1
|
Celik B, Leal AF, Tomatsu S. Potential Targeting Mechanisms for Bone-Directed Therapies. Int J Mol Sci 2024; 25:8339. [PMID: 39125906 PMCID: PMC11312506 DOI: 10.3390/ijms25158339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Bone development is characterized by complex regulation mechanisms, including signal transduction and transcription factor-related pathways, glycobiological processes, cellular interactions, transportation mechanisms, and, importantly, chemical formation resulting from hydroxyapatite. Any abnormal regulation in the bone development processes causes skeletal system-related problems. To some extent, the avascularity of cartilage and bone makes drug delivery more challenging than that of soft tissues. Recent studies have implemented many novel bone-targeting approaches to overcome drawbacks. However, none of these strategies fully corrects skeletal dysfunction, particularly in growth plate-related ones. Although direct recombinant enzymes (e.g., Vimizim for Morquio, Cerezyme for Gaucher, Elaprase for Hunter, Mepsevii for Sly diseases) or hormone infusions (estrogen for osteoporosis and osteoarthritis), traditional gene delivery (e.g., direct infusion of viral or non-viral vectors with no modifications on capsid, envelope, or nanoparticles), and cell therapy strategies (healthy bone marrow or hematopoietic stem cell transplantation) partially improve bone lesions, novel delivery methods must be addressed regarding target specificity, less immunogenicity, and duration in circulation. In addition to improvements in bone delivery, potential regulation of bone development mechanisms involving receptor-regulated pathways has also been utilized. Targeted drug delivery using organic and inorganic compounds is a promising approach in mostly preclinical settings and future clinical translation. This review comprehensively summarizes the current bone-targeting strategies based on bone structure and remodeling concepts while emphasizing potential approaches for future bone-targeting systems.
Collapse
Affiliation(s)
- Betul Celik
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA;
| | - Andrés Felipe Leal
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA;
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Shunji Tomatsu
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA;
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1193, Japan
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19144, USA
| |
Collapse
|
2
|
Homan K, Onodera T, Hanamatsu H, Furukawa JI, Momma D, Matsuoka M, Iwasaki N. Articular cartilage corefucosylation regulates tissue resilience in osteoarthritis. eLife 2024; 12:RP92275. [PMID: 38466626 DOI: 10.7554/elife.92275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
This study aimed to investigate the glycan structural changes that occur before histological degeneration in osteoarthritis (OA) and to determine the mechanism by which these glycan conformational changes affect cartilage degeneration. An OA model was established in rabbits using mannosidase injection, which reduced high-mannose type N-glycans and led to cartilage degeneration. Further analysis of glycome in human OA cartilage identified specific corefucosylated N-glycan expression patterns. Inhibition of N-glycan corefucosylation in mice resulted in unrecoverable cartilage degeneration, while cartilage-specific blocking of corefucosylation led to accelerated development of aging-associated and instability-induced OA models. We conclude that α1,6 fucosyltransferase is required postnatally to prevent preosteoarthritic deterioration of articular cartilage. These findings provide a novel definition of early OA and identify glyco-phenotypes of OA cartilage, which may distinguish individuals at higher risk of progression.
Collapse
Affiliation(s)
- Kentaro Homan
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Onodera
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hisatoshi Hanamatsu
- Institute for Glyco‑core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Jun-Ichi Furukawa
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Glyco‑core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Daisuke Momma
- Center for Sports Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Masatake Matsuoka
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
Sumioka T, Matsumoto KI, Reinach PS, Saika S. Tenascins and osteopontin in biological response in cornea. Ocul Surf 2023; 29:131-149. [PMID: 37209968 DOI: 10.1016/j.jtos.2023.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
The structural composition, integrity and regular curvature of the cornea contribute to the maintenance of its transparency and vision. Disruption of its integrity caused by injury results in scarring, inflammation and neovascularization followed by losses in transparency. These sight compromising effects is caused by dysfunctional corneal resident cell responses induced by the wound healing process. Upregulation of growth factors/cytokines and neuropeptides affect development of aberrant behavior. These factors trigger keratocytes to first transform into activated fibroblasts and then to myofibroblasts. Myofibroblasts express extracellular matrix components for tissue repair and contract the tissue to facilitate wound closure. Proper remodeling following primary repair is critical for restoration of transparency and visual function. Extracellular matrix components contributing to the healing process are divided into two groups; a group of classical tissue structural components and matrix macromolecules that modulate cell behaviors/activities besides being integrated into the matrix structure. The latter components are designated as matricellular proteins. Their functionality is elicited through mechanisms which modulate the scaffold integrity, cell behaviors, activation/inactivation of either growth factors or cytoplasmic signaling regulation. We discuss here the functional roles of matricellular proteins in mediating injury-induced corneal tissue repair. The roles are described of major matricellular proteins, which include tenascin C, tenascin X and osteopontin. Focus is directed towards dealing with their roles in modulating individual activities of wound healing-related growth factors, e. g., transforming growth factor β (TGF β). Modulation of matricellular protein functions could encompass a potential novel strategy to improve the outcome of injury-induced corneal wound healing.
Collapse
Affiliation(s)
- Takayoshi Sumioka
- Department of Ophthalmology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, 641-0012, Japan.
| | - Ken-Ichi Matsumoto
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Head Office for Research and Academic Information, Shimane University, 89-1 Enya-cho, Izumo, 693-8501, Japan
| | - Peter Sol Reinach
- Department of Biological. Sciences SUNY Optometry, New York, NY, 10036, USA
| | - Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, 641-0012, Japan
| |
Collapse
|
4
|
Osteopontin: A Bone-Derived Protein Involved in Rheumatoid Arthritis and Osteoarthritis Immunopathology. Biomolecules 2023; 13:biom13030502. [PMID: 36979437 PMCID: PMC10046882 DOI: 10.3390/biom13030502] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Osteopontin (OPN) is a bone-derived phosphoglycoprotein related to physiological and pathological mechanisms that nowadays has gained relevance due to its role in the immune system response to chronic degenerative diseases, including rheumatoid arthritis (RA) and osteoarthritis (OA). OPN is an extracellular matrix (ECM) glycoprotein that plays a critical role in bone remodeling. Therefore, it is an effector molecule that promotes joint and cartilage destruction observed in clinical studies, in vitro assays, and animal models of RA and OA. Since OPN undergoes multiple modifications, including posttranslational changes, proteolytic cleavage, and binding to a wide range of receptors, the mechanisms by which it produces its effects, in some cases, remain unclear. Although there is strong evidence that OPN contributes significantly to the immunopathology of RA and OA when considering it as a common denominator molecule, some experimental trial results argue for its protective role in rheumatic diseases. Elucidating in detail OPN involvement in bone and cartilage degeneration is of interest to the field of rheumatology. This review aims to provide evidence of the OPN’s multifaceted role in promoting joint and cartilage destruction and propose it as a common denominator of AR and OA immunopathology.
Collapse
|
5
|
Luo W, Lin Z, Yuan Y, Wu Z, Zhong W, Liu Q. Osteopontin (OPN) alleviates the progression of osteoarthritis by promoting the anabolism of chondrocytes. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
6
|
Du Y, Mao L, Wang Z, Yan K, Zhang L, Zou J. Osteopontin - The stirring multifunctional regulatory factor in multisystem aging. Front Endocrinol (Lausanne) 2022; 13:1014853. [PMID: 36619570 PMCID: PMC9813443 DOI: 10.3389/fendo.2022.1014853] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Osteopontin (OPN) is a multifunctional noncollagenous matrix phosphoprotein that is expressed both intracellularly and extracellularly in various tissues. As a growth regulatory protein and proinflammatory immunochemokine, OPN is involved in the pathological processes of many diseases. Recent studies have found that OPN is widely involved in the aging processes of multiple organs and tissues, such as T-cell senescence, atherosclerosis, skeletal muscle regeneration, osteoporosis, neurodegenerative changes, hematopoietic stem cell reconstruction, and retinal aging. However, the regulatory roles and mechanisms of OPN in the aging process of different tissues are not uniform, and OPN even has diverse roles in different developmental stages of the same tissue, generating uncertainty for the future study and utilization of OPN. In this review, we will summarize the regulatory role and molecular mechanism of OPN in different tissues and cells, such as the musculoskeletal system, central nervous system, cardiovascular system, liver, and eye, during senescence. We believe that a better understanding of the mechanism of OPN in the aging process will help us develop targeted and comprehensive therapeutic strategies to fight the spread of age-related diseases.
Collapse
|
7
|
Bai RJ, Li YS, Zhang FJ. Osteopontin, a bridge links osteoarthritis and osteoporosis. Front Endocrinol (Lausanne) 2022; 13:1012508. [PMID: 36387862 PMCID: PMC9649917 DOI: 10.3389/fendo.2022.1012508] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent joint disease characterized by degradation of articular cartilage, inflammation, and changes in periarticular and subchondral bone of joints. Osteoporosis (OP) is another systemic skeletal disease characterized by low bone mass and bone mineral density (BMD) accompanied by microarchitectural deterioration in bone tissue and increased bone fragility and fracture risk. Both OA and OP are mainly affected on the elderly people. Recent studies have shown that osteopontin (OPN) plays a vital role in bone metabolism and homeostasis. OPN involves these biological activities through participating in the proliferation, migration, differentiation, and adhesion of several bone-related cells, including chondrocytes, synoviocytes, osteoclasts, osteoblasts, and marrow mesenchymal stem cells (MSCs). OPN has been demonstrated to be closely related to the occurrence and development of many bone-related diseases, such as OA and OP. This review summarizes the role of OPN in regulating inflammation activity and bone metabolism in OA and OP. Furthermore, some drugs that targeted OPN to treat OA and OP are also summarized in the review. However, the complex mechanism of OPN in regulating OA and OP is not fully elucidated, which drives us to explore the depth effect of OPN on these two bone diseases.
Collapse
Affiliation(s)
- Rui-Jun Bai
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu-Sheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- *Correspondence: Yu-Sheng Li, ; Fang-Jie Zhang,
| | - Fang-Jie Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Department of Emergency Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Yu-Sheng Li, ; Fang-Jie Zhang,
| |
Collapse
|
8
|
Abstract
Understanding the properties of bone is of both fundamental and clinical relevance. The basis of bone’s quality and mechanical resilience lies in its nanoscale building blocks (i.e., mineral, collagen, non-collagenous proteins, and water) and their complex interactions across length scales. Although the structure–mechanical property relationship in healthy bone tissue is relatively well characterized, not much is known about the molecular-level origin of impaired mechanics and higher fracture risks in skeletal disorders such as osteoporosis or Paget’s disease. Alterations in the ultrastructure, chemistry, and nano-/micromechanics of bone tissue in such a diverse group of diseased states have only been briefly explored. Recent research is uncovering the effects of several non-collagenous bone matrix proteins, whose deficiencies or mutations are, to some extent, implicated in bone diseases, on bone matrix quality and mechanics. Herein, we review existing studies on ultrastructural imaging—with a focus on electron microscopy—and chemical, mechanical analysis of pathological bone tissues. The nanometric details offered by these reports, from studying knockout mice models to characterizing exact disease phenotypes, can provide key insights into various bone pathologies and facilitate the development of new treatments.
Collapse
|
9
|
Zhou K, He S, Yu H, Pei F, Zhou Z. Inhibition of syndecan-4 reduces cartilage degradation in murine models of osteoarthritis through the downregulation of HIF-2α by miR-96-5p. J Transl Med 2021; 101:1060-1070. [PMID: 33850295 PMCID: PMC8292145 DOI: 10.1038/s41374-021-00595-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 02/05/2023] Open
Abstract
The membranous receptor syndecan-4 (SDC-4) and the nuclear transcription factor hypoxia-induced factor-2α (HIF-2α) play critical roles in the pathogenesis of osteoarthritis (OA). The aim of this study was to determine whether SDC-4 inhibition downregulates HIF-2a expression by microRNA-96-5p (miR-96-5p) in murine chondrocyte and cartilage tissue. The OA model was induced surgically in mice, and SDC-4 polyclonal antibody, HIF-2α small interfering RNA (siRNA) and its control, miR-96-5p mimics and its scrambled controls or anti-miR-96-5p and its control were then injected into the knee joints. At 2 and 4 weeks after surgery, OA progression was evaluated microscopically, histologically, radiographically and immunohistochemically in these mice. Real-time polymerase chain reaction (RT-PCR) and western blotting were performed after treating with antibody and transfecting with miRNA mimic or siRNA to determine their effects on OA-related mediators. The potential miRNAs related to OA development were identified by using miRNA microarray analysis. Whether miRNAs play a pivotal role in OA development in vivo or in vitro was also investigated. MiR-96-5p expression was upregulated by SDC-4-specific antibodies in chondrocytes and cartilage tissue, and miR-96-5p directly targeted the 3'-UTR of HIF-2α to inhibit HIF-2α signaling in murine chondrocytes. Moreover, we demonstrated that anti-SDC-4-attenuated IL-1β-induced chondrocyte hypertrophy and cartilage degradation by inhibiting HIF-2α signaling by a miR-96-5p-dependent mechanism. Our study revealed that the inhibition of SDC-4 exerts its effects on both cartilage homeostasis and the chondrocyte hypertrophy phenotype by inducing miR-96-5p expression, which results in targeting HIF-2α 3'-UTR sequences and inhibiting HIF-2α in murine cartilage tissue and chondrocytes.
Collapse
Affiliation(s)
- Kai Zhou
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, PR China
| | - Sirong He
- Department of Immunology, Chongqing Medical University, Chongqing, PR China
| | - Haoda Yu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, PR China
| | - Fuxing Pei
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, PR China
| | - Zongke Zhou
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, PR China.
| |
Collapse
|
10
|
Tissue Engineering of Cartilage Using a Random Positioning Machine. Int J Mol Sci 2020; 21:ijms21249596. [PMID: 33339388 PMCID: PMC7765923 DOI: 10.3390/ijms21249596] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Articular cartilage is a skeletal tissue of avascular nature and limited self-repair capacity. Cartilage-degenerative diseases, such as osteoarthritis (OA), are difficult to treat and often necessitate joint replacement surgery. Cartilage is a tough but flexible material and relatively easy to damage. It is, therefore, of high interest to develop methods allowing chondrocytes to recolonize, to rebuild the cartilage and to restore joint functionality. Here we studied the in vitro production of cartilage-like tissue using human articular chondrocytes exposed to the Random Positioning Machine (RPM), a device to simulate certain aspects of microgravity on Earth. To screen early adoption reactions of chondrocytes exposed to the RPM, we performed quantitative real-time PCR analyses after 24 h on chondrocytes cultured in DMEM/F-12. A significant up-regulation in the gene expression of IL6, RUNX2, RUNX3, SPP1, SOX6, SOX9, and MMP13 was detected, while the levels of IL8, ACAN, PRG4, ITGB1, TGFB1, COL1A1, COL2A1, COL10A1, SOD3, SOX5, MMP1, and MMP2 mRNAs remained unchanged. The STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) analysis demonstrated among others the importance of these differentially regulated genes for cartilage formation. Chondrocytes grown in DMEM/F-12 medium produced three-dimensional (3D) spheroids after five days without the addition of scaffolds. On day 28, the produced tissue constructs reached up to 2 mm in diameter. Using specific chondrocyte growth medium, similar results were achieved within 14 days. Spheroids from both types of culture media showed the typical cartilage morphology with aggrecan positivity. Intermediate filaments form clusters under RPM conditions as detected by vimentin staining after 7 d and 14 d. Larger meshes appear in the network in 28-day samples. Furthermore, they were able to form a confluent chondrocyte monolayer after being transferred back into cell culture flasks in 1 g conditions showing their suitability for transplantation into joints. Our results demonstrate that the cultivation medium has a direct influence on the velocity of tissue formation and tissue composition. The spheroids show properties that make them interesting candidates for cellular cartilage regeneration approaches in trauma and OA therapy.
Collapse
|
11
|
OPN Deficiency Increases the Severity of Osteoarthritis Associated with Aberrant Chondrocyte Senescence and Apoptosis and Upregulates the Expression of Osteoarthritis-Associated Genes. Pain Res Manag 2020; 2020:3428587. [PMID: 33144900 PMCID: PMC7599390 DOI: 10.1155/2020/3428587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 11/17/2022]
Abstract
Objectives A recent work has reported that the elevated osteopontin (OPN) levels in the articular cartilage and synovial fluid are correlated with the progressive osteoarthritis (OA) joint damage, and OPN has a protective effect against OA by suppressing the expressions of OA-associated genes. The present study examined whether the OPN deficiency was susceptible to OA through the regulation of chondrocyte senescence and apoptosis and the expressions of OA-associated genes. Methods The mRNA levels of COL2A1 and OPN were compared between human OA chondrocytes and normal chondrocytes. The effects of OPN siRNA on the SA-β-Gal expressions and the percentage of apoptotic chondrocytes were examined by using SA-β-Gal staining and apoptosis assay, and the effects on the expressions of COL2A1 and OA-associated genes (COL10A1, IL-1β, TNF-ɑ, MMP-13, and ADAMTS5) were examined by western blot analysis and quantitative real-time RT-PCR. Furthermore, an in vivo OA model was established to examine the effects of OPN siRNA on the senescence and apoptosis of OA chondrocytes and the expressions of OA-associated genes. Results The mRNA levels of COL2A1 and OPN were decreased in knee OA chondrocytes in comparison with those in normal chondrocytes. The OPN deficiency enhanced the senescence and apoptosis of OA chondrocytes and increased the expressions of COL10A1, IL-1β, TNF-ɑ, MMP-13, and ADAMTS5 but decreased the expression of COL2A1. Meanwhile, OPN deficiency could result in severe, accelerated OA in vivo, which was also associated with enhanced senescence and apoptosis of chondrocytes and elevated expressions of OA-associated genes. Conclusions The findings of this study suggest that the OPN deficiency can result in accelerated OA, which is associated with enhanced senescence and apoptosis of OA chondrocytes and the upregulated expressions of OA-associated genes.
Collapse
|
12
|
Liu Q, Zeng H, Yuan Y, Wang Z, Wu Z, Luo W. Osteopontin inhibits osteoarthritis progression via the OPN/CD44/PI3K signal axis. Genes Dis 2020; 9:128-139. [PMID: 35005113 PMCID: PMC8720673 DOI: 10.1016/j.gendis.2020.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/26/2020] [Accepted: 06/12/2020] [Indexed: 12/23/2022] Open
Abstract
Chondrocyte degeneration and extracellular matrix component loss are the primary causes of osteoarthritis (OA). OA can be treated by inhibiting chondrocyte degeneration and increasing extracellular matrix component secretion. Osteopontin (OPN), a multifunctional protein, has gained immense attention with regard to its involvement in OA. This study aimed to explore the therapeutic value and mechanism of action of OPN in OA treatment. Results of the histomorphological analysis revealed a worn-off OA cartilage tissue surface, cartilage matrix layer deterioration, and calcium salt deposition. Compared to that in normal chondrocytes, in OA chondrocytes, the OPN, CD44, and PI3K protein and mRNA expression was upregulated. Further, siOPN, rhOPN, and rhOPN plus LS-C179404 interfered with OA chondrocytes. As verified in mice, OPN directly inhibited the expression level of PI3K in OA chondrocytes by binding with CD44. Morphological analysis of the knee joints demonstrated that OPN effectively inhibited OA progression via the OPN/CD44/PI3K signal axis. In conclusion, OPN activates intracellular PI3K signaling molecules by binding to CD44 on the cell surface to cause downstream cascading effects, thereby delaying chondrocyte degeneration and reducing cartilage matrix component loss; therefore, OPN is a potential therapeutic agent for OA.
Collapse
Affiliation(s)
- Qing Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, 87th Xiangya Road, Changsha, Hunan 410008, PR China.,Department of Spine Surgery, The Second Xiangya Hospital, Central South University, 139th Renmin Middle Road, Changsha, Hunan 410011, PR China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hao Zeng
- Department of Orthopaedics, Xiangya Hospital, Central South University, 87th Xiangya Road, Changsha, Hunan 410008, PR China
| | - Yuhao Yuan
- Department of Orthopaedics, Xiangya Hospital, Central South University, 87th Xiangya Road, Changsha, Hunan 410008, PR China
| | - Zhiwei Wang
- Department of Orthopaedics, Xiangya Hospital, Central South University, 87th Xiangya Road, Changsha, Hunan 410008, PR China
| | - Ziyi Wu
- Department of Orthopaedics, Xiangya Hospital, Central South University, 87th Xiangya Road, Changsha, Hunan 410008, PR China
| | - Wei Luo
- Department of Orthopaedics, Xiangya Hospital, Central South University, 87th Xiangya Road, Changsha, Hunan 410008, PR China
| |
Collapse
|
13
|
Allen KD, Chan KM, Yarmola EG, Shah YY, Partain BD. The effects of age on the severity of joint damage and intra-articular inflammation following a simulated medial meniscus injury in 3, 6, and 9 month old male rats. Connect Tissue Res 2020; 61:82-94. [PMID: 31438735 PMCID: PMC6884683 DOI: 10.1080/03008207.2019.1641495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/04/2019] [Indexed: 02/03/2023]
Abstract
Purpose: Aging is a known risk factor for osteoarthritis (OA). Several transgenic rodent models have been used to investigate the effects of accelerated or delayed aging in articular joints. However, age-effects on the progression of post-traumatic OA are less frequently evaluated. The objective of this study is to evaluate how animal age affects the severity of intra-articular inflammation and joint damage in the rat medial collateral ligament plus medial meniscus transection (MCLT+MMT) model of knee OA.Methods: Forty-eight, male Lewis rats were aged to 3, 6, or 9 months old. At each age, eight rats received either an MCLT+MMT surgery or a skin-incision. At 2 months post-surgery, intra-articular evidence of CTXII, IL1β, IL6, TNFα, and IFNγ was evaluated using a multiplex magnetic capture technique, and histological evidence of OA was assessed via a quantitative histological scoring technique.Results: Elevated levels of CTXII and IL6 were found in MCLT+MMT knees relative to skin-incision and contralateral controls; however, animal age did not affect the severity of joint inflammation. Conversely, histological investigation of cartilage damage showed larger cartilage lesion areas, greater width of affected cartilage, and more evidence of hypertrophic cartilage damage in MCLT+MMT knees with age.Conclusions: These data indicate the severity of cartilage damage subsequent to MCLT+MMT surgery is related to the rat's age at the time of injury. However, despite greater levels of cartilage damage, the level of intra-articular inflammation was not necessarily affected in 3, 6, and 9 month old male rats.
Collapse
Affiliation(s)
- Kyle D. Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Kiara M. Chan
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Elena G. Yarmola
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Yash Y. Shah
- Department of Materials Science and Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Brittany D. Partain
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
14
|
Choi MC, Jo J, Park J, Kang HK, Park Y. NF-κB Signaling Pathways in Osteoarthritic Cartilage Destruction. Cells 2019; 8:cells8070734. [PMID: 31319599 PMCID: PMC6678954 DOI: 10.3390/cells8070734] [Citation(s) in RCA: 313] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis (OA) is a type of joint disease associated with wear and tear, inflammation, and aging. Mechanical stress along with synovial inflammation promotes the degradation of the extracellular matrix in the cartilage, leading to the breakdown of joint cartilage. The nuclear factor-kappaB (NF-κB) transcription factor has long been recognized as a disease-contributing factor and, thus, has become a therapeutic target for OA. Because NF-κB is a versatile and multi-functional transcription factor involved in various biological processes, a comprehensive understanding of the functions or regulation of NF-κB in the OA pathology will aid in the development of targeted therapeutic strategies to protect the cartilage from OA damage and reduce the risk of potential side-effects. In this review, we discuss the roles of NF-κB in OA chondrocytes and related signaling pathways, including recent findings, to better understand pathological cartilage remodeling and provide potential therapeutic targets that can interfere with NF-κB signaling for OA treatment.
Collapse
Affiliation(s)
- Moon-Chang Choi
- Department of Biomedical Science, Chosun University, Gwangju 61452, Korea.
| | - Jiwon Jo
- Department of Biomedical Science, Chosun University, Gwangju 61452, Korea
| | - Jonggwan Park
- Department of Bioinformatics, Kongju National University, Kongju 38065, Korea
| | - Hee Kyoung Kang
- Department of Biomedical Science, Chosun University, Gwangju 61452, Korea
| | - Yoonkyung Park
- Department of Biomedical Science, Chosun University, Gwangju 61452, Korea.
| |
Collapse
|
15
|
Li L, Lv G, Wang B, Kuang L. XIST/miR-376c-5p/OPN axis modulates the influence of proinflammatory M1 macrophages on osteoarthritis chondrocyte apoptosis. J Cell Physiol 2019; 235:281-293. [PMID: 31215024 DOI: 10.1002/jcp.28968] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 01/15/2023]
Abstract
The inflammatory microenvironment in the joints is one of the critical issues during osteoarthritis (OA) and also the main factor that may aggravate symptoms. Under inflammatory microenvironment, M1 macrophages are activated and produce large numbers of proinflammatory mediators, leading to the production of degradative enzymes, the disturbance of chondrocyte apoptosis and cartilage catabolic processes, and finally the deterioration of OA. In the present study, we reveal that the overexpression of osteopontin (OPN), a cytokine, and a matrix protein involved in arthritis and chondrocyte apoptosis in OA, could exacerbate the inflammatory microenvironment in OA via promoting the production of proinflammation cytokines and the levels of degradative enzymes in M1 macrophages, therefore, enhancing the cytotoxicity of M1 macrophage on chondrocytes. XIST expression significantly increases in OA tissue specimens. XIST serves as a competing endogenous RNA for miR-376c-5p to compete with OPN for miR-376c-5p binding, thus counteracting miR-376c-5p-mediated OPN suppression. XIST knockdown could improve the inflammatory microenvironment in OA via acting on M1 macrophages, subsequently affecting the apoptosis of cocultured chondrocytes. miR-376c-5p inhibition exerts an opposing effect on M1 macrophages and cocultured chondrocytes, as well as significantly reverses the effect of XIST knockdown. As a further confirmation, XIST and OPN mRNA expression significantly increased in OA tissues and was positively correlated in tissue samples. In summary, we provide a novel mechanism of macrophages and the inflammatory microenvironment affecting chondrocyte apoptosis. XIST and OPN might be potential targets for OA treatment, which needs further in vivo experimental confirmation.
Collapse
Affiliation(s)
- Lei Li
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Guohua Lv
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Bing Wang
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lei Kuang
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
16
|
OPN gene locus is associated with the risk of knee osteoarthritis: a case-control study. Biosci Rep 2019; 39:BSR20182023. [PMID: 30777930 PMCID: PMC6393225 DOI: 10.1042/bsr20182023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/29/2019] [Accepted: 02/12/2019] [Indexed: 12/13/2022] Open
Abstract
Background/aims: Studies have demonstrated that osteopontin (OPN) was associated with the severity and development of knee osteoarthritis (OA). Methods: The purpose of this case-control study was to investigate the association between OPN gene rs11730582 polymorphism and knee OA risk in a Chinese population. Genotyping was analyzed using standard PCR and restriction fragment length polymorphism (PCR-RFLP). Results: The present study found that C allele or CC genotype of OPN gene rs11730582 polymorphism was related to decreased risk for knee OA. Furthermore, positive associations were obtained amongst the females, and body mass index (BMI) < 25 kg/m2 groups. Conclusions: To sum up, the present study reveals that OPN gene rs11730582 polymorphism decreases the risk of knee OA in Chinese Han population.
Collapse
|
17
|
Momma D, Onodera T, Homan K, Matsubara S, Sasazawa F, Furukawa J, Matsuoka M, Yamashita T, Iwasaki N. Coordinated existence of multiple gangliosides is required for cartilage metabolism. Osteoarthritis Cartilage 2019; 27:314-325. [PMID: 30471358 DOI: 10.1016/j.joca.2018.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 11/08/2018] [Accepted: 11/14/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Gangliosides, ubiquitously existing membrane components that modulate transmembrane signaling and mediate cell-to-cell and cell-to-matrix interactions, are key molecules of inflammatory and neurological disorders. However, the functions of gangliosides in the cartilage degradation process remain unclear. We investigated the functional role of gangliosides in cartilage metabolism related to osteoarthritis (OA) pathogenesis. DESIGN We generated knockout (KO) mice by targeting the β1, 4-N-acetylgalactosaminyltransferase (GalNAcT) gene, which encodes an enzyme of major gangliosides synthesis, and the GD3 synthase (GD3S) gene, which encodes an enzyme of partial gangliosides synthesis. In vivo OA and in vitro cartilage degradation models were used to evaluate the effect of gangliosides on the cartilage degradation process. RESULTS The GalNAcT and GD3S KO mice developed and grew normally; nevertheless, OA changes in these mice were enhanced with aging. The GalNAcT KO mice showed significantly enhanced OA progression compared to GD3S mice in vivo. Both GalNAcT and GD3S KO mice showed severe IL-1α-induced cartilage degradation ex vivo. Phosphorylation of MAPKs was enhanced in both GalNAcT and GD3S KOs after IL-1α stimulation. Gangliosides modulated by GalNAcT or GD3S rescued an increase of MMP-13 induced by IL-1α in mice lacking GalNAcT or GD3S after exogenous replenishment in vitro. CONCLUSION These data show that the deletion of gangliosides in mice enhanced OA development. Moreover, the gangliosides modulated by GalNAcT are important for cartilage metabolism, suggesting that GalNAcT is a potential target molecule for the development of novel OA treatments.
Collapse
Affiliation(s)
- D Momma
- Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - T Onodera
- Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - K Homan
- Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - S Matsubara
- Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - F Sasazawa
- Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - J Furukawa
- Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - M Matsuoka
- Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - T Yamashita
- Laboratory of Biochemistry, Azabu University, Graduate School of Veterinary Medicine, Sagamihara, Japan.
| | - N Iwasaki
- Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
18
|
Conditional knockdown of hyaluronidase 2 in articular cartilage stimulates osteoarthritic progression in a mice model. Sci Rep 2017; 7:7028. [PMID: 28765635 PMCID: PMC5539311 DOI: 10.1038/s41598-017-07376-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/27/2017] [Indexed: 01/02/2023] Open
Abstract
The catabolism of hyaluronan in articular cartilage remains unclear. The aims of this study were to investigate the effects of hyaluronidase 2 (Hyal2) knockdown in articular cartilage on the development of osteoarthritis (OA) using genetic manipulated mice. Destabilization of the medial meniscus (DMM) model of Col2a promoter specific conditional Hyal2 knockout (Hyal−/−) mice was established and examined. Age related and DMM induced alterations of articular cartilage of knee joint were evaluated with modified Mankin score and immunohistochemical staining of MMP-13, ADAMTS-5, KIAA11199, and biotinylated- hyaluronan binding protein staining in addition to histomorphometrical analyses. Effects of Hyal2 suppression were also analyzed using explant culture of an IL-1α induced articular cartilage degradation model. The amount and size of hyaluronan in articular cartilage were higher in Hyal2−/− mice. Hyal2−/− mice exhibited aggravated cartilage degradation in age-related and DMM induced mice. MMP-13 and ADAMTS-5 positive chondrocytes were significantly higher in Hyal2−/− mice. Articular cartilage was more degraded in explant cultures obtained from Hyal2−/− mice. Knockdown of Hyal2 in articular cartilage induced OA development and progression possibly mediated by an imbalance of HA metabolism. This suggests that Hyal2 knockdown exhibits mucopolysaccharidosis-like OA change in articular cartilage similar to Hyal1 knockdown.
Collapse
|
19
|
Depletion of Gangliosides Enhances Articular Cartilage Repair in Mice. Sci Rep 2017; 7:43729. [PMID: 28252046 PMCID: PMC5333092 DOI: 10.1038/srep43729] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 01/27/2017] [Indexed: 12/23/2022] Open
Abstract
Elucidation of the healing mechanisms in damaged tissues is a critical step for establishing breakthroughs in tissue engineering. Articular cartilage is clinically one of the most successful tissues to be repaired with regenerative medicine because of its homogeneous extracellular matrix and few cell types. However, we only poorly understand cartilage repair mechanisms, and hence, regenerated cartilage remains inferior to the native tissues. Here, we show that glycosylation is an important process for hypertrophic differentiation during articular cartilage repair. GM3, which is a precursor molecule for most gangliosides, was transiently expressed in surrounding damaged tissue, and depletion of GM3 synthase enhanced cartilage repair. Gangliosides also regulated chondrocyte hypertrophy via the Indian hedgehog pathway. These results identify a novel mechanism of cartilage healing through chondrocyte hypertrophy that is regulated by glycosylation. Manipulation of gangliosides and their synthases may have beneficial effects on articular cartilage repair.
Collapse
|
20
|
Blaker CL, Clarke EC, Little CB. Using mouse models to investigate the pathophysiology, treatment, and prevention of post-traumatic osteoarthritis. J Orthop Res 2017; 35:424-439. [PMID: 27312470 DOI: 10.1002/jor.23343] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/14/2016] [Indexed: 02/04/2023]
Abstract
Post-traumatic osteoarthritis (PTOA) is defined by its development after joint injury. Factors contributing to the risk of PTOA occurring, the rate of progression, and degree of associated disability in any individual, remain incompletely understood. What constitutes an "OA-inducing injury" is not defined. In line with advances in the traumatic brain injury field, we propose the scope of PTOA-inducing injuries be expanded to include not only those causing immediate structural damage and instability (Type I), but also those without initial instability/damage from moderate (Type II) or minor (Type III) loading severity. A review of the literature revealed this full spectrum of potential PTOA subtypes can be modeled in mice, with 27 Type I, 6 Type II, and 4 Type III models identified. Despite limitations due to cartilage anatomy, joint size, and bio-fluid availability, mice offer advantages as preclinical models to study PTOA, particularly genetically modified strains. Histopathology was the most common disease outcome, cartilage more frequently studied than bone or synovium, and meniscus and ligaments rarely evaluated. Other methods used to examine PTOA included gene expression, protein analysis, and imaging. Despite the major issues reported by patients being pain and biomechanical dysfunction, these were the least commonly measured outcomes in mouse models. Informative correlations of simultaneously measured disease outcomes in individual animals, was rarely done in any mouse PTOA model. This review has identified knowledge gaps that need to be addressed to increase understanding and improve prevention and management of PTOA. Preclinical mouse models play a critical role in these endeavors. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:424-439, 2017.
Collapse
Affiliation(s)
- Carina L Blaker
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Level 10, Kolling Institute B6, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, The Royal North Shore Hospital, St. Leonards, New South Wales, 2065, Australia.,Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| | - Elizabeth C Clarke
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Level 10, Kolling Institute B6, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, The Royal North Shore Hospital, St. Leonards, New South Wales, 2065, Australia
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| |
Collapse
|
21
|
Sanchis-Gomar F, Santos-Lozano A, Pareja-Galeano H, Garatachea N, Alis R, Fiuza-Luces C, Morán M, Emanuele E, Lucia A. Galectin-3, osteopontin and successful aging. Clin Chem Lab Med 2017; 54:873-7. [PMID: 26479349 DOI: 10.1515/cclm-2015-0821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 09/15/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Individuals who reach exceptional longevity (100+ years of age) free of common chronic age diseases (i.e. 'dodgers') arguably represent the paradigm of successful aging in humans. As such, identification of potential biomarkers associated with this phenomenon is of medical interest. METHODS We measured serum levels of galectin-3 and osteopontin, both of which have been shown to be linked with major chronic or aging-related disorders in younger populations, in centenarian 'dodgers' (n=81; 40 men; 100-104 years) and healthy controls (n=41; 24 men, 70-80 years). RESULTS Both biomarkers showed significantly lower values (p<0.001) in the former (galectin-3: 2.4±1.7 vs. 4.8±2.8 ng/mL; osteopontin: 38.1±27.7 vs. 72.6±33.1 μg/mL). Logistic regression analysis identified the combination of these two biomarkers as a significant predictor variable associated with successful aging regardless of sex (p<0.001). The area under the curve (AUC) classified the ability of galectin-3 and osteopontin to predict the likelihood of successful aging as 'fair' (AUC=0.75) and 'good' (AUC=0.80), respectively. Particularly, the combination of the two biomarkers showed good discriminatory power for successful aging (AUC=0.86), with sensitivity=83% and specificity=74%. CONCLUSIONS Lower levels of both galectin-3 and osteopontin are associated with successful aging, representing potential biomarkers of this condition. Our cross-sectional data must be however approached with caution. Further research is necessary to replicate the present preliminary results in other cohorts and to identify the potential use of galectin-3 and osteopontin as potential targets (or at least predictors) in future personalized anti-aging therapies.
Collapse
|
22
|
Gao SG, Yu Y, Zeng C, Lu ST, Tian J, Cheng C, Li LJ, Lei GH. Phosphorylation of osteopontin has proapoptotic and proinflammatory effects on human knee osteoarthritis chondrocytes. Exp Ther Med 2016; 12:3488-3494. [PMID: 27882184 DOI: 10.3892/etm.2016.3784] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/09/2016] [Indexed: 12/18/2022] Open
Abstract
The aim of the present study was to investigate the effects of phosphorylated osteopontin (p-OPN) on apoptosis and pro-inflammatory cytokine expression in human knee osteoarthritis (OA) chondrocytes. Human knee OA chondrocytes obtained from patients who underwent total knee arthroplasty were treated with p-OPN, OPN or buffer. Reverse transcription quantitative-polymerase chain reaction (RT-qPCR) and western blot analysis were used to assess the expression levels of proinflammatory factors, including interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6 and nuclear factor (NF)-κB. Apoptosis of human knee OA chondrocytes was detected by Annexin V-fluorescein isothiocyanate/propidium iodide flow cytometry. Compared with the controls, chondrocytes treated with OPN exhibited higher mRNA and protein expression levels of proinflammatory factors (IL-1β, TNF-α, IL-6 and NF-κB), and a higher percentage of apoptotic chondrocytes. Furthermore, chondrocytes treated with p-OPN exhibited the highest mRNA and protein expression levels of proinflammatory factors (IL-1β, TNF-α, IL-6, NF-κB) and the highest percentage of apoptotic chondrocytes. p-OPN induces chondrocyte apoptosis and proinflammatory factor release, which suggests that p-OPN may contribute to OA pathogenesis, and inhibition of p-OPN may provide a novel effective strategy to slow or halt OA progression.
Collapse
Affiliation(s)
- Shu-Guang Gao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yang Yu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China; Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Chao Zeng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Shi-Tao Lu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China; Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Jian Tian
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Chao Cheng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China; Department of Orthopedics, Yiyang Central Hospital, Yiyang, Hunan 413000, P.R. China
| | - Liang-Jun Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China; Department of Orthopedics, Changsha Central Hospital, Changsha, Hunan 410004, P.R. China
| | - Guang-Hua Lei
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China; Research Center of Clinical Skills of Joint Surgery of Hunan Province, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
23
|
Osteopontin Promotes Expression of Matrix Metalloproteinase 13 through NF- κB Signaling in Osteoarthritis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6345656. [PMID: 27656654 PMCID: PMC5021466 DOI: 10.1155/2016/6345656] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/07/2016] [Indexed: 12/03/2022]
Abstract
Osteopontin (OPN) is associated with the severity and progression of osteoarthritis (OA); however, the mechanism of OPN in the pathogenesis of OA is unknown. In this study, we found that OA patients had higher abundance of OPN and matrix metalloproteinase 13 (MMP13). In chondrocytes, we showed that OPN promoted the production of MMP13 and activation of NF-κB pathway by increasing the abundance of p65 and phosphorylated p65 and translocation of p65 protein from cytoplasm to nucleus. Notably, inhibition of NF-κB pathway by inhibitor suppressed the production of MMP13 induced by OPN treatment. In conclusion, OPN induces production of MMP13 through activation of NF-κB pathway.
Collapse
|
24
|
Li Y, Xiao W, Sun M, Deng Z, Zeng C, Li H, Yang T, Li L, Luo W, Lei G. The Expression of Osteopontin and Wnt5a in Articular Cartilage of Patients with Knee Osteoarthritis and Its Correlation with Disease Severity. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9561058. [PMID: 27556044 PMCID: PMC4983346 DOI: 10.1155/2016/9561058] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/08/2016] [Accepted: 06/28/2016] [Indexed: 01/22/2023]
Abstract
Objectives. This study is undertaken to investigate the relation between osteopontin (OPN) and Wnt5a expression in the progression and pathogenesis of osteoarthritis (OA). Methods. 50 cartilage tissues from knee OA patients and normal controls were divided into four groups of severe, moderate, minor, and normal lesions based on the modified grading system of Mankin. Immunohistochemistry and real-time PCR were utilized to analyze the OPN and Wnt5a expression in articular cartilage. Besides, the relations between OPN and Wnt5a expression and the severity of OA were explored. Results. OPN and Wnt5a could be identified in four groups' tissues. Amongst the groups, the intercomparisons of OPN expression levels showed statistical differences (P < 0.01). Besides, the intercomparisons of Wnt5a expression degrees showed statistical differences (P < 0.05), except that between the minor and normal groups (P > 0.05). The scores of Mankin were demonstrated to relate to OPN expression (r = -0.847, P < 0.01) and Wnt5a expression in every group (r = -0.843, P < 0.01). Also, a positive correlation can be observed between the OPN and Wnt5a expression (r = 0.769, P < 0.01). Conclusion. In articular cartilage, the expressions of OPN and Wnt5a are positively related to progressive damage of knee OA joint. The correlation between Wnt5a and OPN might be important to the progression and pathogenesis of knee OA.
Collapse
Affiliation(s)
- Yusheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wenfeng Xiao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Minghua Sun
- Department of Orthopaedics, Affiliated Hospital, Logistics University of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Zhenhan Deng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Chao Zeng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hui Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Tuo Yang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Liangjun Li
- Department of Joint Surgery, Changsha Central Hospital, Changsha, Hunan 410004, China
| | - Wei Luo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Guanghua Lei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
25
|
Lakin BA, Patel H, Holland C, Freedman JD, Shelofsky JS, Snyder BD, Stok KS, Grinstaff MW. Contrast-enhanced CT using a cationic contrast agent enables non-destructive assessment of the biochemical and biomechanical properties of mouse tibial plateau cartilage. J Orthop Res 2016; 34:1130-8. [PMID: 26697956 PMCID: PMC5556386 DOI: 10.1002/jor.23141] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/21/2015] [Indexed: 02/04/2023]
Abstract
Mouse models of osteoarthritis (OA) are commonly used to study the disease's pathogenesis and efficacy of potential treatments. However, measuring the biochemical and mechanical properties of articular cartilage in these models currently requires destructive and time-consuming histology and mechanical testing. Therefore, we examined the feasibility of using contrast-enhanced CT (CECT) to rapidly and non-destructively image and assess the glycosaminoglycan (GAG) content. Using three ex vivo C57BL/6 mouse tibial plateaus, we determined the time required for the cationic contrast agent CA4+ to equilibrate in the cartilage. The whole-joint coefficient of friction (μ) of 10 mouse knees (some digested with Chondroitenase ABC to introduce variation in GAG) was evaluated using a modified Stanton pendulum. For both the medial and lateral tibial plateau cartilage of these knees, linear regression was used to compare the equilibrium CECT attenuations to μ, as well as each side's indentation equilibrium modulus (E) and Safranin-O determined GAG content. CA4+ equilibrated in the cartilage in 30.9 ± 0.95 min (mean ± SD, tau value of 6.17 ± 0.19 min). The mean medial and lateral CECT attenuation was correlated with μ (R(2) = 0.69, p < 0.05), and the individual medial and lateral CECT attenuations correlated with their respective GAG contents (R(2) ≥ 0.63, p < 0.05) and E (R(2) ≥ 0.63, p < 0.05). In conclusion, CECT using CA4+ is a simple, non-destructive technique for three-dimensional imaging of ex vivo mouse cartilage, and significant correlations between CECT attenuation and GAG, E, and μ are observed. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1130-1138, 2016.
Collapse
Affiliation(s)
- Benjamin A. Lakin
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA,Department of Biomedical Engineering, Boston University, Boston, MA
| | - Harsh Patel
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA,Department of Biomedical Engineering, Boston University, Boston, MA
| | - Conor Holland
- Department of Biomedical Engineering, Boston University, Boston, MA
| | - Jonathan D. Freedman
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA,Department of Pharmacology and Experimental Therapeutics, Boston University, Boston, MA
| | - Joshua S. Shelofsky
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA,Department of Biomedical Engineering, Boston University, Boston, MA
| | - Brian D. Snyder
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA,Department of Orthopaedic Surgery, Children’s Hospital, Boston, MA,Address correspondence and reprint requests to: Mark W. Grinstaff, Ph.D., Departments of Biomedical Engineering and Chemistry, Boston University, 590 Commonwealth Ave, Boston MA 02215, OR Brian D. Snyder, M.D., PhD., Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, 1 Overland Street, RN 115, Boston MA 02215, OR Kathryn S. Stok, Ph.D., Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, Zurich, 8093, Switzerland,
| | - Kathryn S. Stok
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland,Scanco Medical AG, Brüttisellen, Switzerland,Address correspondence and reprint requests to: Mark W. Grinstaff, Ph.D., Departments of Biomedical Engineering and Chemistry, Boston University, 590 Commonwealth Ave, Boston MA 02215, OR Brian D. Snyder, M.D., PhD., Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, 1 Overland Street, RN 115, Boston MA 02215, OR Kathryn S. Stok, Ph.D., Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, Zurich, 8093, Switzerland,
| | - Mark W. Grinstaff
- Department of Biomedical Engineering, Boston University, Boston, MA,Department of Chemistry, Boston University, Boston, MA,Address correspondence and reprint requests to: Mark W. Grinstaff, Ph.D., Departments of Biomedical Engineering and Chemistry, Boston University, 590 Commonwealth Ave, Boston MA 02215, OR Brian D. Snyder, M.D., PhD., Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, 1 Overland Street, RN 115, Boston MA 02215, OR Kathryn S. Stok, Ph.D., Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, Zurich, 8093, Switzerland,
| |
Collapse
|
26
|
Tarquini C, Mattera R, Mastrangeli F, Agostinelli S, Ferlosio A, Bei R, Orlandi A, Tarantino U. Comparison of tissue transglutaminase 2 and bone biological markers osteocalcin, osteopontin and sclerostin expression in human osteoporosis and osteoarthritis. Amino Acids 2016; 49:683-693. [PMID: 27357308 DOI: 10.1007/s00726-016-2290-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/22/2016] [Indexed: 01/18/2023]
Abstract
Osteoporosis (OP) and osteoarthritis (OA) are the most common joint diseases, with a high incidence in the elderly population. OP is characterized by trabecular bone remodeling and reabsorption, whereas articular cartilage and subchondral bone remodeling are major features of OA. Although classically considered as independent or even conflicting processes, clinical coexistence of OP and OA was recently described. Transglutaminase 2 (TG2) expression is considered a biomarker of OA, but its role in osteoporotic bone remodeling is still uncertain. We investigated TG2 and bone biological markers (Osteocalcin, Osteopontin, and Sclerostin) in osteoporotic and osteoarthritic osteocartilagineous tissue (n = 54) and human chondrocyte cultures in vitro by immunohistochemistry, immunofluorescence and RT-PCR. Histomorphometric evaluation of bone trabecular remodeling was also performed. In cartilage, TG2 expression was faint in control and OP and significantly less than in OA and OP + OA chondrocytes; the opposite was found for Osteocalcin, whereas Osteopontin and Sclerostin expression was similar. In the subchondral trabecular bone, osteocytes/osteoblasts TG2 expression was slight and similar comparing control, OP, OA, and OP + OA group, whereas Osteocalcin and Osteopontin expression was lower in OP compared to control, OA and OP + OA. Increased TG2 and reduced Osteocalcin expression were maintained in human osteoarthritic chondrocytes in vitro. Histomorphometric analysis confirmed reduced trabecular bone mass in OP and OP + OA compared with OA patients. TG2 represented a suitable biomarker of osteoarthritic chondrocyte activation, whereas osteocalcin and osteopontin characterized osteoporotic osteocyte/osteoblast changes; differences were lost in OP + OA patients, suggesting careful consideration when coexistence of the two diseases occurs.
Collapse
Affiliation(s)
- Chiara Tarquini
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy.,Department of Orthopedics and Traumatology, Tor Vergata University of Rome, Rome, Italy
| | - Rosanna Mattera
- General Pathology, Department of Clinical Sciences and Translational Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Francesca Mastrangeli
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy.,Department of Orthopedics and Traumatology, Tor Vergata University of Rome, Rome, Italy
| | - Sara Agostinelli
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Amedeo Ferlosio
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Roberto Bei
- General Pathology, Department of Clinical Sciences and Translational Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Augusto Orlandi
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy. .,Policlinic of Tor Vergata of Rome, Rome, Italy.
| | - Umberto Tarantino
- Department of Orthopedics and Traumatology, Tor Vergata University of Rome, Rome, Italy.,Policlinic of Tor Vergata of Rome, Rome, Italy
| |
Collapse
|
27
|
Liu R, Liu Q, Wang K, Dang X, Zhang F. Comparative analysis of gene expression profiles in normal hip human cartilage and cartilage from patients with necrosis of the femoral head. Arthritis Res Ther 2016; 18:98. [PMID: 27146865 PMCID: PMC4857375 DOI: 10.1186/s13075-016-0991-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 04/07/2016] [Indexed: 12/02/2022] Open
Abstract
Background The pathogenesis of necrosis of the femoral head (NFH) remains elusive. Limited studies were conducted to investigate the molecular mechanism of hip articular cartilage damage in NFH. We conducted genome-wide gene expression profiling of hip articular cartilage with NFH. Methods Hip articular cartilage specimens were collected from 18 NFH patients and 18 healthy controls. Gene expression profiling of NFH articular cartilage was carried out by Agilent Human 4x44K Gene Expression Microarray chip. Differently expressed genes were identified using the significance analysis of microarrays (SAM) software. Gene Ontology (GO) enrichment analysis of differently expressed genes was performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID). Significantly differently expressed genes in the microarray experiment were selected for quantitative real-time PCR (qRT-PCR) and immunohistochemical validation. Results SAM identified 27 differently expressed genes in NFH articular cartilage, functionally involved in extracellular matrix, cytokines, growth factors, cell cycle and apoptosis. The expression patterns of the nine validation genes in qRT-PCR were consistent with that in proteinaceous extracellular matrix (false discovery rate (FDR) = 3.22 × 10-5), extracellular matrix (FDR = 5.78 × 10-5), extracellular region part (FDR = 1.28 × 10-4), collagen (FDR = 3.22 × 10-4), extracellular region (FDR = 4.78 × 10-4) and platelet-derived growth factor binding (FDR = 5.23 × 10-4). Conclusions This study identified a set of differently expressed genes, implicated in articular cartilage damage in NFH. Our study results may provide novel insight into the pathogenesis and rationale of therapies for NFH. Electronic supplementary material The online version of this article (doi:10.1186/s13075-016-0991-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruiyu Liu
- Department of Orthopedics, the Second Affiliated Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China.
| | - Qi Liu
- Department of Orthopedics, the Second Affiliated Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Kunzheng Wang
- Department of Orthopedics, the Second Affiliated Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Xiaoqian Dang
- Department of Orthopedics, the Second Affiliated Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China.
| |
Collapse
|
28
|
Veronesi F, Della Bella E, Cepollaro S, Brogini S, Martini L, Fini M. Novel therapeutic targets in osteoarthritis: Narrative review on knock-out genes involved in disease development in mouse animal models. Cytotherapy 2016; 18:593-612. [DOI: 10.1016/j.jcyt.2016.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/21/2016] [Accepted: 02/04/2016] [Indexed: 01/17/2023]
|
29
|
Biomarkers of Chondrocyte Apoptosis and Autophagy in Osteoarthritis. Int J Mol Sci 2015; 16:20560-75. [PMID: 26334269 PMCID: PMC4613218 DOI: 10.3390/ijms160920560] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 08/21/2015] [Accepted: 08/25/2015] [Indexed: 01/04/2023] Open
Abstract
Cell death with morphological and molecular features of apoptosis has been detected in osteoarthritic (OA) cartilage, which suggests a key role for chondrocyte death/survival in the pathogenesis of OA. Identification of biomarkers of chondrocyte apoptosis may facilitate the development of novel therapies that may eliminate the cause or, at least, slow down the degenerative processes in OA. The aim of this review was to explore the molecular markers and signals that induce chondrocyte apoptosis in OA. A literature search was conducted in PubMed, Scopus, Web of Science and Google Scholar using the keywords chondrocyte death, apoptosis, osteoarthritis, autophagy and biomarker. Several molecules considered to be markers of chondrocyte apoptosis will be discussed in this brief review. Molecular markers and signalling pathways associated with chondroycte apoptosis may turn out to be therapeutic targets in OA and approaches aimed at neutralizing apoptosis-inducing molecules may at least delay the progression of cartilage degeneration in OA.
Collapse
|
30
|
Cheng C, Zhang FJ, Tian J, Tu M, Xiong YL, Luo W, Li YS, Song BB, Gao SG, Lei GH. Osteopontin inhibits HIF-2α mRNA expression in osteoarthritic chondrocytes. Exp Ther Med 2015; 9:2415-2419. [PMID: 26136997 DOI: 10.3892/etm.2015.2434] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 03/26/2015] [Indexed: 12/16/2022] Open
Abstract
The aim of the present study was to investigate the in vitro effect of osteopontin (OPN) on the expression of hypoxia-inducible factor-2α (HIF-2α) in chondrocytes and the role of OPN in osteoarthritis (OA). Cartilage was purified from the tibial surfaces of patients with OA of the knee and cultured in vitro to obtain chondrocytes. Recombinant human OPN (rhOPN) and OPN small interfering RNA (siRNA) were used to treat the chondrocytes, and the changes in the expression levels of the HIF-2α gene were measured. An anti-CD44 blocking monoclonal antibody (mAb) was used to determine the probable ligand-receptor interactions. Reverse transcription-quantitative polymerase chain reaction assays were designed and validated with SYBR® Green dyes for the simultaneous quantification of the mRNA expression levels of OPN and HIF-2α. The mRNA expression level of HIF-2α was markedly decreased in the rhOPN-treated group compared with that in the control group; by contrast, OPN siRNA increased HIF-2α gene expression. CD44 blocking mAb suppressed the inhibitory effect of OPN on HIF-2α mRNA expression. The results of the present study suggest that OPN may play a protective role in OA by inhibiting HIF-2α gene expression in osteoarthritic chondrocytes through CD44 interaction.
Collapse
Affiliation(s)
- Chao Cheng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Fang-Jie Zhang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Jian Tian
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Min Tu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Yi-Lin Xiong
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Wei Luo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Yu-Sheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Bing-Bing Song
- Hunan Province Environmental Monitoring Center, Changsha, Hunan 410019, P.R. China
| | - Shu-Guang Gao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China ; Orthopaedics Institute of Central South University, Changsha, Hunan 410008, P.R. China
| | - Guang-Hua Lei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China ; Orthopaedics Institute of Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
31
|
Min TU, Sheng LY, Chao C, Jian T, Guang GS, Hua LG. Correlation between osteopontin and caveolin-1 in the pathogenesis and progression of osteoarthritis. Exp Ther Med 2015; 9:2059-2064. [PMID: 26136936 DOI: 10.3892/etm.2015.2433] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 03/17/2015] [Indexed: 11/06/2022] Open
Abstract
Previous studies have produced contradictory results with regard to the role of osteopontin (OPN) and caveolin-1 in the pathology of osteoarthritis (OA). Thus, the aim of the present study was to investigate the correlation between OPN and caveolin-1 in the pathogenesis and progression of OA. Cartilage tissue samples were obtained from 50 individuals, of which 40 had been diagnosed with OA and 10 were normal healthy individuals. The samples were ascribed to four groups, namely the normal, minor, moderate and severe groups, on the basis of the improved Mankin grading system. Immunohistochemistry was applied to analyse the expression of OPN and caveolin-1. OPN and caveolin-1 were detected in the tissues of all four groups. The mutual comparisons of OPN expression levels among the groups revealed statistically significant differences (P<0.05). In addition, the mutual comparisons of caveolin-1 expression levels among the four groups demonstrated statistically significant differences (P<0.05), with the exception of that between the moderate and severe groups (P>0.05). Improved Mankin grading system scores were shown to correlate with the average grey level of OPN expression in each group (r=-0.824, P<0.01) and the average grey level of caveolin-1 expression (r=0.725, P<0.01). Furthermore, a statistically significant negative correlation was observed between the average grey levels of OPN and caveolin-1 expression (r=-0.676, P﹤0.05). Therefore, the results of the present study indicated that the correlation between OPN and caveolin-1 may play a significant role in the pathogenesis and progression of OA.
Collapse
Affiliation(s)
- T U Min
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Li Yu Sheng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Cheng Chao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Tian Jian
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Gao Shu Guang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Lei Guang Hua
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
32
|
Abula K, Muneta T, Miyatake K, Yamada J, Matsukura Y, Inoue M, Sekiya I, Graf D, Economides AN, Rosen V, Tsuji K. Elimination of BMP7 from the developing limb mesenchyme leads to articular cartilage degeneration and synovial inflammation with increased age. FEBS Lett 2015; 589:1240-8. [PMID: 25889639 DOI: 10.1016/j.febslet.2015.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 03/25/2015] [Accepted: 04/05/2015] [Indexed: 12/18/2022]
Abstract
While osteo- and chondro-inductive activities of recombinant human bone morphogenetic protein 7 are well established, evaluation of the role of endogenous BMP7 in skeletal homeostasis has been hampered by perinatal lethality in BMP7 knockout mice. Here, we examined physiological roles of endogenous BMP7 in joint homeostasis and showed that proteoglycan contents in articular cartilage were significantly reduced in the absence of BMP7. Loss of BMP7 did not affect survival of articular cartilage cells, but resulted in reduced expression of aggrecan and enhanced expression of matrix metalloproteinase 13. We also found extensive synovial hyperplasia and enhanced expression of Activin A. These findings suggest that locally produced BMP7 is prerequisite for postnatal synovial joint homeostasis and may be involved in osteoarthritic changes in adults.
Collapse
Affiliation(s)
- Kahaer Abula
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Japan
| | - Takeshi Muneta
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Japan
| | - Kazumasa Miyatake
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Japan
| | - Jun Yamada
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Japan
| | - Yu Matsukura
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Japan
| | - Makiko Inoue
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Japan
| | - Daniel Graf
- School of Dentistry, University of Alberta, Canada
| | | | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, United States
| | - Kunikazu Tsuji
- Department of Cartilage Regeneration, Graduate School, Tokyo Medical and Dental University, Japan.
| |
Collapse
|
33
|
Fu M, Huang G, Zhang Z, Liu J, Zhang Z, Huang Z, Yu B, Meng F. Expression profile of long noncoding RNAs in cartilage from knee osteoarthritis patients. Osteoarthritis Cartilage 2015; 23:423-32. [PMID: 25524778 DOI: 10.1016/j.joca.2014.12.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/08/2014] [Accepted: 12/01/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Long noncoding RNAs (lncRNAs) have emerged as a novel class of regulatory molecules involved in various biological processes, but their role in osteoarthritis (OA) remains unknown. Therefore, we aimed to reveal lncRNAs expression profile in human osteoarthritic cartilage and explore the potential functions of lncRNAs in OA. METHODS The expression profiles of lncRNAs and mRNAs in OA cartilage were obtained using microarray and verified by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Bioinformatics analyses including lncRNA classification and subgroup analysis, gene ontology (GO) analysis, pathway analysis, network analysis and target prediction were performed. RESULTS There were 3007 upregulated lncRNAs and 1707 downregulated lncRNAs in OA cartilage compared with normal samples (Fold change ≥ 2.0). In addition, 2136 mRNAs were upregulated and 2,241 mRNAs were downregulated in OA cartilage (Fold change ≥ 2.0). The qRT-PCR results of six dysregulated lncRNAs were consistent with the microarray data. 106 lncRNAs and 291 mRNAs composed the coding-non-coding gene co-expression network (CNC network). In the 600 top differentially expressed lncRNAs, 48 lncRNAs were predicted to have more than five cis-regulated target genes and up to 530 lncRNAs might regulate their trans target genes through collaboration with transcriptional factor (TF) SP1. The positive correlation between lncRNA uc.343 and predicted target homeobox gene C8 (HOXC8) expression in SW1353 cells treating with interleukin-1 beta confirmed the target prediction to some extent. CONCLUSIONS This study revealed the expression pattern of lncRNAs in OA cartilage and predicted the potential function and targets, which indicated that lncRNAs may be new biomarkers for diagnosis or novel therapeutic targets of OA.
Collapse
Affiliation(s)
- M Fu
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - G Huang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Z Zhang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - J Liu
- Institute for Advancing Translational Medicine in Bone & Joint Disease, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Z Zhang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Z Huang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - B Yu
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - F Meng
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
34
|
Gao SG, Zeng C, Song Y, Tian J, Cheng C, Yang T, Li H, Zhang FJ, Lei GH. Effect of osteopontin on the mRNA expression of ADAMTS4 and ADAMTS5 in chondrocytes from patients with knee osteoarthritis. Exp Ther Med 2015; 9:1979-1983. [PMID: 26136925 DOI: 10.3892/etm.2015.2310] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 02/11/2015] [Indexed: 01/07/2023] Open
Abstract
Previous studies have demonstrated that osteopontin (OPN) levels are elevated in the synovial fluid and articular cartilage, and are associated with the severity of knee osteoarthritis (OA). However, the role of OPN in the pathogenesis of OA has yet to be elucidated. The present study aimed to investigate the effects of OPN on the expression of the aggrecanases, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)4 and ADAMTS5, in human OA chondrocytes, as they serve a key function in aggrecan degradation. Human OA chondrocytes were obtained from the knees of 16 patients with OA, and subsequently cultured in a monolayer. The chondrocytes were divided into three groups, which included the control (no treatment), N-OPN (treated with 100 ng/ml OPN, the normal circulating OPN concentration) and the H-OPN groups (treated with 1 µg/ml OPN, a high OPN concentration). Reverse transcription-quantitative polymerase chain reaction was performed to quantify the relative mRNA expression levels of ADAMTS4, ADAMTS5 and aggrecan in the chondrocytes. The mRNA expression levels of ADAMTS4 were significantly reduced in the N-OPN and H-OPN groups when compared with the control group (P<0.0001). In addition, the mRNA expression levels of ADAMTS4 were lower in the H-OPN group when compared with the N-OPN group (P<0.001). However, no statistically significant difference was observed in the relative mRNA expression levels of ADAMTS5 among the three groups (P>0.05). Furthermore, the mRNA expression levels of aggrecan were higher in the N-OPN and H-OPN groups when compared with the control group (P<0.0001), and a statistically significant difference was observed between the N-OPN and H-OPN groups with regard to the mRNA expression of aggrecan (P<0.0001). These results demonstrated that OPN may exert a protective effect in human OA chondrocytes against aggrecan degradation by suppressing the expression of ADAMTS4.
Collapse
Affiliation(s)
- Shu-Guang Gao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China ; Orthopedics Institute, Central South University, Changsha, Hunan 410008, P.R. China
| | - Chao Zeng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yang Song
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China ; Department of Orthopedics, Linyi People's Hospital, Linyi, Shandong 276001, P.R. China
| | - Jian Tian
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Chao Cheng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Tuo Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hui Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Fang-Jie Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Guang-Hua Lei
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China ; Orthopedics Institute, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
35
|
Heppner JM, Zaucke F, Clarke LA. Extracellular matrix disruption is an early event in the pathogenesis of skeletal disease in mucopolysaccharidosis I. Mol Genet Metab 2015; 114:146-55. [PMID: 25410057 DOI: 10.1016/j.ymgme.2014.09.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 11/18/2022]
Abstract
Progressive skeletal and connective tissue disease represents a significant clinical burden in all of the mucopolysaccharidoses. Despite the introduction of enzyme replacement strategies for many of the mucopolysaccharidoses, symptomatology related to bone and joint disease appears to be recalcitrant to current therapies. In order to address these unmet medical needs a clearer understanding of skeletal and connective tissue disease pathogenesis is required. Historically the pathogenesis of the mucopolysaccharidoses has been assumed to directly relate to progressive storage of glycosaminoglycans. It is now apparent for many lysosomal storage disorders that more complex pathogenic mechanisms underlie patients' clinical symptoms. We have used proteomic and genome wide expression studies in the murine mucopolysaccharidosis I model to identify early pathogenic events occurring in micro-dissected growth plate tissue. Studies were conducted using 3 and 5-week-old mice thus representing a time at which no obvious morphological changes of bone or joints have taken place. An unbiased iTRAQ differential proteomic approach was used to identify candidates followed by validation with multiple reaction monitoring mass spectrometry and immunohistochemistry. These studies reveal significant decreases in six key structural and signaling extracellular matrix proteins; biglycan, fibromodulin, PRELP, type I collagen, lactotransferrin, and SERPINF1. Genome-wide expression studies in embryonic day 13.5 limb cartilage and 5 week growth plate cartilage followed by specific gene candidate qPCR studies in the 5week growth plate identified fourteen significantly deregulated mRNAs (Adamts12, Aspn, Chad, Col2a1, Col9a1, Hapln4, Lum, Matn1, Mmp3, Ogn, Omd, P4ha2, Prelp, and Rab32). The involvement of biglycan, PRELP and fibromodulin; all members of the small leucine repeat proteoglycan family is intriguing, as this protein family is implicated in the pathogenesis of late onset osteoarthritis. Taken as a whole, our data indicates that alteration of the extracellular matrix represents a very early event in the pathogenesis of the mucopolysaccharidoses and implies that biomechanical failure of chondro-osseous tissue may underlie progressive bone and joint disease symptoms. These findings have important therapeutic implications.
Collapse
Affiliation(s)
- Jonathan M Heppner
- Department of Medical Genetics, University of British Columbia, 950 West 28 Avenue, Vancouver, British Columbia V5Z-4H4, Canada; The Child and Family Research Institute, University of British Columbia, 950 West 28 Avenue, Vancouver, British Columbia V5Z-4H4, Canada
| | - Frank Zaucke
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany; Cologne Center for Musculoskeletal Biomechanics, Medical Faculty, University of Cologne, Cologne, Germany
| | - Lorne A Clarke
- Department of Medical Genetics, University of British Columbia, 950 West 28 Avenue, Vancouver, British Columbia V5Z-4H4, Canada; The Child and Family Research Institute, University of British Columbia, 950 West 28 Avenue, Vancouver, British Columbia V5Z-4H4, Canada.
| |
Collapse
|
36
|
Tian J, Zhang FJ, Lei GH. Role of integrins and their ligands in osteoarthritic cartilage. Rheumatol Int 2014; 35:787-98. [PMID: 25261047 DOI: 10.1007/s00296-014-3137-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 09/17/2014] [Indexed: 12/31/2022]
Abstract
Osteoarthritis (OA) is a degenerative disease, which is characterized by articular cartilage destruction, and mainly affects the older people. The extracellular matrix (ECM) provides a vital cellular environment, and interactions between the cell and ECM are important in regulating many biological processes, including cell growth, differentiation, and survival. However, the pathogenesis of this disease is not fully elucidated, and it cannot be cured totally. Integrins are one of the major receptors in chondrocytes. A number of studies confirmed that the chondrocytes express several integrins including α5β1, αVβ3, αVβ5, α6β1, α1β1, α2β1, α10β1, and α3β1, and some integrins ligands might act as the OA progression biomarkers. This review focuses on the functional role of integrins and their extracellular ligands in OA progression, especially OA cartilage. Clear understanding of the role of integrins and their ligands in OA cartilage may have impact on future development of successful therapeutic approaches to OA.
Collapse
Affiliation(s)
- Jian Tian
- Department of Orthopaedics, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, China
| | | | | |
Collapse
|
37
|
Jing J, Hinton RJ, Jing Y, Liu Y, Zhou X, Feng JQ. Osterix couples chondrogenesis and osteogenesis in post-natal condylar growth. J Dent Res 2014; 93:1014-21. [PMID: 25192899 DOI: 10.1177/0022034514549379] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Osterix (Osx) is a transcription factor essential for osteoblast differentiation and bone mineralization. Although there are indications that Osx also plays a regulatory role in cartilage, this has not been well-studied. The goal of this study was to define the function of Osx in the post-natal growth of the secondary cartilage at the mandibular condyle. Conditional Osx knockout (cKO) mice that were missing Osx only in cartilage were generated by crossing Osx-loxP mice to Aggrecan-Cre mice. Cre activity was induced by tamoxifen injection twice a week from day 12 to 1 mo of age, and specimens were collected at 1 and 5 mo of age. At 1 mo of age, the condylar hypertrophic chondrocyte zone in the cKO-mice was > three-fold thicker than that in the age-matched control, with little sign of endochondral bone formation. Immunohistochemistry and analysis of histological data revealed a defect in the coupling of chondrogenesis and osteogenesis in the cKO mice. In five-month-old mice examined to address whether late-stage removal of the Cre-deletion event would alleviate the phenotype, the hypertrophic chondrocyte zone in the cKO condyles was considerably larger than in wild-type mice. There were large discrete areas of calcified cartilage in the hypertrophic zone, few signs of endochondral bone formation, and large regions of disorganized intramembranous bone. Analysis of these data further strengthens the notion that Osterix is essential for the coupling of terminal cartilage differentiation and endochondral ossification in mandibular condylar cartilage.
Collapse
Affiliation(s)
- J Jing
- Department of Biomedical Sciences, Texas A&M Baylor College of Dentistry, Dallas, TX, USA State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, China
| | - R J Hinton
- Department of Biomedical Sciences, Texas A&M Baylor College of Dentistry, Dallas, TX, USA
| | - Y Jing
- Department of Biomedical Sciences, Texas A&M Baylor College of Dentistry, Dallas, TX, USA
| | - Y Liu
- Department of Biomedical Sciences, Texas A&M Baylor College of Dentistry, Dallas, TX, USA
| | - X Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, China
| | - J Q Feng
- Department of Biomedical Sciences, Texas A&M Baylor College of Dentistry, Dallas, TX, USA
| |
Collapse
|
38
|
Zhang FJ, Yu WB, Luo W, Gao SG, Li YS, Lei GH. Effect of osteopontin on TIMP-1 and TIMP-2 mRNA in chondrocytes of human knee osteoarthritis in vitro.. Exp Ther Med 2014; 8:391-394. [PMID: 25009588 PMCID: PMC4079415 DOI: 10.3892/etm.2014.1750] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 05/02/2014] [Indexed: 01/09/2023] Open
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) regulate the activity of matrix metalloproteinases (MMPs) and enzymes from the a disintegrin and metalloproteinase domain with thrombospondin motifs family in osteoarthritis (OA). Elevated osteopontin (OPN) levels in plasma, synovial fluid and articular cartilage are associated with progressive OA joint damage; however, the role of OPN in the pathological changes of knee OA remains undetermined. The present study was undertaken to examine the effect of OPN on the expression of TIMP-1 and TIMP-2 mRNA in chondrocytes from 16 patients with knee OA. In this study, following the stimulation of human chondrocytes with recombinant human OPN (rhOPN; 100 ng/ml and 1 μg/ml, respectively) for 48 h, MTT assay was used to determine cell viability while the quantitative polymerase chain reaction (PCR) was used to detect the alterations in TIMP-1 and TIMP-2 levels. The results illustrated that neither 100 ng/ml nor 1 μg/ml rhOPN caused cytotoxicity or apoptosis of chondrocytes and that the relative mRNA expression of TIMP-1 and TIMP-2 was significantly increased in the 1 μg/ml rhOPN group compared with that in the control group (P=0.022 and P=0.003, respectively). However, no significant difference in expression was revealed between the 100 ng/ml rhOPN and control groups (P=0.998 and P=0.209, respectively). In conclusion, OPN may have a protective effect against pathological changes in advanced-stage OA.
Collapse
Affiliation(s)
- Fang-Jie Zhang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wen-Bo Yu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China ; Department of Orthopaedics, The First People's Hospital of Nanpin, Nanpin, Fujian 353000, P.R. China
| | - Wei Luo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Shu-Guang Gao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China ; Orthopaedics Institute of Central South University, Changsha, Hunan 410008, P.R. China
| | - Yu-Sheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Guang-Hua Lei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China ; Orthopaedics Institute of Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
39
|
Association of osteopontin with osteoarthritis. Rheumatol Int 2014; 34:1627-31. [DOI: 10.1007/s00296-014-3036-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/23/2014] [Indexed: 11/27/2022]
|
40
|
Wong TM, Boyapalle S, Sampayo V, Nguyen HD, Bedi R, Kamath SG, Moore ML, Mohapatra S, Mohapatra SS. Respiratory syncytial virus (RSV) infection in elderly mice results in altered antiviral gene expression and enhanced pathology. PLoS One 2014; 9:e88764. [PMID: 24558422 PMCID: PMC3928298 DOI: 10.1371/journal.pone.0088764] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 01/15/2014] [Indexed: 01/06/2023] Open
Abstract
Elderly persons are more susceptible to RSV-induced pneumonia than young people, but the molecular mechanism underlying this susceptibility is not well understood. In this study, we used an aged mouse model of RSV-induced pneumonia to examine how aging alters the lung pathology, modulates antiviral gene expressions, and the production of inflammatory cytokines in response to RSV infection. Young (2-3 months) and aged (19-21 months) mice were intranasally infected with mucogenic or non-mucogenic RSV strains, lung histology was examined, and gene expression was analyzed. Upon infection with mucogenic strains of RSV, leukocyte infiltration in the airways was elevated and prolonged in aged mice compared to young mice. Minitab factorial analysis identified several antiviral genes that are influenced by age, infection, and a combination of both factors. The expression of five antiviral genes, including pro-inflammatory cytokines IL-1β and osteopontin (OPN), was altered by both age and infection, while age was associated with the expression of 15 antiviral genes. Both kinetics and magnitude of antiviral gene expression were diminished as a result of older age. In addition to delays in cytokine signaling and pattern recognition receptor induction, we found TLR7/8 signaling to be impaired in alveolar macrophages in aged mice. In vivo, induction of IL-1β and OPN were delayed but prolonged in aged mice upon RSV infection compared to young. In conclusion, this study demonstrates inherent differences in response to RSV infection in young vs. aged mice, accompanied by delayed antiviral gene induction and cytokine signaling.
Collapse
Affiliation(s)
- Terianne M. Wong
- Department of Internal Medicine, James A. Haley Veterans Affairs Hospital, Tampa, Florida, United States of America
- Division of Translational Medicine and Nanomedicine Research Center, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Sandhya Boyapalle
- Department of Internal Medicine, James A. Haley Veterans Affairs Hospital, Tampa, Florida, United States of America
- Division of Translational Medicine and Nanomedicine Research Center, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Viviana Sampayo
- Division of Translational Medicine and Nanomedicine Research Center, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Huy D. Nguyen
- Division of Translational Medicine and Nanomedicine Research Center, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Raminder Bedi
- Division of Translational Medicine and Nanomedicine Research Center, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Siddharth G. Kamath
- Division of Translational Medicine and Nanomedicine Research Center, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Martin L. Moore
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
- Children's Healthcare of Atlanta, Atlanta, Georgia, United States of America
| | - Subhra Mohapatra
- Department of Internal Medicine, James A. Haley Veterans Affairs Hospital, Tampa, Florida, United States of America
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Shyam S. Mohapatra
- Department of Internal Medicine, James A. Haley Veterans Affairs Hospital, Tampa, Florida, United States of America
- Division of Translational Medicine and Nanomedicine Research Center, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
41
|
Sasazawa F, Onodera T, Yamashita T, Seito N, Tsukuda Y, Fujitani N, Shinohara Y, Iwasaki N. Depletion of gangliosides enhances cartilage degradation in mice. Osteoarthritis Cartilage 2014; 22:313-22. [PMID: 24333297 DOI: 10.1016/j.joca.2013.11.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 11/21/2013] [Accepted: 11/30/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Glycosphingolipids (GSLs) are ubiquitous membrane components that play a functional role in maintaining chondrocyte homeostasis. We investigated the potential role of gangliosides, one of the major components of GSLs, in osteoarthritis (OA) pathogenesis. DESIGN Both age-associated and instability-induced OA models were generated using GM3 synthase knockout (GM3S(-/-)) mice. A cartilage degradation model and transiently GM3S-transfected chondrocytes were analyzed to evaluate the function of gangliosides in OA development. The amount of each series of GSLs in chondrocytes after IL-1α stimulation was profiled using mass spectrometry (MS). RESULTS OA changes in GM3S(-/-) mice were dramatically enhanced with aging compared to those in wild-type (WT) mice. GM3S(-/-) mice showed more severe instability-induced pathologic OA in vivo. Ganglioside deficiency also led to the induction of matrix metalloproteinase (MMP)-13 and ADAMTS-5 secretion and chondrocyte apoptosis in vitro. In contrast, transient GM3S transfection of chondrocytes suppressed MMP-13 and ADAMTS-5 expression after interleukin (IL)-1α stimulation. GSL profiling revealed the presence of abundant gangliosides in chondrocytes after IL-1α stimulation. CONCLUSION Gangliosides play a critical role in OA pathogenesis by regulating the expression of MMP-13 and ADAMTS-5 and chondrocyte apoptosis. Based on the obtained results, we propose that gangliosides are potential target molecules for the development of novel OA treatments.
Collapse
Affiliation(s)
- F Sasazawa
- Department of Orthopaedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - T Onodera
- Department of Orthopaedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - T Yamashita
- Laboratory of Biochemistry, Azabu University, Graduate School of Veterinary Medicine, Sagamihara, Japan.
| | - N Seito
- Department of Orthopaedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Y Tsukuda
- Department of Orthopaedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - N Fujitani
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science, Hokkaido University, Sapporo, Japan.
| | - Y Shinohara
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science, Hokkaido University, Sapporo, Japan.
| | - N Iwasaki
- Department of Orthopaedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| |
Collapse
|
42
|
Kim BJ, Kim DW, Kim SH, Cho JH, Lee HJ, Park DY, Park SR, Choi BH, Min BH. Establishment of a reliable and reproducible murine osteoarthritis model. Osteoarthritis Cartilage 2013; 21:2013-20. [PMID: 24120491 DOI: 10.1016/j.joca.2013.09.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 09/11/2013] [Accepted: 09/28/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Many osteoarthritis (OA) models have been developed in mice to understand OA progression and evaluate new OA therapies. However, the individual variation of the joint lesions remains a critical problem in most of the current OA models. We established an OA model in C57BL/6 mice that is more reproducible and amenable to therapeutic intervention by controlling their movement. DESIGN OA was induced in 9-week-old C57BL/6 mice by destabilizing the medial meniscus. The mice were then raised in the standard cage for free movement or in a confined cage customized to restrict movement. Mice in the confined cage were subjected to no exercise or exercise of 400, 800, and 1200 m/day. RESULTS OA lesions of mice in the confined cage were more severe in the exercise group and showed much less variation. However, the patterns of OA lesions over time were quite different depending on the amount of daily exercise; the patterns increased linearly until 8 weeks in 400 m/day exercise group, but showed plateauing after 4 weeks in 800 m/day and 1200 m/day groups. The validity of our novel OA model with movement control was proven by successfully discriminating the therapeutic effect of hyaluronic acid (HA) in histological scores, while the OA model using standard caging showed a statistically insignificant difference. CONCLUSION The mouse OA model using the confine cage and enforced periodic exercise of mice is more reproducible and reliable than standard caging methods.
Collapse
Affiliation(s)
- B J Kim
- Department of Molecular Science & Technology, Ajou University, Suwon, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Grogan SP, Chen X, Sovani S, Taniguchi N, Colwell CW, Lotz MK, D'Lima DD. Influence of cartilage extracellular matrix molecules on cell phenotype and neocartilage formation. Tissue Eng Part A 2013; 20:264-74. [PMID: 23962090 DOI: 10.1089/ten.tea.2012.0618] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Interaction between chondrocytes and the cartilage extracellular matrix (ECM) is essential for maintaining the cartilage's role as a low-friction and load-bearing tissue. In this study, we examined the influence of cartilage zone-specific ECM on human articular chondrocytes (HAC) in two-dimensional and three-dimensional (3D) environments. Two culture systems were used. SYSTEM 1: HAC were cultured on cell-culture plates that had been precoated with the following ECM molecules for 7 days: decorin, biglycan, tenascin C (superficial zone), collagen type II, hyaluronan (HA) (middle and deep zones), and osteopontin (deep zone). Uncoated standard culture plates were used as controls. Expanded cells were examined for phenotypic changes using real-time polymerase chain reaction. In addition, expanded cells were placed into high-density pellet cultures for 14 days. Neocartilage formation was assessed via gene expression and histology evaluations. SYSTEM 2: HAC that were cultured on untreated plates and encapsulated in a 3D alginate scaffold were mixed with one of the zone-specific ECM molecules. Cell viability, gene expression, and histology assessments were conducted on 14-day-old tissues. In HAC monolayer culture, exposure to decorin, HA, and osteopontin increased COL2A1 and aggrecan messenger RNA (mRNA) levels compared with controls. Biglycan up-regulated aggrecan without a significant impact on COL2A1 expression; Tenascin C reduced COL2A1 expression. Neocartilage formed after preculture on tenascin C and collagen type II expressed higher COL2A1 mRNA compared with control pellets. Preculture of HAC on HA decreased both COL2A1 and aggrecan expression levels compared with controls, which was consistent with histology. Reduced proteoglycan 4 (PRG4) mRNA levels were observed in HAC pellets that had been precultured with biglycan and collagen type II. Exposing HAC to HA directly in 3D-alginate culture most effectively induced neocartilage formation, showing increased COL2A1 and aggrecan, and reduced COL1A1 compared with controls. Decorin treatments increased HAC COL2A1 mRNA levels. These data indicate that an appropriate exposure to cartilage-specific ECM proteins could be used to enhance cartilage formation and to even induce the formation of zone-specific phenotypes to improve cartilage regeneration.
Collapse
Affiliation(s)
- Shawn P Grogan
- 1 Shiley Center for Orthopaedic Research and Education , Scripps Clinic, La Jolla, California
| | | | | | | | | | | | | |
Collapse
|
44
|
Vo N, Niedernhofer LJ, Nasto LA, Jacobs L, Robbins PD, Kang J, Evans CH. An overview of underlying causes and animal models for the study of age-related degenerative disorders of the spine and synovial joints. J Orthop Res 2013; 31:831-7. [PMID: 23483579 PMCID: PMC3628921 DOI: 10.1002/jor.22204] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 07/10/2012] [Indexed: 02/04/2023]
Abstract
As human lifespan increases so does the incidence of age-associated degenerative joint diseases, resulting in significant negative socioeconomic consequences. Osteoarthritis (OA) and intervertebral disc degeneration (IDD) are the most common underlying causes of joint-related chronic disability and debilitating pain in the elderly. Current treatment methods are generally not effective and involve either symptomatic relief with non-steroidal anti-inflammatory drugs and physical therapy or surgery when conservative treatments fail. The limitation in treatment options is due to our incomplete knowledge of the molecular mechanism of degeneration of articular cartilage and disc tissue. Basic understanding of the age-related changes in joint tissue is thus needed to combat the adverse effects of aging on joint health. Aging is caused at least in part by time-dependent accumulation of damaged organelles and macromolecules, leading to cell death and senescence and the eventual loss of multipotent stem cells and tissue regenerative capacity. Studies over the past decades have uncovered a number of important molecular and cellular changes in joint tissues with age. However, the precise causes of damage, cellular targets of damage, and cellular responses to damage remain poorly understood. The objectives of this review are to provide an overview of the current knowledge about the sources of endogenous and exogenous damaging agents and how they contribute to age-dependent degenerative joint disease, and highlight animal models of accelerated aging that could potentially be useful for identifying causes of and therapies for degenerative joint diseases.
Collapse
Affiliation(s)
- Nam Vo
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA,Ferguson Laboratory for Orthopaedic Research, 523 Bridgeside Point II. 450 Technology Drive, Pittsburgh, PA 15219
| | - Laura J. Niedernhofer
- Department of Microbiology and Molecular Genetics, 523 Bridgeside Point II. 450 Technology Drive, Pittsburgh, PA 15219,University of Pittsburgh Cancer Institute, Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA 15213-1863, U.S.A
| | - Luigi Aurelio Nasto
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA,Ferguson Laboratory for Orthopaedic Research, 523 Bridgeside Point II. 450 Technology Drive, Pittsburgh, PA 15219
| | - Lloydine Jacobs
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA,Ferguson Laboratory for Orthopaedic Research, 523 Bridgeside Point II. 450 Technology Drive, Pittsburgh, PA 15219
| | - Paul D. Robbins
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA,Department of Microbiology and Molecular Genetics, 523 Bridgeside Point II. 450 Technology Drive, Pittsburgh, PA 15219,University of Pittsburgh Cancer Institute, Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA 15213-1863, U.S.A
| | - James Kang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA,Ferguson Laboratory for Orthopaedic Research, 523 Bridgeside Point II. 450 Technology Drive, Pittsburgh, PA 15219
| | - Christopher H. Evans
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RN-115, Boston, MA 02215, USA
| |
Collapse
|
45
|
Little CB, Hunter DJ. Post-traumatic osteoarthritis: from mouse models to clinical trials. Nat Rev Rheumatol 2013; 9:485-97. [PMID: 23689231 DOI: 10.1038/nrrheum.2013.72] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA), the most common of all arthropathies, is a leading cause of disability and has a large (and growing) worldwide socioeconomic cost. Despite its burgeoning importance, translation of disease-modifying OA therapies from the laboratory into clinical practice has slowed. Differences between the OA models studied preclinically and the disease evaluated in human clinical trials contribute to this failure. Most animal models of OA induce disease through surgical or mechanical disruption of joint biomechanics in young individuals rather than the spontaneous development of age-associated disease. This instability-induced joint disease in animals best models the arthritis that develops in humans after an injurious event, known as post-traumatic OA (PTOA). Studies in genetically modified mice suggest that PTOA has a distinct molecular pathophysiology compared with that of spontaneous OA, which might explain the poor translation from preclinical to clinical OA therapeutic trials. This Review summarizes the latest data on potential molecular targets for PTOA prevention and modification derived from studies in genetically modified mice, and describes their validation in preclinical therapeutic trials. This article focuses on how these findings might best be translated to humans, and identifies the potential challenges to successful implementation of clinical trials of disease-modifying drugs for PTOA.
Collapse
Affiliation(s)
- Christopher B Little
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Institute of Bone and Joint Research, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia. christopher.little@ sydney.edu.au
| | | |
Collapse
|
46
|
Miyazaki T, Uchida K, Sato M, Watanabe S, Yoshida A, Wada M, Shimada S, Kuiper JH, Baba H. Knee laxity after staircase exercise predicts radiographic disease progression in medial compartment knee osteoarthritis. ACTA ACUST UNITED AC 2013; 64:3908-16. [PMID: 22886496 DOI: 10.1002/art.34662] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Accepted: 07/31/2012] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To evaluate whether increased laxity of the knee during daily physical activities such as stair climbing is associated with progression of knee joint osteoarthritis (OA). METHODS During the years 2001-2003, 136 patients with bilateral primary medial compartment knee joint OA were enrolled in this prospective study. Baseline data collected were body mass index (BMI), muscle power, radiographic joint space width, mechanical axis on standing radiography, and anteroposterior (AP) knee laxity before and after physical exercise. After 8 years of followup, 84 patients were reexamined to assess radiographic changes. Radiographic disease progression was defined as progression of >1 grade on the Kellgren/Lawrence scale. RESULTS AP knee laxity increased significantly after stair climbing. Patients with OA progression and those without progression did not differ significantly in age, sex, baseline quadriceps muscle strength, mechanical axis, joint space width, and AP knee laxity before exercise. The 2 groups of patients did, however, differ significantly in baseline BMI and change in AP knee laxity due to exercise. The risk of progression of knee OA increased 4.15-fold with each millimeter of increase in the change in AP knee laxity due to exercise and 1.24-fold with each point increase in the BMI. CONCLUSION Our results indicate that patients with OA progression have significantly greater changes in knee joint laxity during physical activities and a higher BMI than patients without OA progression. These findings suggest that larger changes in knee laxity during repetitive physical activities and a higher BMI play significant roles in the progression of knee OA.
Collapse
|
47
|
Useful animal models for the research of osteoarthritis. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY AND TRAUMATOLOGY 2013; 24:263-71. [PMID: 23508348 DOI: 10.1007/s00590-013-1205-2] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 03/01/2013] [Indexed: 12/29/2022]
Abstract
Osteoarthritis (OA) is a major cause of suffering for millions of people. Investigating the disease directly on humans may be challenging. The aim of the present study is to investigate the advantages and limitations of the animal models currently used in OA research. The animal models are divided into induced and spontaneous. Induced models are further subdivided into surgical and chemical models, according to the procedure used to induce OA. Surgical induction of OA is the most commonly used procedure, which alters the exerted strain on the joint and/or alter load bearing leading to instability of the joint and induction of OA. Chemical models are generated by intra-articular injection of modifying factors or by systemically administering noxious agents, such as quinolones. Spontaneous models include naturally occurring and genetic models. Naturally occurring OA is described in certain species, while genetic models are developed by gene manipulation. Overall, there is no single animal model that is ideal for studying degenerative OA. However, in the present review, an attempt is made to clarify the most appropriate use of each model.
Collapse
|
48
|
Gao SG, Cheng L, Zeng C, Wei LC, Zhang FJ, Tian J, Tu M, Luo W, Lei GH. Usefulness of specific OA biomarkers, thrombin-cleaved osteopontin, in the posterior cruciate ligament OA rabbit model. Osteoarthritis Cartilage 2013; 21:144-50. [PMID: 23025929 DOI: 10.1016/j.joca.2012.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 08/29/2012] [Accepted: 09/11/2012] [Indexed: 02/02/2023]
Abstract
OBJECTIVE We undertook this study to determine whether thrombin-cleaved osteopontin (OPN) in synovial fluid (SF) represents a useful marker of osteoarthritis (OA) progression in the posterior cruciate ligament transection (PCLT) OA rabbit model. METHOD PCLT was performed on the right knee joints of 48 rabbits. The rabbits were then sacrificed separately at 4, 8, 16, and 24 weeks post-surgery, when the joint was harvested and macroscopic and histological assessments of articular cartilage were performed. Thrombin-cleaved OPN product in SF was determined using Western blotting and the levels were measured using an enzyme-linked immunoassay. RESULTS The macroscopic and histological scores for PCLT knees were already elevated 4 weeks after surgery and increased with time. Western blotting showed the presence of thrombin-cleaved OPN in SF from PCLT knees. Thrombin-cleaved OPN levels in SF were elevated at 4 weeks (P < 0.001) and were elevated peaking at 24 weeks (P < 0.00001) after PCLT compared to baseline. A positive significant correlation was found between thrombin-cleaved OPN levels and the macroscopic scores (8 weeks: ρ = 0.695, P = 0.012; 16 weeks: ρ = 0.751, P = 0.005; 24 weeks: ρ = 0.660, P = 0.020). Furthermore, the same correlation was noted between thrombin-cleaved OPN levels and the histological scores (4 weeks: ρ = 0.609, P = 0.036; 8 weeks: ρ = 0.662, P = 0.019; 16 weeks: ρ = 0.827, P = 0.001; 24 weeks: ρ = 0.813, P = 0.001). CONCLUSION In this rabbit model of PCLT, thrombin-cleaved OPN levels in SF appear to provide a useful marker of OA disease severity and progression.
Collapse
Affiliation(s)
- S G Gao
- Department of Orthopaedics, Xiangya Hospital, Central South University, #87 Xiangya Road, Changsha, Hunan 410008, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Seito N, Yamashita T, Tsukuda Y, Matsui Y, Urita A, Onodera T, Mizutani T, Haga H, Fujitani N, Shinohara Y, Minami A, Iwasaki N. Interruption of glycosphingolipid synthesis enhances osteoarthritis development in mice. ACTA ACUST UNITED AC 2012; 64:2579-88. [PMID: 22391889 DOI: 10.1002/art.34463] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Glycosphingolipids (GSLs) are ubiquitous membrane components that modulate transmembrane signaling and mediate cell-to-cell and cell-to-matrix interactions. GSL expression is decreased in the articular cartilage of humans with osteoarthritis (OA). This study was undertaken to determine the functional role of GSLs in cartilage metabolism related to OA pathogenesis in mice. METHODS We generated mice with knockout of the chondrocyte-specific Ugcg gene, which encodes an initial enzyme of major GSL synthesis, using the Cre/loxP system (Col2-Ugcg(-/-) mice). In vivo OA and in vitro cartilage degradation models were used to evaluate the effect of GSLs on the cartilage degradation process. RESULTS Although Col2-Ugcg(-/-) mice developed and grew normally, OA changes in these mice were dramatically enhanced with aging, through the overexpression of matrix metalloproteinase 13 and chondrocyte apoptosis, compared to their wild-type (WT) littermates. Col2-Ugcg(-/-) mice showed more severe instability-induced pathologic OA in vivo and interleukin-1α (IL-1α)-induced cartilage degradation in vitro. IL-1α stimulation of chondrocytes from WT mice significantly increased Ugcg messenger RNA expression and up-regulated GSL metabolism. CONCLUSION Our results indicate that GSL deficiency in mouse chondrocytes enhances the development of OA. However, this deficiency does not affect the development and organization of cartilage tissue in mice at a young age. These findings indicate that GSLs maintain cartilage molecular metabolism and prevent disease progression, although GSLs are not essential for chondrogenesis of progenitor and stem cells and cartilage development in young mice. GSL metabolism in the cartilage is a potential target for developing a novel treatment for OA.
Collapse
|
50
|
Yamaga M, Tsuji K, Miyatake K, Yamada J, Abula K, Ju YJ, Sekiya I, Muneta T. Osteopontin level in synovial fluid is associated with the severity of joint pain and cartilage degradation after anterior cruciate ligament rupture. PLoS One 2012; 7:e49014. [PMID: 23166604 PMCID: PMC3499533 DOI: 10.1371/journal.pone.0049014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 10/03/2012] [Indexed: 11/19/2022] Open
Abstract
Objective To explore the molecular function of Osteopontin (OPN) in the pathogenesis of human OA, we compared the expression levels of OPN in synovial fluid with clinical parameters such as arthroscopic observation of cartilage damage and joint pain after joint injury. Methods Synovial fluid was obtained from patients who underwent anterior cruciate ligament (ACL) reconstruction surgery from 2009 through 2011 in our university hospital. The amounts of intact OPN (OPN Full) and it’s N-terminal fragment (OPN N-half) in synovial fluid from each patient were quantified by ELISA and compared with clinical parameters such as severity of articular cartilage damage (TMDU cartilage score) and severity of joint pain (Visual Analogue Scale and Lysholm score). Results Within a month after ACL rupture, both OPN Full and N-half levels in patient synovial fluid were positively correlated with the severity of joint pain. In contrast, patients with ACL injuries greater than one month ago felt less pain if they had higher amounts of OPN N-half in synovial fluid. OPN Full levels were positively correlated with articular cartilage damage in lateral tibial plateau. Conclusion Our data suggest that OPN Full and N-half have distinct functions in articular cartilage homeostasis and in human joint pain.
Collapse
Affiliation(s)
- Mika Yamaga
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kunikazu Tsuji
- International Research Center for Molecular Science in Tooth and Bone Diseases (Global Center of Excellence Program), Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail:
| | - Kazumasa Miyatake
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jun Yamada
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kahaer Abula
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Young-Jin Ju
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ichiro Sekiya
- Department of Cartilage Regeneration, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Muneta
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- International Research Center for Molecular Science in Tooth and Bone Diseases (Global Center of Excellence Program), Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|