1
|
Dwivedi SD, Yadav K, Bhoi A, Sahu KK, Sangwan N, Singh D, Singh MR. Targeting Pathways and Integrated Approaches to Treat Rheumatoid Arthritis. Crit Rev Ther Drug Carrier Syst 2024; 41:87-102. [PMID: 38305342 DOI: 10.1615/critrevtherdrugcarriersyst.2023044719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic symmetrical systemic disorder that not only affects joints but also other organs such as heart, lungs, kidney, and liver. Approximately there is 0.5%-1% of the total population affected by RA. RA pathogenesis still remains unclear due to which its appropriate treatment is a challenge. Further, multitudes of factors have been reported to affect its progression i.e. genetic factor, environmental factor, immune factor, and oxidative factor. Therapeutic approaches available for the treatment of RA include NSAIDs, DMARDs, enzymatic, hormonal, and gene therapies. But most of them provide the symptomatic relief without treating the core of the disease. This makes it obligatory to explore and reach the molecular targets for cure and long-term relief from RA. Herein, we attempt to provide extensive overlay of the new targets for RA treatment such as signaling pathways, proteins, and receptors affecting the progression of the disease and its severity. Precise modification in these targets such as suppressing the notch signaling pathway, SIRT 3 protein, Sphingosine-1-phosphate receptor and stimulating the neuronal signals particularly efferent vagus nerve and SIRT 1 protein may offer long term relief and potentially diminish the chronicity. To target or alter the novel molecules and signaling pathway a specific delivery system is required such as liposome, nanoparticles and micelles and many more. Present review paper discusses in detail about novel targets and delivery systems for treating RA.
Collapse
Affiliation(s)
- Shradha Devi Dwivedi
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492 010, India
| | - Krishna Yadav
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur (C.G), 492010, India
| | - Anita Bhoi
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492 010, India
| | - Keshav Kant Sahu
- School of studies in biotechnology, Pt. Ravishankar Shukla University, Raipur (C.G), 492010, India
| | - Neelam Sangwan
- Department of Biochemistry, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India; National Centre for Natural Resources, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India
| | - Manju Rawat Singh
- University Institute of pharmacy, Pt.Ravishankar Shukla University, Raipur.(C.G.) 2. National centre for natural resources, Pt. Ravishankar Shukla University, Raipur
| |
Collapse
|
2
|
Das A, Ghosh M, Gupta PK, Rana S. Neutraligands of C5a can potentially occlude the interaction of C5a with the complement receptors C5aR1 and C5aR2. J Cell Biochem 2023; 124:266-281. [PMID: 36565188 DOI: 10.1002/jcb.30360] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022]
Abstract
The complement system is central to the rapid immune response witnessed in vertebrates and invertebrates, which plays a crucial role in physiology and pathophysiology. Complement activation fuels the proteolytic cascade, which produces several complement fragments that interacts with a distinct set of complement receptors. Among all the complement fragments, C5a is one of the most potent anaphylatoxins, which exerts solid pro-inflammatory responses in a myriad of tissues by binding to the complement receptors such as C5aR1 (CD88, C5aR) and C5aR2 (GPR77, C5L2), which are part of the rhodopsin subfamily of G-protein coupled receptors. In terms of signaling cascade, recruitment of C5aR1 or C5aR2 by C5a triggers the association of either G-proteins or β-arrestins, providing a protective response under normal physiological conditions and a destructive response under pathophysiological conditions. As a result, both deficiency and unregulated activation of the complement lead to clinical conditions that require therapeutic intervention. Indeed, complement therapeutics targeting either the complement fragments or the complement receptors are being actively pursued by both industry and academia. In this context, the model structural complex of C5a-C5aR1 interactions, followed by a biophysical evaluation of the model complex, has been elaborated on earlier. In addition, through the drug repurposing strategy, we have shown that small molecule drugs such as raloxifene and prednisone may act as neutraligands of C5a by effectively binding to C5a and altering its biologically active molecular conformation. Very recently, structural models illustrating the intermolecular interaction of C5a with C5aR2 have also been elaborated by our group. In the current study, we provide the biophysical validation of the C5a-C5aR2 model complex by recruiting major synthetic peptide fragments of C5aR2 against C5a. In addition, the ability of the selected neutraligands to hinder the interaction of C5a with the peptide fragments derived from both C5aR1 and C5aR2 has also been explored. Overall, the computational and experimental data provided in the current study supports the idea that small molecule drugs targeting C5a can potentially neutralize C5a's ability to interact effectively with its cognate complement receptors, which can be beneficial in modulating the destructive signaling response of C5a under pathological conditions.
Collapse
Affiliation(s)
- Aurosikha Das
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Manaswini Ghosh
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Pulkit Kr Gupta
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Soumendra Rana
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| |
Collapse
|
3
|
Orthobiologics for the Management of Early Arthritis in the Middle-Aged Athlete. Sports Med Arthrosc Rev 2022; 30:e9-e16. [PMID: 35533063 DOI: 10.1097/jsa.0000000000000337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This article is dedicated to the use of orthobiologic therapies in the management of early osteoarthritis in middle-aged athletes. Understanding a patient's presenting symptoms, physical examination, imaging results, and goals is of critical importance in applying orthobiologic therapies. The field of orthobiologics is expanding at a rapid pace, and the clinical studies examining the utility of each treatment lag behind the direct-to-consumer marketing that leads to these products being used. Here we provide a review of the available treatments, emerging treatments, and the current literature supporting or refuting their use. Currently studied orthobiologics include autologous and allogenic cell therapies, autologous blood products, hyaluronic acid, gene therapies, Wnt inhibitors, and a variety of systemic treatments.
Collapse
|
4
|
Srivastava S, Rasool M. Underpinning IL-6 biology and emphasizing selective JAK blockade as the potential alternate therapeutic intervention for rheumatoid arthritis. Life Sci 2022; 298:120516. [DOI: 10.1016/j.lfs.2022.120516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/08/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023]
|
5
|
Tandon N, Luxami V, Tandon R, Paul K. Recent Advances in the Synthesis of Tamoxifen and Analogues in Medicinal Chemistry. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Nitin Tandon
- School of Chemical Engineering and Physical Sciences Lovely Professional University Phagwara 144411 India
| | - Vijay Luxami
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology Patiala 147 001 India
| | - Runjhun Tandon
- School of Chemical Engineering and Physical Sciences Lovely Professional University Phagwara 144411 India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology Patiala 147 001 India
| |
Collapse
|
6
|
Saito N, Kawase K, Yamashita N, Tang Y, Wang Y, Wang J, Liu Y, Li N, Li W, Cheng MS, Koike K, Kanno Y, Nemoto K. Identification of 10-dehydrooxyglycyuralin E as a selective human estrogen receptor alpha partial agonist. Bioorg Chem 2019; 88:102977. [PMID: 31100617 DOI: 10.1016/j.bioorg.2019.102977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 12/01/2022]
Abstract
Selective estrogen receptor modulators (SERMs) act as either agonist or antagonist of estrogen receptor (ER) in a tissue selective manner and have been used in several diseases such as breast cancer, postmenopausal syndrome, osteoporosis, and cardiovascular diseases. However, current SERMs may also increase the risk of serious side effects and trigger drug resistance. Herein, a screening program, that was designed to search for novel SERMs, resulted in the identification of a series of 2-arylbenzofuran-containing compounds that are ligands for ERα, when applying the Gaussia-luciferase reporter assay. One of these compounds, 10-dehydrooxyglycyuralin E (T9) was chemically synthesized. T9 showed anti-estrogenic/proliferative activity in ERα-positive breast cancer cells. Pretreatment of T9 prevented the mRNA expression of GREB1, which is an estrogen response gene. Furthermore, by an in silico docking simulation study we demonstrated that T9 showed interactions directly to ERα. Taken together, these results demonstrated that T9 is a candidate of SERMs and a useful seed compound for the foundation of the selective activity of SERMs.
Collapse
Affiliation(s)
- Nao Saito
- Department of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Keiko Kawase
- Department of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Naoya Yamashita
- Department of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Yingzhan Tang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Ying Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Yongxiang Liu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Ning Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Wei Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China; Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan.
| | - Mao-Sheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China.
| | - Kazuo Koike
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Yuichiro Kanno
- Department of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan.
| | - Kiyomitsu Nemoto
- Department of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| |
Collapse
|
7
|
Xing R, Liu F, Yang Y, Cui X, Wang T, Xie L, Zhao Y, Fang L, Yi T, Zheng B, Liu M, Chen H. GPR54 deficiency reduces the Treg population and aggravates experimental autoimmune encephalomyelitis in mice. SCIENCE CHINA-LIFE SCIENCES 2018; 61:675-687. [PMID: 29931449 DOI: 10.1007/s11427-017-9269-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/17/2017] [Indexed: 12/20/2022]
Abstract
GPR54 is highly expressed in the central nervous system and plays a crucial role in pubertal development. However, GRP54 is also expressed in the immune system, implying possible immunoregulatory functions. Here we investigated the role of GPR54 in T cell and immune tolerance. GPR54 deficiency led to an enlarged thymus, an increased number of thymocytes, and altered thymic micro-architecture starting around puberty, indicating GPR54 function in T-cell development through its regulatory effect on the gonadal system. However, flow cytometry revealed a significant reduction in the peripheral regulatory T cell population and a moderate decrease in CD4 single-positive thymocytes in prepubertal Gpr54-/- mice. These phenotypes were confirmed in chimeric mice with GPR54 deficient bone marrow-derived cells. In addition, we found elevated T cell activation in peripheral and thymic T cells in Gpr54-/- mice. When intact mice were immunized with myelin oligodendrocyte glycoprotein, a more severe experimental autoimmune encephalomyelitis (EAE) developed in the Gpr54-/- mice. Interestingly, aggravated EAE disease was also manifested in castrated and bone marrow chimeric Gpr54-/- mice compared to the respective wild-type control, suggesting a defect in self-tolerance resulting from GPR54 deletion through a mechanism that bypassed sex hormones. These findings demonstrate a novel role for GPR54 in regulating self-tolerant immunity in a sex hormone independent manner.
Collapse
MESH Headings
- Animals
- Disease Susceptibility
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Gene Expression
- Immune Tolerance/immunology
- Lymphocyte Activation/immunology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myelin-Oligodendrocyte Glycoprotein/administration & dosage
- Myelin-Oligodendrocyte Glycoprotein/toxicity
- Receptors, Kisspeptin-1/deficiency
- Receptors, Kisspeptin-1/genetics
- Receptors, Kisspeptin-1/physiology
- Spleen/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocytes, Regulatory/immunology
- Thymus Gland/immunology
Collapse
Affiliation(s)
- Roumei Xing
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Fang Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yiqing Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xueqin Cui
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Tongtong Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ling Xie
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yongliang Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Lei Fang
- Third Venture Biotechnology Co., Ltd., Nanjing, 210042, China
| | - Tingfang Yi
- Institute of Biosciences and Technology, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Houston, Texas, 77030, USA
| | - Biao Zheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- Institute of Biosciences and Technology, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Houston, Texas, 77030, USA.
| | - Huaqing Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
8
|
Shagufta, Ahmad I. Tamoxifen a pioneering drug: An update on the therapeutic potential of tamoxifen derivatives. Eur J Med Chem 2018; 143:515-531. [DOI: 10.1016/j.ejmech.2017.11.056] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/25/2017] [Accepted: 11/20/2017] [Indexed: 12/13/2022]
|
9
|
Raloxifene reduces the risk of local alveolar bone destruction in a mouse model of periodontitis combined with systemic postmenopausal osteoporosis. Arch Oral Biol 2017; 85:98-103. [PMID: 29035723 DOI: 10.1016/j.archoralbio.2017.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/22/2017] [Accepted: 09/24/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Periodontitis is characterized by local inflammation leading to tooth loss and severe destruction of alveolar bone. Raloxifene is a selective estrogen receptor modulator (SERM) that halts estrogen deficiency-induced systemic bone loss in postmenopausal osteoporosis without the side effects of cancer in breast and uterus. In this study, we examined the effects of raloxifene on alveolar bone mass in a mouse model with estrogen deficiency-induced periodontitis. METHODS Periodontitis was induced by the injection of lipopolysaccharide (LPS) into the lower gingiva in ovariectomized (OVX) mice, and the alveolar bone and femur bone mineral density (BMD) were analyzed by dual-energy X-ray absorptiometry. To explore the direct osteoclast inhibitory effect of raloxifene, a co-culture system for osteoclast formation and organ culture of alveolar bone was established. RESULTS When OVX mice were treated with raloxifene, the bone loss in both alveolar bone and femur were abrogated. Interleukin 1 and/or LPS stimulated the osteoclast formation and bone-resorbing activity; however, raloxifene did not show any inhibitory effect on the osteoclast formation or function. In vivo local injection of raloxifene also did not prevent bone resorption in a mouse model of periodontitis. However, the systemic treatment of raloxifene using a mini-osmotic pump did prevent the loss of BMD of alveolar bone induced by LPS. CONCLUSION These results suggest that the SERM raloxifene systemically maintain alveolar bone mass in a mouse model of periodontitis with osteoporosis. Increasing the alveolar bone mass by SERMs treatment in patients with postmenopausal osteoporosis may be a useful approach to preventing the destruction of alveolar bone in late-onset periodontitis.
Collapse
|
10
|
Flores R, Döhrmann S, Schaal C, Hakkim A, Nizet V, Corriden R. The Selective Estrogen Receptor Modulator Raloxifene Inhibits Neutrophil Extracellular Trap Formation. Front Immunol 2016; 7:566. [PMID: 28003814 PMCID: PMC5141331 DOI: 10.3389/fimmu.2016.00566] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 11/22/2016] [Indexed: 11/29/2022] Open
Abstract
Raloxifene is a selective estrogen receptor modulator typically prescribed for the prevention/treatment of osteoporosis in postmenopausal women. Although raloxifene is known to have anti-inflammatory properties, its effects on human neutrophils, the primary phagocytic leukocytes of the immune system, remain poorly understood. Here, through a screen of pharmacologically active small molecules, we find that raloxifene prevents neutrophil cell death in response to the classical activator phorbol 12-myristate 13-acetate (PMA), a compound known to induce formation of DNA-based neutrophil extracellular traps (NETs). Inhibition of PMA-induced NET production by raloxifene was confirmed using quantitative and imaging-based assays. Human neutrophils from both male and female donors express the nuclear estrogen receptors ERα and ERβ, known targets of raloxifene. Similar to raloxifene, selective antagonists of these receptors inhibit PMA-induced NET production. Furthermore, raloxifene inhibited PMA-induced ERK phosphorylation, but not reactive oxygen species production, pathways known to be key modulators of NET production. Finally, we found that raloxifene inhibited PMA-induced, NET-based killing of the leading human bacterial pathogen, methicillin-resistant Staphylococcus aureus. Our results reveal that raloxifene is a potent modulator of neutrophil function and NET production.
Collapse
Affiliation(s)
- Roxana Flores
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, University of California San Diego , La Jolla, CA , USA
| | - Simon Döhrmann
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, University of California San Diego , La Jolla, CA , USA
| | - Christina Schaal
- Department of Physiological Chemistry, University for Veterinary Medicine Hannover , Hanover , Germany
| | - Abdul Hakkim
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School , Boston, MA , USA
| | - Victor Nizet
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, University of California San Diego , La Jolla, CA , USA
| | - Ross Corriden
- Department of Pharmacology, University of California San Diego , La Jolla, CA , USA
| |
Collapse
|
11
|
Li L, Qu Y, Jin X, Guo XQ, Wang Y, Qi L, Yang J, Zhang P, Li LZ. Protective effect of salidroside against bone loss via hypoxia-inducible factor-1α pathway-induced angiogenesis. Sci Rep 2016; 6:32131. [PMID: 27558909 PMCID: PMC4997314 DOI: 10.1038/srep32131] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 08/03/2016] [Indexed: 12/02/2022] Open
Abstract
Hypoxia-inducible factor (HIF)-1α plays a critical role in coupling angiogenesis with osteogenesis during bone development and regeneration. Salidroside (SAL) has shown anti-hypoxic effects in vitro and in vivo. However, the possible roles of SAL in the prevention of hypoxia-induced osteoporosis have remained unknown. Two osteoblast cell lines, MG-63 and ROB, were employed to evaluate the effects of SAL on cell viability, apoptosis, differentiation and mineralization in vitro. Rats subjected to ovariectomy-induced bone loss were treated with SAL in vivo. Our results showed that pre-treatment with SAL markedly attenuated the hypoxia-induced reductions in cell viability, apoptosis, differentiation and mineralization. SAL down-regulated HIF-1α expression and inhibited its translocation; however, SAL increased its transcriptional activity and, consequently, up-regulated vascular endothelial growth factor (VEGF). In vivo studies further demonstrated that SAL caused decreases in the mineral, alkaline phosphatase (ALP), and BGP concentrations in the blood of ovariectomized (OVX) rats. Moreover, SAL improved the trabecular bone microarchitecture and increased bone mineral density in the distal femur. Additionally, SAL administration partially ameliorated this hypoxia via the HIF-1α-VEGF signalling pathway. Our results indicate that SAL prevents bone loss by enhancing angiogenesis and osteogenesis and that these effects are associated with the activation of HIF-1α signalling.
Collapse
Affiliation(s)
- Ling Li
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental Hazard, Tianjin, People's Republic of China.,Department of Pharmacology, Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Ye Qu
- Department of Pathogenic Biology and Immunology, Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Xin Jin
- Department of Pharmacology, Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Xiao Qin Guo
- Department of Pathogenic Biology and Immunology, Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Yue Wang
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental Hazard, Tianjin, People's Republic of China.,Department of Pathogenic Biology and Immunology, Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Lin Qi
- Department of Pathogenic Biology and Immunology, Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Jing Yang
- Department of Pathogenic Biology and Immunology, Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Peng Zhang
- Department of Orthopaedics, Affiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Ling Zhi Li
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental Hazard, Tianjin, People's Republic of China.,Department of Pharmaceutical Chemistry, Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| |
Collapse
|
12
|
Andersson A, Bernardi AI, Nurkkala-Karlsson M, Stubelius A, Grahnemo L, Ohlsson C, Carlsten H, Islander U. Suppression of Experimental Arthritis and Associated Bone Loss by a Tissue-Selective Estrogen Complex. Endocrinology 2016; 157:1013-20. [PMID: 26745543 DOI: 10.1210/en.2015-1820] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In addition to the systemic inflammation present in rheumatoid arthritis (RA), decreased estradiol levels in postmenopausal RA patients further accelerate bone loss in these patients. The tissue-selective estrogen complex (TSEC), an estrogen combined with a selective estrogen receptor modulator, is a new hormone replacement therapy option. The first approved TSEC, containing conjugated estrogens and bazedoxifene (BZA), reduces menopausal symptoms and prevents osteoporosis with an improved safety profile compared with conventional hormone replacement therapy. Previous studies have shown that estrogens strongly inhibit experimental arthritis whereas BZA is mildly suppressive. In this study the antiarthritic potential of combined BZA and estradiol is explored for the first time. Female ovariectomized DBA/1 mice were subjected to collagen-induced arthritis, an experimental postmenopausal RA model, and treated with BZA, 17β-estradiol (E2), combined BZA and E2 (BZA/E2), or vehicle. BZA/E2 suppressed arthritis severity and frequency, synovitis, and joint destruction, equally efficient as E2 alone. Unwanted estrogenic proliferative effects on the endometrium were blocked by the addition of BZA, determined by collecting uterine weights. Bone mineral density was measured by peripheral quantitative computed tomography, and all treatments protected collagen-induced arthritis mice from both trabecular and cortical bone loss. Moreover, BZA/E2, but not E2 alone, inhibited preosteoclast formation and reduced serum anticollagen type II antibodies. In conclusion, a TSEC, herein combined BZA/E2, suppresses experimental arthritis and prevents associated bone loss as efficiently as E2 alone but with minimal uterine effects, highlighting the need for clinical trials that evaluate the addition of a TSEC to conventional postmenopausal RA treatment.
Collapse
Affiliation(s)
- Annica Andersson
- Departments of Rheumatology and Inflammation Research (A.A., A.I.B., M.N.-K., A.S., L.G., H.C., U.I.) and Internal Medicine and Clinical Nutrition (C.O.), Institute of Medicine, Centre for Bone and Arthritis Research, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Angelina I Bernardi
- Departments of Rheumatology and Inflammation Research (A.A., A.I.B., M.N.-K., A.S., L.G., H.C., U.I.) and Internal Medicine and Clinical Nutrition (C.O.), Institute of Medicine, Centre for Bone and Arthritis Research, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Merja Nurkkala-Karlsson
- Departments of Rheumatology and Inflammation Research (A.A., A.I.B., M.N.-K., A.S., L.G., H.C., U.I.) and Internal Medicine and Clinical Nutrition (C.O.), Institute of Medicine, Centre for Bone and Arthritis Research, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Alexandra Stubelius
- Departments of Rheumatology and Inflammation Research (A.A., A.I.B., M.N.-K., A.S., L.G., H.C., U.I.) and Internal Medicine and Clinical Nutrition (C.O.), Institute of Medicine, Centre for Bone and Arthritis Research, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Louise Grahnemo
- Departments of Rheumatology and Inflammation Research (A.A., A.I.B., M.N.-K., A.S., L.G., H.C., U.I.) and Internal Medicine and Clinical Nutrition (C.O.), Institute of Medicine, Centre for Bone and Arthritis Research, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Claes Ohlsson
- Departments of Rheumatology and Inflammation Research (A.A., A.I.B., M.N.-K., A.S., L.G., H.C., U.I.) and Internal Medicine and Clinical Nutrition (C.O.), Institute of Medicine, Centre for Bone and Arthritis Research, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Hans Carlsten
- Departments of Rheumatology and Inflammation Research (A.A., A.I.B., M.N.-K., A.S., L.G., H.C., U.I.) and Internal Medicine and Clinical Nutrition (C.O.), Institute of Medicine, Centre for Bone and Arthritis Research, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Ulrika Islander
- Departments of Rheumatology and Inflammation Research (A.A., A.I.B., M.N.-K., A.S., L.G., H.C., U.I.) and Internal Medicine and Clinical Nutrition (C.O.), Institute of Medicine, Centre for Bone and Arthritis Research, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
13
|
Bernardi AI, Andersson A, Stubelius A, Grahnemo L, Carlsten H, Islander U. Selective estrogen receptor modulators in T cell development and T cell dependent inflammation. Immunobiology 2015; 220:1122-8. [DOI: 10.1016/j.imbio.2015.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 02/26/2015] [Accepted: 05/01/2015] [Indexed: 12/26/2022]
|
14
|
Andersson A, Bernardi AI, Stubelius A, Nurkkala-Karlsson M, Ohlsson C, Carlsten H, Islander U. Selective oestrogen receptor modulators lasofoxifene and bazedoxifene inhibit joint inflammation and osteoporosis in ovariectomised mice with collagen-induced arthritis. Rheumatology (Oxford) 2015; 55:553-63. [PMID: 26424839 PMCID: PMC4746431 DOI: 10.1093/rheumatology/kev355] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE RA predominantly affects post-menopausal women and is strongly associated with development of generalised osteoporosis. To find treatments that target both joint manifestations and osteoporosis in RA is desirable. The third generation of selective oestrogen receptor modulators (SERMs) [lasofoxifene (LAS) and bazedoxifene (BZA)] are new treatment options for post-menopausal osteoporosis. The aim of this study was to investigate the effects of LAS and BZA on arthritic disease and inflammation-associated bone loss using CIA in mice. METHODS Female DBA/1 mice were ovariectomised and subjected to CIA as a model of post-menopausal RA. Mice received treatment with LAS, BZA, 17β-estradiol (E2) as reference or vehicle. Arthritis development was assessed and BMD was determined by peripheral quantitative CT of the femurs. Serologic markers of inflammation and cartilage destruction were analysed. Immune cells in lymph nodes were studied by flow cytometry. RESULTS LAS and BZA reduced the clinical severity of arthritis as well as the grade of histologic synovitis and erosions on cartilage and bone. Moreover, SERMs protected against generalised bone loss in CIA by increasing trabecular BMD. Both SERMs decreased serum marker of cartilage destruction and LAS reduced serum IL-6 levels. SERMs did not alter Th17 cells in lymph nodes as E2 did. CONCLUSION The anti-osteoporotic drugs LAS and BZA were found to be potent inhibitors of joint inflammation and bone destruction in experimental arthritis. This study provides new important knowledge regarding the treatment regimen of post-menopausal women with RA who suffer from increased risk for osteoporosis.
Collapse
Affiliation(s)
- Annica Andersson
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research and
| | - Angelina I Bernardi
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research and
| | - Alexandra Stubelius
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research and
| | - Merja Nurkkala-Karlsson
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research and
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hans Carlsten
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research and
| | - Ulrika Islander
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research and
| |
Collapse
|
15
|
Bernardi AI, Andersson A, Grahnemo L, Nurkkala-Karlsson M, Ohlsson C, Carlsten H, Islander U. Effects of lasofoxifene and bazedoxifene on B cell development and function. IMMUNITY INFLAMMATION AND DISEASE 2014; 2:214-25. [PMID: 25866629 PMCID: PMC4386916 DOI: 10.1002/iid3.37] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 12/15/2022]
Abstract
The third generation selective estrogen receptor modulators lasofoxifene (las) and bazedoxifene (bza) are indicated for treatment of postmenopausal osteoporosis. 17β-Estradiol (E2) and the second generation SERM raloxifene (ral) have major effects on the immune system, particularly on B cells. Treatment with E2 or ral inhibits B lymphopoiesis and treatment with E2, but not ral, stimulates antibody production. The effects of las and bza on the immune system have not been studied. Therefore, the aim of this study was to investigate their role in B cell development, maturation, and function. C57BL/6 mice were sham-operated or ovariectomized (ovx) and treated with vehicle, E2, ral, las, or bza. All substances increased total bone mineral density in ovx mice, as measured by peripheral quantitative computed tomography. In uterus, bza alone lacked agonistic effect in ovx mice and even acted as an antagonist in sham mice. As expected, E2 decreased B cell numbers at all developmental stages from pre-BI cells (in bone marrow) to transitional 1 (T1) B cells (in spleen) and increased marginal zone (MZ) B cells as determined by flow cytometry. However, treatment with las or bza only decreased the last stages of bone marrow B cell development and splenic T1 B cells, but had no effect MZ B cells. E2 increased antibody-producing cells quantified by ELISPOT, but las or bza did not. In conclusion, las and bza differ from E2 by retaining normal number of cells at most B cell stages during B lymphopoiesis and maturation and by not increasing antibody-producing cells.
Collapse
Affiliation(s)
- Angelina I Bernardi
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy, University of Gothenburg Sweden
| | - Annica Andersson
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy, University of Gothenburg Sweden
| | - Louise Grahnemo
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy, University of Gothenburg Sweden
| | - Merja Nurkkala-Karlsson
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy, University of Gothenburg Sweden
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, The Sahlgrenska Academy, University of Gothenburg Sweden
| | - Hans Carlsten
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy, University of Gothenburg Sweden
| | - Ulrika Islander
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy, University of Gothenburg Sweden
| |
Collapse
|
16
|
Ocal Y, Kurum B, Karahan S, Tezcaner A, Ozen S, Keskin D. Characterization and Evaluation of Triamcinolone, Raloxifene, and Their Dual-Loaded Microspheres as Prospective Local Treatment System in Rheumatic Rat Joints. J Pharm Sci 2014; 103:2396-405. [DOI: 10.1002/jps.24058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/03/2014] [Accepted: 05/27/2014] [Indexed: 11/10/2022]
|
17
|
Engdahl C, Börjesson AE, Forsman HF, Andersson A, Stubelius A, Krust A, Chambon P, Islander U, Ohlsson C, Carlsten H, Lagerquist MK. The role of total and cartilage-specific estrogen receptor alpha expression for the ameliorating effect of estrogen treatment on arthritis. Arthritis Res Ther 2014; 16:R150. [PMID: 25028072 PMCID: PMC4226038 DOI: 10.1186/ar4612] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 07/01/2014] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Estrogen (E2) delays onset and decreases severity of experimental arthritis. The aim of this study was to investigate the importance of total estrogen receptor alpha (ERα) expression and cartilage-specific ERα expression in genetically modified mice for the ameliorating effect of estrogen treatment in experimental arthritis. METHODS Mice with total (total ERα-/-) or cartilage-specific (Col2α1-ERα-/-) inactivation of ERα and wild-type (WT) littermates were ovariectomized, treated with E2 or placebo, and induced with antigen-induced arthritis (AIA). At termination, knees were collected for histology, synovial and splenic cells were investigated by using flow cytometry, and splenic cells were subjected to a T-cell proliferation assay. RESULTS E2 decreased synovitis and joint destruction in WT mice. Amelioration of arthritis was associated with decreased frequencies of inflammatory cells in synovial tissue and decreased splenic T-cell proliferation. E2 did not affect synovitis or joint destruction in total ERα-/- mice. In Col2α1-ERα-/- mice, E2 protected against joint destruction to a similar extent as in WT mice. In contrast, E2 did not significantly ameliorate synovitis in Col2α1-ERα-/- mice. CONCLUSIONS Treatment with E2 ameliorates both synovitis and joint destruction in ovariectomized mice with AIA via ERα. This decreased severity in arthritis is associated with decreased synovial inflammatory cell frequencies and reduced splenic T-cell proliferation. ERα expression in cartilage is not required for estrogenic amelioration of joint destruction. However, our data indicate that ERα expression in cartilage is involved in estrogenic effects on synovitis, suggesting different mechanisms for the amelioration of joint destruction and synovitis by E2.
Collapse
|
18
|
Li H, Xiao H, Lin L, Jou D, Kumari V, Lin J, Li C. Drug Design Targeting Protein–Protein Interactions (PPIs) Using Multiple Ligand Simultaneous Docking (MLSD) and Drug Repositioning: Discovery of Raloxifene and Bazedoxifene as Novel Inhibitors of IL-6/GP130 Interface. J Med Chem 2014; 57:632-41. [DOI: 10.1021/jm401144z] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Huameng Li
- Biophysics
Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Division
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Hui Xiao
- Center
for Childhood Cancer, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio 43205, United States
| | - Li Lin
- Division
of Cardiology, Department of Internal Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - David Jou
- Center
for Childhood Cancer, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio 43205, United States
| | - Vandana Kumari
- Division
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jiayuh Lin
- Center
for Childhood Cancer, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio 43205, United States
| | - Chenglong Li
- Biophysics
Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Division
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
19
|
Kavas A, Cagatay ST, Banerjee S, Keskin D, Tezcaner A. Potential of Raloxifene in reversing osteoarthritis-like alterations in rat chondrocytes: an in vitro model study. J Biosci 2013; 38:135-47. [PMID: 23385821 DOI: 10.1007/s12038-012-9282-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The aim of this study was to investigate the effects of Raloxifene (Ral) on degeneration-related changes in osteoarthritis (OA)-like chondrocytes using two- and three-dimensional models. Five-azacytidine (Aza-C) was used to induce OA-like alterations in rat articular chondrocytes and the model was verified at molecular and macrolevels. Chondrocytes were treated with Ral (1, 5 and 10 mu M) for 10 days. Caspase-3 activity, gene expressions of aggrecan, collagen II, alkaline phosphatase (ALP), collagen X, matrix metalloproteinases (MMP-13, MMP-3 and MMP-2), and MMP-13, MMP-3 and MMP-2 protein expressions were studied in two-dimensional model. Matrix deposition and mechanical properties of agarose-chondrocyte discs were evaluated in three-dimensional model. One mu M Ral reduced expression of OA-related genes, decreased apoptosis, and MMP-13 and MMP-3 protein expressions. It also increased aggrecan and collagen II gene expressions relative to untreated OA-like chondrocytes. In three-dimensional model, 1 mu M Ral treatment resulted in increased collagen deposition and improved mechanical properties, although a significant increase for sGAG was not observed. In summation, 1 mu M Ral improved matrix-related activities, whereas dose increment reversed these effects except ALP gene expression and sGAG deposition. These results provide evidence that low-dose Ral has the potential to cease or reduce the matrix degeneration in OA.
Collapse
Affiliation(s)
- Aysegul Kavas
- Department of Engineering Sciences, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara 06800, Turkey
| | | | | | | | | |
Collapse
|
20
|
Funaro M, Bolyakov A, Gimenez E, Herman M, Paduch DA. Low Testosterone—An Important Predictor of Low Mineral Bone Density in Young Men—Our Own Experience and a Review of Literature. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/asm.2013.33a003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Torres-Chávez KE, Sanfins JM, Clemente-Napimoga JT, Pelegrini-Da-Silva A, Parada CA, Fischer L, Tambeli CH. Effect of gonadal steroid hormones on formalin-induced temporomandibular joint inflammation. Eur J Pain 2012; 16:204-16. [PMID: 22323373 DOI: 10.1016/j.ejpain.2011.06.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have recently demonstrated that gonadal steroid hormones decrease formalin-induced temporomandibular joint nociception in rats. Given that the attenuation of inflammation is a potential mechanism underlying this antinociceptive effect, we evaluated the effect of gonadal steroid hormones on formalin-induced temporomandibular joint inflammation. Plasma extravasation, a major sign of acute inflammation, and neutrophil migration, an important event related to tissue injury, were evaluated. Formalin induced significantly lower temporomandibular joint plasma extravasation and neutrophil migration in proestrus females than in males and in diestrus females. Since estradiol serum level is high in proestrus females and low in diestrus females and in males, these findings suggest that the high physiological level of estradiol decreases temporomandibular joint inflammation. Estradiol but not progesterone administration in ovariectomized females significantly decreased formalin-induced plasma extravasation and neutrophil migration, an effect that was blocked by the estrogen receptor antagonist ICI 182780. Plasma extravasation and neutrophil migration were not affected by orchiectomy, but testosterone or estradiol administration in orchidectomized males significantly decreased them. The androgen receptor antagonist flutamide blocked the anti-inflammatory effect of testosterone while ICI 182780 blocked that of estradiol in males. Previous intravenous administration of a nonspecific selectin inhibitor significantly decreased formalin-induced temporomandibular joint nociception and neutrophil migration in males, revealing a potent and positive correlation between temporomandibular joint nociception and inflammation. Taken together, these findings demonstrate a pronounced anti-inflammatory effect of estradiol and testosterone in the temporomandibular joint region and suggest that this effect may mediate, at least in part, the antinociceptive effect of these hormones.
Collapse
Affiliation(s)
- K E Torres-Chávez
- Department of Physiology, Piracicaba Dental School, State University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
22
|
Gjertsson I, Lagerquist MK, Kristiansson E, Carlsten H, Lindholm C. Estradiol ameliorates arthritis and protects against systemic bone loss in Staphylococcus aureus infection in mice. Arthritis Res Ther 2012; 14:R76. [PMID: 22507741 PMCID: PMC3446450 DOI: 10.1186/ar3799] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 02/01/2012] [Accepted: 04/16/2012] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Staphylococcus aureus is a common cause of bacterial arthritis, which is associated with progressive bone loss in affected joints. We recently showed that S. aureus infection also induces a significant systemic bone loss in mice. This study was performed to assess the effect of estradiol treatment on the clinical course and outcome of S. aureus arthritis and on infection-induced bone loss in experimental S. aureus infection. METHODS Mice were ovariectomized, treated with estradiol or placebo, and S. aureus infection was established by intravenous inoculation of bacteria. RESULTS Estradiol treatment was found to decrease significantly the frequency and clinical severity of S. aureus arthritis, a finding that was accompanied with significantly higher serum levels of interleukin-10 in estradiol-treated mice. Estradiol was also highly protective against S. aureus-induced systemic trabecular, and cortical bone loss. Lack of endogenous estrogens and S. aureus infection had additive effects on trabecular bone loss. The S. aureus-infected, ovariectomized mice lost as much as 76% of their trabecular bone mass. CONCLUSIONS Treatment with estradiol ameliorates S. aureus arthritis and is protective against infection-induced systemic bone loss in experimental S. aureus infection.
Collapse
Affiliation(s)
- Inger Gjertsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Guldhedsgatan 10A, Gothenburg, S-413 46, Sweden
| | - Marie K Lagerquist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Guldhedsgatan 10A, Gothenburg, S-413 46, Sweden
- CBAR, Centre for Bone and Arthritis Research, Sahlgrenska Academy at University of Gothenburg, Guldhedsgatan 10A, Gothenburg, S-413 46, Sweden
| | - Erik Kristiansson
- Department of Mathematical Statistics, Chalmers University of Technology, Chalmers tvärgata 3, Gothenburg, S-412 96, Sweden
| | - Hans Carlsten
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Guldhedsgatan 10A, Gothenburg, S-413 46, Sweden
- CBAR, Centre for Bone and Arthritis Research, Sahlgrenska Academy at University of Gothenburg, Guldhedsgatan 10A, Gothenburg, S-413 46, Sweden
| | - Catharina Lindholm
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Guldhedsgatan 10A, Gothenburg, S-413 46, Sweden
- CBAR, Centre for Bone and Arthritis Research, Sahlgrenska Academy at University of Gothenburg, Guldhedsgatan 10A, Gothenburg, S-413 46, Sweden
| |
Collapse
|
23
|
Islander U, Jochems C, Stubelius A, Andersson A, Lagerquist MK, Ohlsson C, Carlsten H. Combined treatment with dexamethasone and raloxifene totally abrogates osteoporosis and joint destruction in experimental postmenopausal arthritis. Arthritis Res Ther 2011; 13:R96. [PMID: 21689408 PMCID: PMC3218911 DOI: 10.1186/ar3371] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 05/09/2011] [Accepted: 06/20/2011] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Postmenopausal patients with rheumatoid arthritis (RA) are often treated with corticosteroids. Loss of estrogen, the inflammatory disease and exposure to corticosteroids all contribute to the development of osteoporosis. Therefore, our aim was to investigate if addition of the selective estrogen receptor modulator raloxifene, or estradiol, could prevent loss of bone mineral density in ovariectomized and dexamethasone treated mice with collagen-induced arthritis (CIA). METHODS Female DBA/1-mice were ovariectomized or sham-operated, and CIA was induced. Treatment with dexamethasone (Dex) (125 μg/d), estradiol (E2) (1 μg/d) or raloxifene (Ral) (120 μg/day) alone, or the combination of Dex + E2 or Dex + Ral, was started after disease onset, and continued until termination of the experiments. Arthritic paws were collected for histology and one of the femoral bones was used for measurement of bone mineral density. RESULTS Dex-treatment alone protected against arthritis and joint destruction, but had no effect on osteoporosis in CIA. However, additional treatment with either Ral or E2 resulted in completely preserved bone mineral density. CONCLUSIONS Addition of raloxifene or estradiol to dexamethasone-treatment in experimental postmenopausal polyarthritis prevents generalized bone loss.
Collapse
Affiliation(s)
- Ulrika Islander
- Centre for Bone and Arthritis Research, The Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30 Gothenburg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
24
|
Hayashi M, Kadomatsu K, Kojima T, Ishiguro N. Keratan sulfate and related murine glycosylation can suppress murine cartilage damage in vitro and in vivo. Biochem Biophys Res Commun 2011; 409:732-7. [PMID: 21624346 DOI: 10.1016/j.bbrc.2011.05.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 05/15/2011] [Indexed: 01/30/2023]
Abstract
Keratan sulfate (KS) proteoglycan side chains are abundant in the human cartilage matrix, but these chains have been said to be absent in murine skeletal tissues. We previously showed that KS suppresses cartilage damage and ameliorates inflammation in mice arthritis model. Because mice deficient of N-acetylglucosamine 6-O-sulfotransferase-1 (GlcNAc6ST-1) (KS biosynthesis enzyme) are now available, we decided to do further examinations. We examined, in culture, the difference between GlcNAc6ST-1(-/-) and wild-type (WT) mice for interleukin (IL)-1α-induced glycosaminoglycan (GAG) release from the articular cartilage. Arthritis was induced by intravenous administration of an anti-type II collagen antibody cocktail and subsequent intraperitoneal injection of lipopolysaccharide. We examined the differences in arthritis severities in the two genotypes. After intraperitoneal KS administration in phosphate-buffered saline (PBS) or PBS alone, we evaluated the potential of KS in ameliorating arthritis and protecting against cartilage damage in deficient mice. GAG release induced by IL-1α in the explants, and severity of arthritis were greater in GlcNAc6ST-1(-/-) mice than their WT littermates. Intraperitoneal KS administration effectively suppressed arthritis induction in GlcNAc6ST-1(-/-) mice. Thus, GlcNAc6ST-1(-/-) mice cartilage is more fragile than WT mice cartilage, and exogenous KS can suppress arthritis induction in GlcNAc6ST-1(-/-) mice. Vestigial KS chain or altered glycosylation in articular cartilage in GlcNAc6ST-1(-/-) mice may be protective against arthritis and associated cartilage damage as well as cartilage damage in culture. KS may offer therapeutic opportunities for chondroprotection and suppression of joint damage in inflammatory arthritis and may become a therapeutic agent for treating rheumatoid arthritis.
Collapse
Affiliation(s)
- Masatoshi Hayashi
- Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan.
| | | | | | | |
Collapse
|
25
|
Jochems C, Islander U, Erlandsson M, Engdahl C, Lagerquist M, Ohlsson C, Nandakumar KS, Holmdahl R, Carlsten H. Effects of oestradiol and raloxifene on the induction and effector phases of experimental postmenopausal arthritis and secondary osteoporosis. Clin Exp Immunol 2011; 165:121-9. [PMID: 21501150 DOI: 10.1111/j.1365-2249.2011.04397.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Oestradiol and the selective oestrogen receptor modulator (SERM) raloxifene have been shown to ameliorate collagen-induced arthritis (CIA) in rats and in mice. One aim was to investigate if raloxifene exerts its anti-arthritic and anti-osteoporotic effects during the induction or effector phase of arthritis. A second aim was to analyse if raloxifene activates the oestrogen response element (ERE) to produce its immune-modulator effects. CIA or collagen-antibody-induced arthritis (CAIA) was induced in ovariectomized DBA/1-mice. CIA was used for evaluation of treatment during the induction, and CAIA for the effector phase of arthritis and osteoporosis development. Raloxifene, oestradiol or vehicle was administered 5 days/week. The clinical disease was evaluated continuously. Bone marrow density (BMD) was analysed with peripheral quantitative computer tomography, paws were collected for histological examination, and sera were analysed for markers of bone and cartilage turnover and proinflammatory cytokines. Transgenic luciferase (Luc)-ERE mice were immunized with collagen (CII), and after 10 days injected once with raloxifene, oestradiol or vehicle before termination. Spleens were analysed for luciferase activity to measure ERE activation. Treatment with oestradiol or raloxifene during the induction phase of CIA failed to affect arthritis. Raloxifene did not hamper disease activity in CAIA, whereas oestradiol delayed the onset and ameliorated the severity. Both raloxifene and oestradiol preserved BMD in CAIA. CII-immunization increased the oestradiol-induced ERE activation in spleen, and raloxifene activated the ERE at about 25% the intensity of oestradiol. Further experiments are needed to elucidate the exact mechanisms behind this finding.
Collapse
Affiliation(s)
- C Jochems
- Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at Göteborg University, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Islander U, Jochems C, Lagerquist MK, Forsblad-d'Elia H, Carlsten H. Estrogens in rheumatoid arthritis; the immune system and bone. Mol Cell Endocrinol 2011; 335:14-29. [PMID: 20685609 DOI: 10.1016/j.mce.2010.05.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 05/28/2010] [Accepted: 05/29/2010] [Indexed: 01/29/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that is more common in women than in men. The peak incidence in females coincides with menopause when the ovarian production of sex hormones drops markedly. RA is characterized by skeletal manifestations where production of pro-inflammatory mediators, connected to the inflammation in the joint, leads to bone loss. Animal studies have revealed distinct beneficial effects of estrogens on arthritis, and a positive effect of hormone replacement therapy has been reported in women with postmenopausal RA. This review will focus on the influence of female sex hormones in the pathogenesis and progression of RA.
Collapse
Affiliation(s)
- Ulrika Islander
- Center for Bone and Arthritis Research (CBAR), Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy, University of Gothenburg, Sweden.
| | | | | | | | | |
Collapse
|
27
|
Impact of sex hormones, insulin, growth factors and peptides on cartilage health and disease. ACTA ACUST UNITED AC 2011; 45:239-93. [DOI: 10.1016/j.proghi.2010.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2010] [Indexed: 12/27/2022]
|
28
|
Hayashi I, Hagino H, Okano T, Enokida M, Teshima R. Effect of raloxifene on arthritis and bone mineral density in rats with collagen-induced arthritis. Calcif Tissue Int 2011; 88:87-95. [PMID: 21140260 DOI: 10.1007/s00223-010-9432-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 09/29/2010] [Indexed: 12/01/2022]
Abstract
We studied the effect of raloxifene (RAL) on arthritis and bone mineral density (BMD) in rats with collagen-induced arthritis (CIA). Seven-month-old female Sprague-Dawley rats were divided into five groups: rats without CIA (CNT), CIA rats that underwent ovariectomy (OVX) and were treated with RAL (CIA + OVX + RAL), CIA rats that underwent OVX and were treated with vehicle (CIA + OVX + Veh), CIA rats that had sham surgery and were treated with RAL (CIA + sham + RAL), and CIA rats that had sham surgery and were treated with vehicle (CIA + sham + Veh). RAL was orally administered at 10 mg/kg every day for 3 weeks, beginning 1 week after initial sensitization until death at 4 weeks. Every week until death, we evaluated hind paw thickness and arthritis score. BMD was measured by peripheral quantitative computed tomography at the distal metaphysis and the diaphysis of the femur; we also performed histomorphometry of the proximal tibia and histological evaluation of arthritis. RAL administration suppressed hind paw thickness and arthritis score and prevented decreases in BMD and cortical thickness. In the histomorphometric analysis, bone-resorption parameters were significantly lower in the RAL groups than in the Veh groups. RAL significantly inhibited synovial proliferation in CIA rats. RAL effects on arthritis and bone were apparent regardless of whether an animal had undergone OVX. RAL could suppress arthritis and bone loss in estrogen-replete or -depleted rats. These findings, using an animal model, indicate the potential usefulness of RAL as an effective treatment for premenopausal RA patients as well as postmenopausal ones.
Collapse
Affiliation(s)
- Ikuta Hayashi
- Department of Orthopedic Surgery, Faculty of Medicine, Tottori University, Yonago, Japan.
| | | | | | | | | |
Collapse
|
29
|
Jochems C, Islander U, Erlandsson M, Engdahl C, Lagerquist M, Gjertsson I, Ohlsson C, Holmdahl R, Carlsten H. Role of endogenous and exogenous female sex hormones in arthritis and osteoporosis development in B10.Q-ncf1*/* mice with collagen-induced chronic arthritis. BMC Musculoskelet Disord 2010; 11:284. [PMID: 21159208 PMCID: PMC3009959 DOI: 10.1186/1471-2474-11-284] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 12/16/2010] [Indexed: 11/30/2022] Open
Abstract
Background Collagen-induced arthritis (CIA) is an often-used murine model for human rheumatoid arthritis (RA). Earlier studies have shown potent anti-arthritic effects with the female sex hormone estradiol and the selective estrogen receptor modulator (SERM) raloxifene in CIA in DBA/1-mice. B10.Q-ncf1*/*mice are B10.Q mice with a mutated Ncf1 gene. In B10.Q-ncf1*/*mice, CIA develops as a chronic relapsing disease, which more accurately mimics human RA. We investigated the role of endogenous and exogenous sex steroids and raloxifene in the course of this model of chronic arthritis. We also examined whether treatment would prevent the development of inflammation-triggered generalized osteoporosis. Methods Female B10.Q-ncf1*/*mice were sham-operated or ovariectomized, and CIA was induced. 22 days later, when 30% of the mice had developed arthritis, treatment with raloxifene, estradiol or vehicle was started, and the clinical disease was evaluated continuously. Treatment was continued until day 56 after immunization. At termination of the experiment (day 73), bone mineral density (BMD) was analyzed, paws were collected for histological examination, and sera were analyzed for markers of cartilage turnover and pro-inflammatory cytokines. Results Raloxifene and estradiol treatment, as well as endogenous estrogen, decreased the frequency of arthritis, prevented joint destruction and countered generalized osteoporosis. These effects were associated with lower serum levels of the pro-inflammatory cytokine IL-6. Conclusions This is the first study to show that raloxifene and estradiol can ameliorate established erosive arthritis and inflammation-triggered osteoporosis in this chronic arthritis model. We propose that treatment with raloxifene could be a beneficial addition to the treatment of postmenopausal RA.
Collapse
Affiliation(s)
- Caroline Jochems
- Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at Göteborg University, Göteborg, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Mechanisms involved in the inhibition of osteoclast generation by the benzothiophene SERM LY117018. Wien Klin Wochenschr 2010; 122:626-32. [DOI: 10.1007/s00508-010-1469-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 09/09/2010] [Indexed: 11/25/2022]
|
31
|
Hayashi M, Kadomatsu K, Ishiguro N. Keratan sulfate suppresses cartilage damage and ameliorates inflammation in an experimental mice arthritis model. Biochem Biophys Res Commun 2010; 401:463-8. [PMID: 20875399 DOI: 10.1016/j.bbrc.2010.09.082] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Accepted: 09/21/2010] [Indexed: 11/16/2022]
Abstract
Proteoglycans bearing keratan sulfate (KS), such as aggrecan, are components of the human cartilage extracellular matrix (ECM). However, the role of KS in influencing cartilage degradation associated with arthritis remains to be completely understood. KS side chains of the length found in human cartilage are not found in murine skeletal tissues. Using a murine model of inflammatory polyarthritis and cartilage explants exposed to interleukin-1α (IL-1α), we examined whether administering KS could influence intraarticular inflammation and cartilage degradation. Acute arthritis was induced by intravenous administration of an anti-type II collagen antibody cocktail, followed by an intraperitoneal injection of lipopolysaccharide. This treatment was followed by an intraperitoneal KS administration in half of the total mice to evaluate the therapeutic potential of KS for ameliorating arthritis. To investigate the therapeutic potential ex vivo, we examined cartilage fragility by measuring IL-1α-induced aggrecan release from cartilage explants treated with or without KS. Intraperitoneal KS administration ameliorated arthritis in DBA/1J mice. The aggrecan release induced by IL-1α was less in cartilage explants containing media with KS than in those without KS. Our data indicate that exogenous KS ameliorated arthritis in vivo and suppressed cartilage degradation ex vivo. KS may have important therapeutic potential in the treatment of inflammatory arthritis. The mechanism responsible for this requires further investigation, but KS may become a novel therapeutic agent for treating inflammatory diseases such as rheumatoid arthritis.
Collapse
Affiliation(s)
- Masatoshi Hayashi
- Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan.
| | | | | |
Collapse
|
32
|
Bian L, Josefsson E, Jonsson IM, Verdrengh M, Ohlsson C, Bokarewa M, Tarkowski A, Magnusson M. Dichloroacetate alleviates development of collagen II-induced arthritis in female DBA/1 mice. Arthritis Res Ther 2009; 11:R132. [PMID: 19723321 PMCID: PMC2787291 DOI: 10.1186/ar2799] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 08/12/2009] [Accepted: 09/01/2009] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Dichloroacetate (DCA) has been in clinical use for the treatment of lactacidosis and inherited mitochondrial disorders. It has potent anti-tumor effects both in vivo and in vitro, facilitating apoptosis and inhibiting proliferation. The pro-apoptotic and anti-proliferative properties of DCA prompted us to investigate the effects of this compound in arthritis. METHODS In the present study, we used DCA to treat murine collagen type II (CII)-induced arthritis (CIA), an experimental model of rheumatoid arthritis. DBA/1 mice were treated with DCA given in drinking water. RESULTS Mice treated with DCA displayed much slower onset of CIA and significantly lower severity (P < 0.0001) and much lower frequency (36% in DCA group vs. 86% in control group) of arthritis. Also, cartilage and joint destruction was significantly decreased following DCA treatment (P = 0.005). Moreover, DCA prevented arthritis-induced cortical bone mineral loss. This clinical picture was also reflected by lower levels of anti-CII antibodies in DCA-treated versus control mice, indicating that DCA affected the humoral response. In contrast, DCA had no effect on T cell- or granulocyte-mediated responses. The beneficial effect of DCA was present in female DBA/1 mice only. This was due in part to the effect of estrogen, since ovariectomized mice did not benefit from DCA treatment to the same extent as sham-operated controls (day 30, 38.7% of ovarectomized mice had arthritis vs. only 3.4% in sham-operated group). CONCLUSION Our results indicate that DCA delays the onset and alleviates the progression of CIA in an estrogen-dependent manner.
Collapse
Affiliation(s)
- Li Bian
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10A, Box 480, SE-405 30, Gothenburg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Jochems C, Lagerquist M, Håkansson C, Ohlsson C, Carlsten H. Long-term anti-arthritic and anti-osteoporotic effects of raloxifene in established experimental postmenopausal polyarthritis. Clin Exp Immunol 2008; 152:593-7. [PMID: 18435803 DOI: 10.1111/j.1365-2249.2008.03660.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Both oestrogen deficiency and the inflammatory disease contribute to the generalized bone loss seen in postmenopausal rheumatoid arthritis (RA). Oestradiol and the selective oestrogen receptor modulator raloxifene have been shown to ameliorate the disease in collagen-induced arthritis (CIA), a well-established animal model for human RA. The aim of this study was to investigate whether raloxifene-treatment would be beneficial in long-term treatment of established CIA, both regarding anti-arthritic and anti-osteoporotic properties. Female dilute brown agouti mice were ovariectomized and CIA was induced. Raloxifene or vehicle treatment was administered 5 days per week, and the clinical arthritis score was evaluated continuously. At termination, bone mineral density was analysed, paws were collected for histological examination and sera were analysed for markers of bone and cartilage turnover, as well as antibodies to type II collagen and levels of interleukin (IL)-6. Treatment with raloxifene is beneficial in long-term treatment of established CIA. It hampers the disease severity and frequency, protects the joints from destruction and protects against the development of osteoporosis. The proinflammatory cytokine IL-6 was down-regulated in raloxifene-treated mice compared with controls. The serum levels of antibodies to collagen were not affected by raloxifene-treatment. Long-term treatment with raloxifene has both anti-arthritic and anti-osteoporotic effects in established experimental postmenopausal polyarthritis.
Collapse
Affiliation(s)
- C Jochems
- Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at Göteborg University, Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
35
|
Carlsten H. Interaction with estrogen receptors as treatment of arthritis and osteoporosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 602:83-92. [PMID: 17966392 DOI: 10.1007/978-0-387-72009-8_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Hans Carlsten
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, Göteborg Academy, Göteborg, Sweden
| |
Collapse
|