes. METHODS Cartilage from equine metacarpo/tarsophalangeal joints was digested (collagenase) to isolate chondrocytes and loaded with 2',7'-bis-2-(carboxyethyl)-5(6)-carboxylfluorescein, a pH-sensitive fluorophore. O(2) tension was maintained using Eschweiler tonometers and a Wosthoff gas mixer. Cells were exposed to agents which alter ROS levels, mitochondrial inhibitors and/or inhibitors of protein phosphorylation. ROS levels were determined by dichlorofluorescein and mitochondrial membrane potential measured using JC-1. RESULTS pH homeostasis was dependent on ROS. Na(+)/H(+) exchanger (NHE) activity was inhibited at low O(2) tension (acid efflux reducing from 2.30+/-0.05 to 1.27+/-0.11mMmin(-1) at 1%). NHE activity correlated with ROS levels (r(2)=0.65). ROS levels were increased by antimycin A (with levels at 1% O(2) tension increasing from 59+/-9% of the value at 20% to 87+/-7%), but reduced by rotenone, myxothiazol and diphenyleneiodonium. Hypoxia induced depolarisation of the mitochondrial membrane potential (with JC-1 red-green fluorescence ratio at 1% O(2) tension decreasing to 40+/-10% of the value at 20%). The response to changes in O(2) and to antimycin A was inhibited by staurosporine, wortmanin and calyculin A. CONCLUSION The fall in ROS levels in hypoxia reduces the ability of articular chondrocytes to regulate pH, inhibiting NHE activity via changes in protein phosphorylation. The site of ROS generation is likely to be mitochondrial electron transport chain complex III. These effects are important to understanding normal chondrocyte function and response to altered O(2) tension.
Collapse
Affiliation(s)
- P I Milner
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | | | | |
Collapse
|