1
|
Wilk A, Szumilas K, Gimpel A, Pilutin A, Rzeszotek S, Kędzierska-Kapuza K. An Artificial Intelligence-Based Digital Analysis of Immunolocalization of MMP2 and TIMP2 in the Jejunum of Rats Treated with Calcineurin Inhibitors. Biomedicines 2024; 12:1966. [PMID: 39335480 PMCID: PMC11429195 DOI: 10.3390/biomedicines12091966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
(1) Background: The main goal of this study was to analyze the morphology of the rat's jejunum after long-term treatment with calcineurin inhibitor-based immunosuppressive drugs and to investigate their impact on the location of MMP-2 and its inhibitor TIMP-2, as well as the balance between them. (2) Methods: Twenty-four rats were divided into four groups receiving different immunosuppressive regiments. After six months of treatment, the jejunums were collected and analyzed. (3) Results: immunosuppressive drug panels containing calcineurin inhibitors (CNIs) have a negative impact on the morphology and morphometry of the small intestinal wall. These drugs disrupt the MMP-2/TIMP-2 balance. Both CsA and TAC interfere with the synthesis of intercellular matrix components in the connective tissue of the small intestine. Furthermore, tacrolimus appears to disrupt the MMP-2/TIMP-2 balance in the small intestine the most, as the results show the highest difference between MMP-2 and TIMP-2 expression. The results were also confirmed by digital analysis of tissue segmentation. (4) Conclusions: The research conducted in this study is unique because there is limited information available on the direct effects of immunosuppressive drugs on the expression of MMP-2 and their inhibitors in the jejunum. Additionally, this study involves three drugs instead of one, which accurately reflects the panel of drugs used in organ recipients. Our results suggest that immunosuppressive drugs affect morphology and MMP2/TIMP2 immunoexpression; however, further studies are required. AI-based tools provide a reliable analysis of tissue samples, which represents an exciting approach for future histopathological studies. However, the results of the analyses generated by these tools need to be verified by specialists.
Collapse
Affiliation(s)
- Aleksandra Wilk
- Department of Histology and Embryology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Kamila Szumilas
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Anna Gimpel
- Department of Histology and Embryology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Anna Pilutin
- Department of Histology and Embryology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Sylwia Rzeszotek
- Department of Histology and Embryology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Karolina Kędzierska-Kapuza
- Department of Gastroenterological Surgery and Transplantology, National Medical Institute, Ministry of Interior Affairs and Administration, Wołoska St. 137, 02-507 Warsaw, Poland
| |
Collapse
|
2
|
Yu X, Ma H, Wang Y, Hao J, Chen L, Gelinsky M, Wu C. Assembled/Disassembled Modular Scaffolds for Multicellular Tissue Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308126. [PMID: 38533956 DOI: 10.1002/adma.202308126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/28/2024] [Indexed: 03/28/2024]
Abstract
The behavior of tissue resident cells can be influenced by the spatial arrangement of cellular interactions. Therefore, it is of significance to precisely control the spatial organization of various cells within multicellular constructs. It remains challenging to construct a versatile multicellular scaffold with ordered spatial organization of multiple cell types. Herein, a modular multicellular tissue engineering scaffold with ordered spatial distribution of different cell types is constructed by assembling varying cell-laden modules. Interestingly, the modular scaffolds can be disassembled into individual modules to evaluate the specific contribution of each cell type in the system. Through assembling cell-laden modules, the macrophage-mesenchymal stem cell (MSC), endothelial cell-MSC, and chondrocyte-MSC co-culture models are successfully established. The in vitro results indicate that the intercellular cross-talk can promote the proliferation and differentiation of each cell type in the system. Moreover, MSCs in the modular scaffolds may regulate the behavior of chondrocytes through the nuclear factor of activated T-Cells (NFAT) signaling pathway. Furthermore, the modular scaffolds loaded with co-cultured chondrocyte-MSC exhibit enhanced regeneration ability of osteochondral tissue, compared with other groups. Overall, this work offers a promising strategy to construct a multicellular tissue engineering scaffold for the systematic investigation of intercellular cross-talk and complex tissue engineering.
Collapse
Affiliation(s)
- Xiaopeng Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hongshi Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yufeng Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Jianxin Hao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lei Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Michael Gelinsky
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine of Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
K + and Ca 2+ Channels Regulate Ca 2+ Signaling in Chondrocytes: An Illustrated Review. Cells 2020; 9:cells9071577. [PMID: 32610485 PMCID: PMC7408816 DOI: 10.3390/cells9071577] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/16/2022] Open
Abstract
An improved understanding of fundamental physiological principles and progressive pathophysiological processes in human articular joints (e.g., shoulders, knees, elbows) requires detailed investigations of two principal cell types: synovial fibroblasts and chondrocytes. Our studies, done in the past 8–10 years, have used electrophysiological, Ca2+ imaging, single molecule monitoring, immunocytochemical, and molecular methods to investigate regulation of the resting membrane potential (ER) and intracellular Ca2+ levels in human chondrocytes maintained in 2-D culture. Insights from these published papers are as follows: (1) Chondrocyte preparations express a number of different ion channels that can regulate their ER. (2) Understanding the basis for ER requires knowledge of (a) the presence or absence of ligand (ATP/histamine) stimulation and (b) the extraordinary ionic composition and ionic strength of synovial fluid. (3) In our chondrocyte preparations, at least two types of Ca2+-activated K+ channels are expressed and can significantly hyperpolarize ER. (4) Accounting for changes in ER can provide insights into the functional roles of the ligand-dependent Ca2+ influx through store-operated Ca2+ channels. Some of the findings are illustrated in this review. Our summary diagram suggests that, in chondrocytes, the K+ and Ca2+ channels are linked in a positive feedback loop that can augment Ca2+ influx and therefore regulate lubricant and cytokine secretion and gene transcription.
Collapse
|
4
|
Fang-Ji-Huang-Qi-Tang Attenuates Degeneration of Early-Stage KOA Mice Related to Promoting Joint Lymphatic Drainage Function. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3471681. [PMID: 32280355 PMCID: PMC7109589 DOI: 10.1155/2020/3471681] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/26/2020] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by the breakdown of articular cartilage, subchondral bone remodeling, and inflammation of the synovium. In this study, we investigated whether Fang-Ji-Huang-Qi-Tang (FJHQT) decoction improved the joint structure of OA or delayed the process of knee joint degeneration in OA mice by promoting lymphatic drain function. The mice were randomly divided into four groups, the sham group, the PBS group, the FJHQT-treated group, and the Mobic-treated group. The mice in each group were tested for lymphatic draining function at 4, 6, 8, and 10 weeks postsurgery (WPS), then sacrificed (N = 10/group). Using a near-infrared indocyanine green (NIR-ICG) lymphatic imaging system, we found that the lymphatic drain function was significantly reduced in the PBS group compared with the sham group. After treatment with the FJHQT decoction, the lymphatic draining function improved at 4 wps and 6 wps. The results of the analysis indicated a strong correlation between lymphatic draining function (ICG clearance) and the degree of joint structural damage (OARSI score). By Alcian blue/orange G (ABOG) staining of the paraffin sections, the FJHQT-treated group exhibited less cartilage destruction and lower OARSI scores. Moreover, the result of immunohistochemical staining (IHC) shows that FJHQT decoction increased the content of type II collagen in knee joints of OA mice at 4 wps and 6 wps. By the double immunofluorescence staining of podoplanin and smooth muscle actin in the paraffin sections, the capillaries and mature lymphatics in the FJHQT group increased at 4 wps. In conclusion, the FJHQT decoction can increase lymphatic vessel number, promote joint lymphatic draining function, and postpone knee osteoarthritis pathologic progression in the early stage of a collagen-induced mouse model. Therefore, the application of sufficient lymphatic drainage in the knee joint may be a new treatment method for knee joint osteoarthritis (KOA).
Collapse
|
5
|
Park YJ, Yoo SA, Kim M, Kim WU. The Role of Calcium-Calcineurin-NFAT Signaling Pathway in Health and Autoimmune Diseases. Front Immunol 2020; 11:195. [PMID: 32210952 PMCID: PMC7075805 DOI: 10.3389/fimmu.2020.00195] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 01/24/2020] [Indexed: 01/05/2023] Open
Abstract
Calcium (Ca2+) is an essential signaling molecule that controls a wide range of biological functions. In the immune system, calcium signals play a central role in a variety of cellular functions such as proliferation, differentiation, apoptosis, and numerous gene transcriptions. During an immune response, the engagement of T-cell and B-cell antigen receptors induces a decrease in the intracellular Ca2+ store and then activates store-operated Ca2+ entry (SOCE) to raise the intracellular Ca2+ concentration, which is mediated by the Ca2+ release-activated Ca2+ (CRAC) channels. Recently, identification of the two critical regulators of the CRAC channel, stromal interaction molecule (STIM) and Orai1, has broadened our understanding of the regulatory mechanisms of Ca2+ signaling in lymphocytes. Repetitive or prolonged increase in intracellular Ca2+ is required for the calcineurin-mediated dephosphorylation of the nuclear factor of an activated T cell (NFAT). Recent data indicate that Ca2+-calcineurin-NFAT1 to 4 pathways are dysregulated in autoimmune diseases. Therefore, calcineurin inhibitors, cyclosporine and tacrolimus, have been used for the treatment of such autoimmune diseases as systemic lupus erythematosus and rheumatoid arthritis. Here, we review the role of the Ca2+-calcineurin–NFAT signaling pathway in health and diseases, focusing on the STIM and Orai1, and discuss the deregulated calcium-mediated calcineurin-NFAT pathway in autoimmune diseases.
Collapse
Affiliation(s)
- Yune-Jung Park
- POSTEC-CATHOLIC Biomedical Engineering Institute, The Catholic University of Korea, Seoul, South Korea.,Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon, South Korea
| | - Seung-Ah Yoo
- POSTEC-CATHOLIC Biomedical Engineering Institute, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine & Health Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Mingyo Kim
- Division of Rheumatology, Department of Internal Medicine, Gyeonsang National University Hospital, Jinju, South Korea
| | - Wan-Uk Kim
- POSTEC-CATHOLIC Biomedical Engineering Institute, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine & Health Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Division of Rheumatology, Department of Internal Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
6
|
Li C, Zheng Z, Ha P, Jiang W, Berthiaume EA, Lee S, Mills Z, Pan H, Chen EC, Jiang J, Culiat CT, Zhang X, Ting K, Soo C. Neural EGFL like 1 as a potential pro-chondrogenic, anti-inflammatory dual-functional disease-modifying osteoarthritis drug. Biomaterials 2019; 226:119541. [PMID: 31634652 DOI: 10.1016/j.biomaterials.2019.119541] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/09/2019] [Accepted: 10/08/2019] [Indexed: 01/06/2023]
Abstract
Arthritis, an inflammatory condition that causes pain and cartilage destruction in joints, affects over 54.4 million people in the US alone. Here, for the first time, we demonstrated the emerging role of neural EGFL like 1 (NELL-1) in arthritis pathogenesis by showing that Nell-1-haploinsufficient (Nell-1+/6R) mice had accelerated and aggravated osteoarthritis (OA) progression with elevated inflammatory markers in both spontaneous primary OA and chemical-induced secondary OA models. In the chemical-induced OA model, intra-articular injection of interleukin (IL)1β induced more severe inflammation and cartilage degradation in the knee joints of Nell-1+/6R mice than in wildtype animals. Mechanistically, in addition to its pro-chondrogenic potency, NELL-1 also effectively suppressed the expression of inflammatory cytokines and their downstream cartilage catabolic enzymes by upregulating runt-related transcription factor (RUNX)1 in mouse and human articular cartilage chondrocytes. Notably, NELL-1 significantly reduced IL1β-stimulated inflammation and damage to articular cartilage in vivo. In particular, NELL-1 administration markedly reduced the symptoms of antalgic gait observed in IL1β-challenged Nell-1+/6R mice. Therefore, NELL-1 is a promising pro-chondrogenic, anti-inflammatory dual-functional disease-modifying osteoarthritis drug (DMOAD) candidate for preventing and suppressing arthritis-related cartilage damage.
Collapse
Affiliation(s)
- Chenshuang Li
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Zhong Zheng
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Pin Ha
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Wenlu Jiang
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Emily A Berthiaume
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Seungjun Lee
- Department of Chemistry and Biochemistry, School of Letters and Science, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Zane Mills
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Hsinchuan Pan
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Eric C Chen
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Jie Jiang
- Division of Plastic and Reconstructive Surgery and Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | | | - Xinli Zhang
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Kang Ting
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery and Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
7
|
Seda M, Geerlings M, Lim P, Jeyabalan-Srikaran J, Cichon AC, Scambler PJ, Beales PL, Hernandez-Hernandez V, Stoker AW, Jenkins D. An FDA-Approved Drug Screen for Compounds Influencing Craniofacial Skeletal Development and Craniosynostosis. Mol Syndromol 2019; 10:98-114. [PMID: 30976283 PMCID: PMC6422125 DOI: 10.1159/000491567] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Neural crest stem/progenitor cells (NCSCs) populate a variety of tissues, and their dysregulation is implicated in several human diseases including craniosynostosis and neuroblastoma. We hypothesised that small molecules that inhibit NCSC induction or differentiation may represent potential therapeutically relevant drugs in these disorders. We screened 640 FDA-approved compounds currently in clinical use for other conditions to identify those which disrupt development of NCSC-derived skeletal elements that form the zebrafish jaw. In the primary screen, we used heterozygous transgenic sox10:gfp zebrafish to directly visualise NCSC-derived jaw cartilage. We noted partial toxicity of this transgene in relation to jaw patterning, suggesting that our primary screen was sensitised for NCSC defects, and we confirmed 10 novel, 4 previously reported, and 2 functional analogue drug hits in wild-type embryos. Of these drugs, 9/14 and 7/14, respectively, are known to target pathways implicated in osteoarthritis pathogenesis or to cause reduced bone mineral density/increased fracture risk as side effects in patients treated for other conditions, suggesting that our screen enriched for pathways targeting skeletal tissue homeostasis. We selected one drug that inhibited NCSC induction and one drug that inhibits bone mineralisation for further detailed analyses which reflect our initial hypotheses. These drugs were leflunomide and cyclosporin A, respectively, and their functional analogues, teriflunomide and FK506 (tacrolimus). We identified their critical developmental windows of activity, showing that the severity of defects observed related to the timing, duration, and dose of treatment. While leflunomide has previously been shown to inhibit NCSC induction, we demonstrate additional later roles in cartilage remodelling. Both drugs altered expression of extracellular matrix metalloproteinases. As proof-of-concept, we also tested drug treatment of disease-relevant mammalian cells. While leflunomide treatment inhibited the viability of several human NCSC-derived neuroblastoma cell lines coincident with altered expression of genes involved in ribosome biogenesis and transcription, FK506 enhanced murine calvarial osteoblast differentiation and prevented fusion of the coronal suture in calvarial explants taken from Crouzon syndrome mice.
Collapse
Affiliation(s)
- Marian Seda
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, UK
| | - Maartje Geerlings
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, UK
| | - Peggy Lim
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, UK
| | | | - Ann-Christin Cichon
- Developmental Biology and Cancer Programmes, UCL Institute of Child Health, London, UK
| | - Peter J. Scambler
- Developmental Biology and Cancer Programmes, UCL Institute of Child Health, London, UK
| | - Philip L. Beales
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, UK
| | | | - Andrew W. Stoker
- Developmental Biology and Cancer Programmes, UCL Institute of Child Health, London, UK
| | - Dagan Jenkins
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, UK
| |
Collapse
|
8
|
Sandker MJ, Duque LF, Redout EM, Klijnstra EC, Steendam R, Kops N, Waarsing JH, van Weeren R, Hennink WE, Weinans H. Degradation, Intra-Articular Biocompatibility, Drug Release, and Bioactivity of Tacrolimus-Loaded Poly(d-l-lactide-PEG)-b-poly(l-lactide) Multiblock Copolymer-Based Monospheres. ACS Biomater Sci Eng 2018; 4:2390-2403. [DOI: 10.1021/acsbiomaterials.8b00116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Maria J. Sandker
- Department of Orthopaedics, Erasmus Medical Centre, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
- Department of Orthopaedics, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Luisa F. Duque
- InnoCore Pharmaceuticals, L.J. Zielstraweg 1, 9713 GX Groningen, The Netherlands
| | - Everaldo M. Redout
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Evelien C. Klijnstra
- InnoCore Pharmaceuticals, L.J. Zielstraweg 1, 9713 GX Groningen, The Netherlands
| | - Rob Steendam
- InnoCore Pharmaceuticals, L.J. Zielstraweg 1, 9713 GX Groningen, The Netherlands
| | - Nicole Kops
- Department of Orthopaedics, Erasmus Medical Centre, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Jan H. Waarsing
- Department of Orthopaedics, Erasmus Medical Centre, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Rene van Weeren
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Wim E. Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3512 JE Utrecht, The Netherlands
| | - Harrie Weinans
- Department of Orthopaedics and Department of Rheumatology, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Department of Biomechanical Engineering, TUDelft, Mekelweg 2, 2628 CD Delft, The Netherlands
| |
Collapse
|
9
|
Yao W, Han Q, Wang L, Niu Z. Ropivacaine relieves pain and prevents chondrocyte degradation probably through Calcineurin/NFAT1 signaling pathway in osteoarthritis rats. Eur J Pharmacol 2018; 818:518-524. [PMID: 29157984 DOI: 10.1016/j.ejphar.2017.11.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 12/31/2022]
Abstract
Calcineurin/NFAT1 signaling pathway plays critical roles in maintaining the homeostasis of articular chondrocytes and in regulating the pathogenesis of osteoarthritis (OA). A few studies demonstrate therapeutic values of ropivacaine (Rop) in OA, but the underlying mechanisms have not been defined. Here, we determined whether Calcineurin/NFAT1 signaling pathway mediates the benefits of Rop to OA. OA rat models were established by a single intra-articular injection of monosodium iodoacetate. The pathophysiology of OA was evaluated by measuring hyperalgesia behavior and the expression of NFAT1, calcineurin, catabolic enzymes in chondrocytes, and chondrogenic markers in affected articular cartilage and primary chondrocyte cultures treated with IL-1β. ROP was applied both in vivo and in vitro to examine its effects on the pathophysiology of OA. Hyperalgesia in OA rats was improved by intra-articular injection of Rop. Moreover, Rop suppressed the overexpression of NFAT1, calcineurin, TNF-α, IL-6, MMP1 and MMP3, and reversed the diminution of collagen II and aggrecan, in affected cartilage of OA rats. Similar effects of Rop were also observed in mouse chondrocyte cultures treated with IL-1β. In in vitro preparations, either activation (by increasing extracellular Ca2+) or inhibition (by cyclosporin A) of calcineurin blocked the effects of Rop. These results suggest that Rop may have therapeutic potential for OA in three aspects: analgesia, anti-inflammation, and anti-degradation of articular cartilage, probably via down-regulating calcineurin/NFAT1 signaling pathway.
Collapse
Affiliation(s)
- Wenyu Yao
- Department of Anesthesiology, Cangzhou Central Hospital, No.16 Xinhua West Road, CangZhou City 061001, Hebei province, China.
| | - Qian Han
- Department of Anesthesiology, Cangzhou Central Hospital, No.16 Xinhua West Road, CangZhou City 061001, Hebei province, China
| | - Lei Wang
- Department of Anesthesiology, Cangzhou Central Hospital, No.16 Xinhua West Road, CangZhou City 061001, Hebei province, China
| | - Zhiqiang Niu
- Department of Anesthesiology, Cangzhou Central Hospital, No.16 Xinhua West Road, CangZhou City 061001, Hebei province, China
| |
Collapse
|
10
|
Gibson AL, Hui Mingalone CK, Foote AT, Uchimura T, Zhang M, Zeng L. Wnt7a Inhibits IL-1β Induced Catabolic Gene Expression and Prevents Articular Cartilage Damage in Experimental Osteoarthritis. Sci Rep 2017; 7:41823. [PMID: 28165497 PMCID: PMC5292965 DOI: 10.1038/srep41823] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/28/2016] [Indexed: 12/27/2022] Open
Abstract
Wnt7a is a protein that plays a critical role in skeletal development. However, its effect on cartilage homeostasis under pathological conditions is not known. In this study, we found a unique inverse correlation between Wnt7a gene expression and that of MMP and IL-1β in individual human OA cartilage specimens. Upon ectopic expression in primary human articular chondrocytes, Wnt7a inhibited IL-1β-induced MMP and iNOS gene expression. Western blot analysis indicated that Wnt7a induced both canonical Wnt signaling and NFAT and Akt non-canonical signaling. Interestingly, inhibiting the canonical and Akt pathway did not affect Wnt7a activity. However, inhibiting the NFAT pathway impaired Wnt7a’s ability to inhibit MMP expression, suggesting that Wnt7a requires NFAT signaling to exert this function. In vivo, intraarticular injection of lentiviral Wnt7a strongly attenuated articular cartilage damage induced by destabilization of the medial meniscus (DMM) OA-inducing surgery in mice. Consistently, Wnt7a also inhibited the progressive increase of joint MMP activity in DMM animals. These results indicate that Wnt7a signaling inhibits inflammatory stimuli-induced catabolic gene expression in human articular chondrocytes and is sufficient to attenuate MMP activities and promote joint cartilage integrity in mouse experimental OA, demonstrating a novel effect of Wnt7a on regulating OA pathogenesis.
Collapse
Affiliation(s)
- Averi L Gibson
- Program in Cellular, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA.,Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Carrie K Hui Mingalone
- Program in Cellular, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA.,Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Andrea T Foote
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Tomoya Uchimura
- Program in Cellular, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA.,Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Ming Zhang
- Department of Rheumatology, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| | - Li Zeng
- Program in Cellular, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA.,Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA 02111, USA.,Department of Orthopedics, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| |
Collapse
|
11
|
Yonenaga K, Nishizawa S, Nakagawa T, Fujihara Y, Asawa Y, Hikita A, Takato T, Hoshi K. Optimal conditions of collagenase treatment for isolation of articular chondrocytes from aged human tissues. Regen Ther 2017; 6:9-14. [PMID: 30271834 PMCID: PMC6134899 DOI: 10.1016/j.reth.2016.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/27/2016] [Accepted: 08/15/2016] [Indexed: 12/04/2022] Open
Abstract
Introduction There are various types of cartilage, including the auricular and articular cartilages. These cartilages have different functions, and their matrix volume and density of chondrocytes may differ. Thus, different protocols may be required to digest different types of cartilage. Methods In this study, we examined protocols for the digestion of articular and auricular cartilages and determined the optimal conditions for articular cartilage digestion. Results Our histological findings showed that the articular cartilage has a larger matrix area and fewer cells than the auricular cartilage. In 1-mm2 areas of articular and auricular cartilages, the average numbers of cells were 44 and 380, respectively, and the average matrix areas were 0.94 and 0.77 mm2, respectively. The maximum numbers of viable cells (approximately 1 × 105 cells/0.1 g of tissue) were obtained after digestion in 0.15, 0.3, or 0.6% collagenase for 24 h, in 1.2% collagenase for 6 h, or in 2.4% collagenase for 4 h. In tissues incubated in 0.15 or 0.3% collagenase, the cell numbers were lower than 1 × 105, even at 24 h, possibly reflecting incomplete digestion of cartilage. No significant differences were observed in the results of apoptosis assays for all collagenase exposure times and concentrations. However, cell damage appeared to be greater when collagenase concentrations were high. When cells obtained after digestion with different concentrations of collagenase were seeded at a density of 3000 cells/cm2, they yielded the maximum cell numbers after 1 week. Conclusions We recommend a 24-h incubation in 0.6% collagenase as the optimal condition for chondrocyte isolation from articular cartilage. Moreover, we found that the optimum cell-seeding density is approximately 3000 cells/cm2. Conditions determined in this study would maximize the yield of isolated articular chondrocytes and enable the generation of a large quantity of cultured cells. Optimal conditions for articular cartilage digestion were determined. Articular cartilage had a larger matrix and fewer cells than auricular cartilage. A 24-h incubation in 0.6% collagenase was optimal for chondrocyte isolation. The optimum cell-seeding density was approximately 3000 cells/cm2.
Collapse
Affiliation(s)
- Kazumichi Yonenaga
- Department of Cartilage & Bone Regeneration (Fujisoft), Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan.,Department of Sensory & Motor System, Graduate School of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Satoru Nishizawa
- Department of Cartilage & Bone Regeneration (Fujisoft), Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Takumi Nakagawa
- Department of Sensory & Motor System, Graduate School of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yuko Fujihara
- Department of Cartilage & Bone Regeneration (Fujisoft), Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yukiyo Asawa
- Department of Cartilage & Bone Regeneration (Fujisoft), Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Atsuhiko Hikita
- Department of Cartilage & Bone Regeneration (Fujisoft), Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tsuyoshi Takato
- Department of Sensory & Motor System, Graduate School of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kazuto Hoshi
- Department of Cartilage & Bone Regeneration (Fujisoft), Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan.,Department of Sensory & Motor System, Graduate School of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
12
|
Yonenaga K, Nishizawa S, Nakagawa T, Fujihara Y, Asawa Y, Hikita A, Takato T, Hoshi K. Optimal conditions of collagenase treatment for isolation of articular chondrocytes from aged human tissues. Regen Ther 2017. [PMID: 30271834 DOI: 10.1016/j.reth.2016.08.001.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2022] Open
Abstract
Introduction There are various types of cartilage, including the auricular and articular cartilages. These cartilages have different functions, and their matrix volume and density of chondrocytes may differ. Thus, different protocols may be required to digest different types of cartilage. Methods In this study, we examined protocols for the digestion of articular and auricular cartilages and determined the optimal conditions for articular cartilage digestion. Results Our histological findings showed that the articular cartilage has a larger matrix area and fewer cells than the auricular cartilage. In 1-mm2 areas of articular and auricular cartilages, the average numbers of cells were 44 and 380, respectively, and the average matrix areas were 0.94 and 0.77 mm2, respectively. The maximum numbers of viable cells (approximately 1 × 105 cells/0.1 g of tissue) were obtained after digestion in 0.15, 0.3, or 0.6% collagenase for 24 h, in 1.2% collagenase for 6 h, or in 2.4% collagenase for 4 h. In tissues incubated in 0.15 or 0.3% collagenase, the cell numbers were lower than 1 × 105, even at 24 h, possibly reflecting incomplete digestion of cartilage. No significant differences were observed in the results of apoptosis assays for all collagenase exposure times and concentrations. However, cell damage appeared to be greater when collagenase concentrations were high. When cells obtained after digestion with different concentrations of collagenase were seeded at a density of 3000 cells/cm2, they yielded the maximum cell numbers after 1 week. Conclusions We recommend a 24-h incubation in 0.6% collagenase as the optimal condition for chondrocyte isolation from articular cartilage. Moreover, we found that the optimum cell-seeding density is approximately 3000 cells/cm2. Conditions determined in this study would maximize the yield of isolated articular chondrocytes and enable the generation of a large quantity of cultured cells.
Collapse
Affiliation(s)
- Kazumichi Yonenaga
- Department of Cartilage & Bone Regeneration (Fujisoft), Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan.,Department of Sensory & Motor System, Graduate School of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Satoru Nishizawa
- Department of Cartilage & Bone Regeneration (Fujisoft), Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Takumi Nakagawa
- Department of Sensory & Motor System, Graduate School of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yuko Fujihara
- Department of Cartilage & Bone Regeneration (Fujisoft), Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yukiyo Asawa
- Department of Cartilage & Bone Regeneration (Fujisoft), Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Atsuhiko Hikita
- Department of Cartilage & Bone Regeneration (Fujisoft), Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tsuyoshi Takato
- Department of Sensory & Motor System, Graduate School of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kazuto Hoshi
- Department of Cartilage & Bone Regeneration (Fujisoft), Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan.,Department of Sensory & Motor System, Graduate School of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
13
|
Erkut A, Tumkaya L, Balik MS, Kalkan Y, Guvercin Y, Yilmaz A, Yuce S, Cure E, Sehitoglu I. The effect of prenatal exposure to 1800 MHz electromagnetic field on calcineurin and bone development in rats. Acta Cir Bras 2016; 31:74-83. [PMID: 26959616 DOI: 10.1590/s0102-865020160020000001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/19/2016] [Indexed: 02/07/2023] Open
Abstract
PURPOSE To investigated the effects of exposure to an 1800 MHz electromagnetic field (EMF) on bone development during the prenatal period in rats. METHODS Pregnant rats in the experimental group were exposed to radiation for six, 12, and 24 hours daily for 20 days. No radiation was given to the pregnant rats in the control group. We distributed the newborn rats into four groups according to prenatal EMF exposure as follows: Group 1 was not exposed to EMF; groups 2, 3, and 4 were exposed to EMF for six, 12, and 24 hours a day, respectively. The rats were evaluated at the end of the 60th day following birth. RESULTS Increasing the duration of EMF exposure during the prenatal period resulted in a significant reduction of resting cartilage levels and a significant increase in the number of apoptotic chondrocytes and myocytes. There was also a reduction in calcineurin activities in both bone and muscle tissues. We observed that the development of the femur, tibia, and ulna were negatively affected, especially with a daily EMF exposure of 24 hours. CONCLUSION Bone and muscle tissue development was negatively affected due to prenatal exposure to 1800 MHz radiofrequency electromagnetic field.
Collapse
Affiliation(s)
- Adem Erkut
- School of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Levent Tumkaya
- School of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | | | - Yildiray Kalkan
- School of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Yilmaz Guvercin
- School of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Adnan Yilmaz
- School of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Suleyman Yuce
- Department of Internal Medicine, Kumru State Hospital, Ordu, Turkey
| | - Erkan Cure
- School of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | | |
Collapse
|
14
|
Abstract
Articular cartilage is a unique load-bearing connective tissue with a low intrinsic capacity for repair and regeneration. Its avascularity makes it relatively hypoxic and its unique extracellular matrix is enriched with cations, which increases the interstitial fluid osmolarity. Several physicochemical and biomechanical stimuli are reported to influence chondrocyte metabolism and may be utilized for regenerative medical approaches. In this review article, we summarize the most relevant stimuli and describe how ion channels may contribute to cartilage homeostasis, with special emphasis on intracellular signaling pathways. We specifically focus on the role of calcium signaling as an essential mechanotransduction component and highlight the role of phosphatase signaling in this context.
Collapse
Affiliation(s)
- Holger Jahr
- Department of Orthopaedic Surgery, University Hospital RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
- The D-BOARD European Consortium for Biomarker Discovery, Surrey, UK
| | - Csaba Matta
- The D-BOARD European Consortium for Biomarker Discovery, Surrey, UK
- Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Duke of Kent Building, Guildford, Surrey GU2 7XH UK
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032 Hungary
| | - Ali Mobasheri
- The D-BOARD European Consortium for Biomarker Discovery, Surrey, UK
- Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Duke of Kent Building, Guildford, Surrey GU2 7XH UK
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Arthritis Research UK Pain Centre, Medical Research Council and Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Nottingham, Queen’s Medical Centre, Nottingham, NG7 2UH UK
- Center of Excellence in Genomic Medicine Research (CEGMR), King Fahd Medical Research Center (KFMRC), King AbdulAziz University, Jeddah, 21589 Kingdom of Saudi Arabia
| |
Collapse
|
15
|
Inayama M, Suzuki Y, Yamada S, Kurita T, Yamamura H, Ohya S, Giles WR, Imaizumi Y. Orai1-Orai2 complex is involved in store-operated calcium entry in chondrocyte cell lines. Cell Calcium 2015; 57:337-47. [PMID: 25769459 DOI: 10.1016/j.ceca.2015.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 02/01/2015] [Accepted: 02/11/2015] [Indexed: 12/18/2022]
Abstract
Ca(2+) influx via store-operated Ca(2+) entry (SOCE) plays critical roles in many essential cellular functions. The Ca(2+) release-activated Ca(2+) (CRAC) channel complex, consisting of Orai and STIM, is one of the major components of store-operated Ca(2+) (SOC) channels. Our previous study demonstrated that histamine can cause sustained Ca(2+) entry through SOC channels in OUMS-27 cells derived from human chondrosarcoma. This SOCE was increased by low- and decreased by high-concentrations of 2-aminoethoxydiphenyl borate. Quantitative reverse transcription PCR and Western blot analyses revealed abundant expressions of Orai1, Orai2 and STIM1. Introduction of dominant negative mutant of Orai1, or siOrai1 knockdown significantly attenuated SOCE. Following histamine application, single molecule imaging using total internal reflection fluorescence (TIRF) microscopy demonstrated punctate Orai1-STIM1 complex formation in plasma membrane. In contrast, knockdown or over-expression of Orai2 resulted in an increase or a decrease in SOCE, respectively. Finally, TIRF imaging revealed direct coupling between Orai1 and Orai2, and suggested that Orai2 reduces Orai1 function by formation of a hetero-tetramer. These results provide substantial evidence that Orai1, Orai2 and STIM1 form functional CRAC channels in OUMS-27 cells and that these complexes are responsible for sustained Ca(2+) entry in response to agonist stimulation.
Collapse
Affiliation(s)
- Munenori Inayama
- Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Yoshiaki Suzuki
- Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Satoshi Yamada
- Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Takashi Kurita
- Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Hisao Yamamura
- Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Susumu Ohya
- Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Wayne R Giles
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Yuji Imaizumi
- Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan.
| |
Collapse
|
16
|
Matta C, Mobasheri A, Gergely P, Zákány R. Ser/Thr-phosphoprotein phosphatases in chondrogenesis: neglected components of a two-player game. Cell Signal 2014; 26:2175-85. [PMID: 25007994 DOI: 10.1016/j.cellsig.2014.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 06/27/2014] [Indexed: 12/13/2022]
Abstract
Protein phosphorylation plays a determining role in the regulation of chondrogenesis in vitro. While signalling pathways governed by protein kinases including PKA, PKC, and mitogen-activated protein kinases (MAPK) have been mapped in great details, published data relating to the specific role of phosphoprotein phosphatases (PPs) in differentiating chondroprogenitor cells or in mature chondrocytes is relatively sparse. This review discusses the known functions of Ser/Thr-specific PPs in the molecular signalling pathways of chondrogenesis. PPs are clearly equally important as protein kinases to counterbalance the effect of reversible protein phosphorylation. Of the main Ser/Thr PPs, some of the functions of PP1, PP2A and PP2B have been characterised in the context of chondrogenesis. While PP1 and PP2A appear to negatively regulate chondrogenic differentiation and maintenance of chondrocyte phenotype, calcineurin is an important stimulatory mediator during chondrogenesis but becomes inhibitory in mature chondrocytes. Furthermore, PPs are implicated to be mediators during the pathogenesis of osteoarthritis that makes them potential therapeutic targets to be exploited in the close future. Among the many yet unexplored targets of PPs, modulation of plasma membrane ion channel function and participation in mechanotransduction pathways are emerging novel aspects of signalling during chondrogenesis that should be further elucidated. Besides the regulation of cellular ion homeostasis, other potentially significant novel roles for PPs during the regulation of in vitro chondrogenesis are discussed.
Collapse
Affiliation(s)
- Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032, Debrecen, Hungary; School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Duke of Kent Building, Guildford, Surrey GU2 7XH, United Kingdom.
| | - Ali Mobasheri
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Duke of Kent Building, Guildford, Surrey GU2 7XH, United Kingdom; Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Arthritis Research UK Pain Centre, Medical Research Council and Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, United Kingdom; Center of Excellence in Genomic Medicine Research (CEGMR), King Fahd Medical Research Center (KFMRC), King AbdulAziz University, Jeddah, 21589, Kingdom of Saudi Arabia
| | - Pál Gergely
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032, Debrecen, Hungary
| | - Róza Zákány
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032, Debrecen, Hungary
| |
Collapse
|
17
|
Beier F. NFATs are good for your cartilage! Osteoarthritis Cartilage 2014; 22:893-5. [PMID: 24769231 DOI: 10.1016/j.joca.2014.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/08/2014] [Accepted: 04/12/2014] [Indexed: 02/02/2023]
Affiliation(s)
- F Beier
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada.
| |
Collapse
|
18
|
Siebelt M, van der Windt AE, Groen HC, Sandker M, Waarsing JH, Müller C, de Jong M, Jahr H, Weinans H. FK506 protects against articular cartilage collagenous extra-cellular matrix degradation. Osteoarthritis Cartilage 2014; 22:591-600. [PMID: 24561282 DOI: 10.1016/j.joca.2014.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/22/2014] [Accepted: 02/06/2014] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is a non-rheumatologic joint disease characterized by progressive degeneration of the cartilage extra-cellular matrix (ECM), enhanced subchondral bone remodeling, activation of synovial macrophages and osteophyte growth. Inhibition of calcineurin (Cn) activity through tacrolimus (FK506) in in vitro monolayer chondrocytes exerts positive effects on ECM marker expression. This study therefore investigated the effects of FK506 on anabolic and catabolic markers of osteoarthritic chondrocytes in 2D and 3D in vitro cultures, and its therapeutic effects in an in vivo rat model of OA. METHODS Effects of high and low doses of FK506 on anabolic (QPCR/histochemistry) and catabolic (QPCR) markers were evaluated in vitro on isolated (2D) and ECM-embedded chondrocytes (explants, 3D pellets). Severe cartilage damage was induced unilaterally in rat knees using papain injections in combination with a moderate running protocol. Twenty rats were treated with FK506 orally and compared to twenty untreated controls. Subchondral cortical and trabecular bone changes (longitudinal microCT) and macrophage activation (SPECT/CT) were measured. Articular cartilage was analyzed ex vivo using contrast enhanced microCT and histology. RESULTS FK506 treatment of osteoarthritic chondrocytes in vitro induced anabolic (mainly collagens) and reduced catabolic ECM marker expression. In line with this, FK506 treatment clearly protected ECM integrity in vivo by markedly decreasing subchondral sclerosis, less development of subchondral pores, depletion of synovial macrophage activation and lower osteophyte growth. CONCLUSION FK506 protected cartilage matrix integrity in vitro and in vivo. Additionally, FK506 treatment in vivo reduced OA-like responses in different articular joint tissues and thereby makes Cn an interesting target for therapeutic intervention of OA.
Collapse
Affiliation(s)
- M Siebelt
- Department of Orthopedics, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - A E van der Windt
- Department of Orthopedics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - H C Groen
- Department of Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M Sandker
- Department of Orthopedics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - J H Waarsing
- Department of Orthopedics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - C Müller
- Center for Radiopharmaceutical Sciences PSI-ETH-USZ, Paul Scherrer Institute, Villigen-PSI, Switzerland
| | - M de Jong
- Department of Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - H Jahr
- Department of Orthopedics, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Orthopedic Surgery, University Hospital RWTH, Aachen, Germany
| | - H Weinans
- Department of Biomechanical Engineering, TU Delft, The Netherlands; Department of Orthopaedics, UMC Utrecht, The Netherlands; Department of Rheumatology, UMC Utrecht, The Netherlands
| |
Collapse
|
19
|
van der Windt AE, Haak E, Kops N, Verhaar JAN, Weinans H, Jahr H. Inhibiting calcineurin activity under physiologic tonicity elevates anabolic but suppresses catabolic chondrocyte markers. ACTA ACUST UNITED AC 2012; 64:1929-39. [DOI: 10.1002/art.34369] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Yoo SA, You S, Yoon HJ, Kim DH, Kim HS, Lee K, Ahn JH, Hwang D, Lee AS, Kim KJ, Park YJ, Cho CS, Kim WU. A novel pathogenic role of the ER chaperone GRP78/BiP in rheumatoid arthritis. ACTA ACUST UNITED AC 2012; 209:871-86. [PMID: 22430489 PMCID: PMC3328363 DOI: 10.1084/jem.20111783] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
An accumulation of misfolded proteins can trigger a cellular survival response in the endoplasmic reticulum (ER). In this study, we found that ER stress-associated gene signatures were highly expressed in rheumatoid arthritis (RA) synoviums and synovial cells. Proinflammatory cytokines, such as TNF and IL-1β, increased the expression of GRP78/BiP, a representative ER chaperone, in RA synoviocytes. RA synoviocytes expressed higher levels of GRP78 than osteoarthritis (OA) synoviocytes when stimulated by thapsigargin or proinflammatory cytokines. Down-regulation of Grp78 transcripts increased the apoptosis of RA synoviocytes while abolishing TNF- or TGF-β-induced synoviocyte proliferation and cyclin D1 up-regulation. Conversely, overexpression of the Grp78 gene prevented synoviocyte apoptosis. Moreover, Grp78 small interfering RNA inhibited VEGF(165)-induced angiogenesis in vitro and also significantly impeded synoviocyte proliferation and angiogenesis in Matrigel implants engrafted into immunodeficient mice. Additionally, repeated intraarticular injections of BiP-inducible factor X, a selective GRP78 inducer, increased synoviocyte proliferation and angiogenesis in the joints of mice with experimental OA. In contrast, mice with Grp78 haploinsufficiency exhibited the suppression of experimentally induced arthritis and developed a limited degree of synovial proliferation and angiogenesis. In summary, this study shows that the ER chaperone GRP78 is crucial for synoviocyte proliferation and angiogenesis, the pathological hallmark of RA.
Collapse
Affiliation(s)
- Seung-Ah Yoo
- Research Institute of Immunobiology, Catholic Research Institute of Medical Science, Catholic University of Korea, Seoul 137-701, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yonenaga K, Nishizawa S, Fujihara Y, Asawa Y, Sanshiro K, Nagata S, Takato T, Hoshi K. The Optimal Conditions of Chondrocyte Isolation and Its Seeding in the Preparation for Cartilage Tissue Engineering. Tissue Eng Part C Methods 2010; 16:1461-9. [PMID: 20412008 DOI: 10.1089/ten.tec.2009.0597] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kazumichi Yonenaga
- Department of Cartilage and Bone Regeneration (Fujisoft), Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Department of Sensory and Motor System, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Satoru Nishizawa
- Department of Cartilage and Bone Regeneration (Fujisoft), Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yuko Fujihara
- Department of Cartilage and Bone Regeneration (Fujisoft), Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yukiyo Asawa
- Department of Cartilage and Bone Regeneration (Fujisoft), Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Kanazawa Sanshiro
- Department of Cartilage and Bone Regeneration (Fujisoft), Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Satoru Nagata
- Nagata Microtia and Reconstructive Plastic Surgery Clinic, Saitama, Japan
| | - Tsuyoshi Takato
- Department of Sensory and Motor System, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Kazuto Hoshi
- Department of Cartilage and Bone Regeneration (Fujisoft), Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
22
|
Ruiz-Romero C, Calamia V, Rocha B, Mateos J, Fernández-Puente P, Blanco FJ. Hypoxia Conditions Differentially Modulate Human Normal and Osteoarthritic Chondrocyte Proteomes. J Proteome Res 2010; 9:3035-45. [DOI: 10.1021/pr901209s] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Cristina Ruiz-Romero
- Unidad de Investigación del Envejecimiento Osteoarticular, INIBIC-Complejo Hospitalario Universitario A Coruña, Spain
| | - Valentina Calamia
- Unidad de Investigación del Envejecimiento Osteoarticular, INIBIC-Complejo Hospitalario Universitario A Coruña, Spain
| | - Beatriz Rocha
- Unidad de Investigación del Envejecimiento Osteoarticular, INIBIC-Complejo Hospitalario Universitario A Coruña, Spain
| | - Jesús Mateos
- Unidad de Investigación del Envejecimiento Osteoarticular, INIBIC-Complejo Hospitalario Universitario A Coruña, Spain
| | - Patricia Fernández-Puente
- Unidad de Investigación del Envejecimiento Osteoarticular, INIBIC-Complejo Hospitalario Universitario A Coruña, Spain
| | - Francisco J. Blanco
- Unidad de Investigación del Envejecimiento Osteoarticular, INIBIC-Complejo Hospitalario Universitario A Coruña, Spain
| |
Collapse
|
23
|
van der Windt AE, Jahr H, Farrell E, Verhaar JAN, Weinans H, van Osch GJVM. Calcineurin inhibitors promote chondrogenic marker expression of dedifferentiated human adult chondrocytes via stimulation of endogenous TGFbeta1 production. Tissue Eng Part A 2010; 16:1-10. [PMID: 19604038 DOI: 10.1089/ten.tea.2009.0082] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In vitro chondrocyte expansion is required for several cell-based approaches for the repair of chondral lesions. During expansion, loss of chondrogenic phenotype takes place (dedifferentiation). The objective of this study was to investigate calcineurin (Cn) as a potential target to improve chondrocyte phenotype for cartilage repair purposes. Cn activity in human articular chondrocytes was significantly increased during dedifferentiation and decreased during redifferentiation in vitro. Inhibition of Cn activity by FK506 increased the expression of chondrogenic markers collagen type 2, aggrecan, and SOX9 in culture-expanded cells. Addition of FK506 increased endogenous transforming growth factor 2 (TGF) beta1 expression on both mRNA and protein level. The effect of FK506 on chondrogenic markers was abolished by addition of anti-TGFbeta1 antibody, indicating that the endogenous TGFbeta1 was necessary to increase chondrogenic marker expression. We also showed that chondrocyte redifferentiation by TGFbeta requires calcium influx and does not depend on changes in Cn activity. In conclusion, inhibition of Cn activity by FK506 increases the expression of chondrogenic markers via endogenous TGFbeta1 production in human articular chondrocytes. Cn inhibitors might be an alternative for the application of (recombinant) TGFbeta, to promote chondrocyte phenotype for cell-based cartilage repair procedures.
Collapse
Affiliation(s)
- Anna E van der Windt
- Department of Orthopaedics, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Osteoporosis and arthritis are highly prevalent diseases and a significant cause of morbidity and mortality worldwide. These diseases result from aberrant tissue remodeling leading to weak, fracture-prone bones or painful, dysfunctional joints. The nuclear factor of activated T cells (NFAT) transcription factor family controls diverse biologic processes in vertebrates. Here, we review the scientific evidence that links NFAT-regulated gene transcription to bone and joint pathology. A particular emphasis is placed on the role of NFATs in bone resorption and formation by osteoclasts and osteoblasts, respectively. In addition, emerging data that connect NFATs with cartilage biology, angiogenesis, nociception, and neurogenic inflammation are explored. The goal of this article is to highlight the importance of tissue remodeling in musculoskeletal disease and situate NFAT-driven cellular responses within this context to inspire future research endeavors.
Collapse
Affiliation(s)
- Despina Sitara
- Department of Infectious Diseases and Immunology, Harvard School of Public Health, Boston, MA 02115, USA
| | | |
Collapse
|
25
|
Xu J, Wang W, Clark CC, Brighton CT. Signal transduction in electrically stimulated articular chondrocytes involves translocation of extracellular calcium through voltage-gated channels. Osteoarthritis Cartilage 2009; 17:397-405. [PMID: 18993082 DOI: 10.1016/j.joca.2008.07.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 07/03/2008] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To ascertain, using specific inhibitors, the potential role of calcium-related signal transduction pathways in the mechanism of cartilage matrix protein gene induction and metalloproteinase gene suppression by capacitively coupled electric fields. METHODS Articular chondrocytes were isolated from adult bovine patellae and cultured in high density for 7 days. To study matrix protein expression, cells cultured in the absence or presence of specific calcium pathway inhibitors were exposed to a capacitively coupled electrical field (60 kHz, 20 mV/cm): for aggrecan 1h at 50% duty cycle and for type II collagen 6h at 8.3% duty cycle. To study metalloproteinase expression in the presence of interleukin 1 beta (IL-1beta), cells were cultured as above but exposed for only 30 min to a 100% duty cycle signal. At harvest, total mRNA was isolated and aggrecan, type II collagen, matrix metalloproteinase (MMP-1, -3 and -13) and aggrecanase [a disintegrin and metalloproteinase with thrombospondin repeats (ADAMTS-4 and -5)] mRNA expression were measured by quantitative real-time polymerase chain reaction (qPCR). RESULTS (1) In the absence of inhibitors, appropriate electrical stimulation induces a 3-4-fold up-regulation of both aggrecan and type II collagen mRNA and a 3.7-9.6-fold down-regulation of IL-1beta-induced metalloproteinases; (2) the presence of inhibitors alone does not affect any target mRNA levels; (3) inhibitors of intracellular calcium regulation and inositol 1,4,5-triphosphate (IP(3)) formation [8-(diethylamino)octyl-3,4,5,-trimethoxybenzoate hydrochloride (TMB-8) and neomycin, respectively] have no effect on regulation of target mRNA levels by electrical stimulation; and (4) inhibitors of voltage-gated calcium channels (verapamil), calmodulin activation (N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride, W-7), calcineurin activity (cyclosporin A), phospholipase C activity (bromophenacyl bromide, BPB) and prostaglandin E(2) (PGE(2)) synthesis (indomethacin) completely inhibit the effects of electrical stimulation. CONCLUSIONS The results are consistent with the effects of electrical stimulation involving a pathway of extracellular Ca(2+) influx via voltage-gated calcium channels rather than from intracellular Ca(2+) repositories; and with downstream roles for calmodulin, calcineurin and nuclear factor of activated T-cells (NF-AT) rather than for phospholipase C and IP(3).
Collapse
Affiliation(s)
- J Xu
- Department of Orthopaedic Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, United States
| | | | | | | |
Collapse
|
26
|
Drug Insight: aggrecanases as therapeutic targets for osteoarthritis. ACTA ACUST UNITED AC 2008; 4:420-7. [DOI: 10.1038/ncprheum0841] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 05/12/2008] [Indexed: 11/09/2022]
|
27
|
|