1
|
Blackman SA, Miles D, Suresh J, Calve S, Bryant SJ. Cell- and Serum-Derived Proteins Act as DAMPs to Activate RAW 264.7 Macrophage-like Cells on Silicone Implants. ACS Biomater Sci Eng 2024; 10:1418-1434. [PMID: 38319825 PMCID: PMC11316276 DOI: 10.1021/acsbiomaterials.3c01393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Protein adsorption after biomaterial implantation is the first stage of the foreign body response (FBR). However, the source(s) of the adsorbed proteins that lead to damaged associated molecular patterns (DAMPs) and induce inflammation have not been fully elucidated. This study examined the effects of different protein sources, cell-derived (from a NIH/3T3 fibroblast cell lysate) and serum-derived (from fetal bovine serum), which were compared to implant-derived proteins (after a 30 min subcutaneous implantation in mice) on activation of RAW 264.7 cells cultured in minimal (serum-free) medium. Both cell-derived and serum-derived protein sources when preadsorbed to either tissue culture polystyrene or medical-grade silicone induced RAW 264.7 cell activation. The combination led to an even higher expression of pro-inflammatory cytokine genes and proteins. Implant-derived proteins on silicone explants induced a rapid inflammatory response that then subsided more quickly and to a greater extent than the studies with in vitro cell-derived or serum-derived protein sources. Proteomic analysis of the implant-derived proteins identified proteins that included cell-derived and serum-derived, but also other proteinaceous sources (e.g., extracellular matrix), suggesting that the latter or nonproteinaceous sources may help to temper the inflammatory response in vivo. These findings indicate that both serum-derived and cell-derived proteins adsorbed to implants can act as DAMPs to drive inflammation in the FBR, but other protein sources may play an important role in controlling inflammation.
Collapse
Affiliation(s)
- Samuel A. Blackman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80309-0596, USA
| | - Dalton Miles
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80309-0596, USA
| | - Joshita Suresh
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80309-0596, USA
| | - Sarah Calve
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Dr, Boulder, CO 80309-0427, USA
- BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80309-0596, USA
| | - Stephanie J. Bryant
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80309-0596, USA
- BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80309-0596, USA
- Materials Science and Engineering Program, University of Colorado Boulder, 4001 Discovery Dr, Boulder, CO 80300-0613, USA
| |
Collapse
|
2
|
Pugh KW, Alnaed M, Brackett CM, Blagg BSJ. The biology and inhibition of glucose-regulated protein 94/gp96. Med Res Rev 2022; 42:2007-2024. [PMID: 35861260 PMCID: PMC10003671 DOI: 10.1002/med.21915] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/10/2022]
Abstract
The 94 kDa molecular chaperone, glucose-regulated protein 94 (Grp94), has garnered interest during the last decade due to its direct association with endoplasmic reticulum (ER) stress and disease. Grp94 belongs to the Hsp90 family of molecular chaperones and is a master regulator of ER homeostasis due to its ability to fold and stabilize proteins/receptors, and to chaperone misfolded proteins for degradation. Multiple studies have demonstrated that Grp94 knockdown or inhibition leads to the degradation of client protein substrates, which leads to disruption of disease-dependent signaling pathways. As a result, small molecule inhibitors of Grp94 have become a promising therapeutic approach to target a variety of disease states. Specifically, Grp94 has proven to be a promising target for cancer, glaucoma, immune-mediated inflammation, and viral infection. Moreover, Grp94-peptide complexes have been utilized effectively as adjuvants for vaccines against a variety of disease states. This work highlights the significance of Grp94 biology and the development of therapeutics that target this molecular chaperone in multiple disease states.
Collapse
Affiliation(s)
- Kyler W. Pugh
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Marim Alnaed
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Christopher M. Brackett
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Brian S. J. Blagg
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
3
|
Fang J, Tong Y, Ji O, Wei S, Chen Z, Song A, Li P, Zhang Y, Zhang H, Ruan H, Ding F, Liu Y. Glycoprotein 96 in Peritoneal Dialysis Effluent-Derived Extracellular Vesicles: A Tool for Evaluating Peritoneal Transport Properties and Inflammatory Status. Front Immunol 2022; 13:824278. [PMID: 35222405 PMCID: PMC8866190 DOI: 10.3389/fimmu.2022.824278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/21/2022] [Indexed: 12/12/2022] Open
Abstract
Background Extracellular vesicles (EVs) from peritoneal dialysis effluent (PDE), containing molecules such as proteins and microRNAs (miRNAs), may be potential biological markers to monitor peritoneal function or injury. Peritoneal inflammation is an important determinant of peritoneal solute transport rate (PSTR). Thus, the aim of this study is to determine whether the specific proteins capable of evaluating the PSTR could be found in PDE-EVs, and explore the underlying mechanism for the association between PSTR and peritoneal inflammation. Methods Sixty patients undergoing peritoneal dialysis (PD) were divided into two groups: high/high average transport (H/A) group (PET >0.65) and low/low average transport (L/A) group (PET <0.65). EVs derived from PDE (PDE-EVs) were isolated by ultracentrifugation. Proteomic analysis was performed to explore the differentially expressed proteins and identify the potential biomarkers in PDE-EVs from the two groups, and we focused on glycoprotein 96 (GP96) as it could be involved in the inflammatory process. The expression of GP96 in PDE-EVs and inflammatory cytokines was quantified by real-time PCR and enzyme-linked immunosorbent assay. The infiltration of macrophages and neutrophils into the peritoneum was detected using immunohistochemistry in a PD rat model. Results The expression of PDE-EVs-GP96 was significantly higher in the H/A group, and was positively correlated with the PSTR and the level of the inflammatory factor interleukin (IL)-6. GP96-enriched EVs enhanced the secretion of proinflammatory cytokines IL-1β, IL-6, tumor necrosis factor (TNF)-α, and IL-8 in macrophages, which was reversed by a pharmacological GP96-specific inhibitor (PU-WS13). The GP96 inhibitor also reduced local peritoneal inflammation by decreasing the infiltration of inflammatory cells and levels of proinflammatory cytokines (IL-6 and TNF-α) and chemokines (CCL2, CXCL1, and CXCL2) in a PD rat model. Conclusions PDE-EVs-GP96 is a new promising tool to evaluate the status of peritoneal inflammation and PSTR, and the mechanism may be related to affecting the inflammatory properties of macrophages.
Collapse
Affiliation(s)
- Junyan Fang
- Division of Nephrology and Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Tong
- Division of Nephrology and Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ouyang Ji
- Division of Nephrology and Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shan Wei
- Division of Nephrology and Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhihao Chen
- Division of Nephrology and Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ahui Song
- Division of Nephrology and Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Pu Li
- Division of Nephrology and Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Zhang
- Research and Development Center, Shanghai Applied Protein Technology Co., Ltd., Shanghai, China
| | - Huiping Zhang
- Research and Development Center, Shanghai Applied Protein Technology Co., Ltd., Shanghai, China
| | - Hongqiang Ruan
- Research and Development Center, Shanghai Applied Protein Technology Co., Ltd., Shanghai, China
| | - Feng Ding
- Division of Nephrology and Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingli Liu
- Division of Nephrology and Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Guan Z, Ding Y, Liu Y, Zhang Y, Zhao J, Li C, Li Z, Meng S. Extracellular gp96 is a crucial mediator for driving immune hyperactivation and liver damage. Sci Rep 2020; 10:12596. [PMID: 32724151 PMCID: PMC7387550 DOI: 10.1038/s41598-020-69517-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/10/2020] [Indexed: 02/07/2023] Open
Abstract
Liver failure leads to the massive necrosis of hepatocytes, releasing large amounts of intracellular components including damage-associated molecular patterns (DAMPs). We found that extracellular gp96 levels in serum were elevated in patients with chronic hepatitis B infection (CHB) and acute-on-chronic liver failure (ACLF). Meanwhile, the gp96 level positively correlated with hepatic necroinflammation. We employed two mouse liver damage and liver failure models induced by lipopolysaccharide (LPS) plus d-galactosamine (d-Galn), and concanavalin A (ConA) to identify the function of extracellular gp96. As a result, the inhibition of extracellular gp96 by a specific peptide efficiently mitigated both LPS/d-Galn- and ConA-induced liver injury and immune hyperactivation, whereas exogenous gp96 aggravated the symptoms of hepatic injury in mice but not in Kupffer cells-ablated mice. The exposure of Kupffer cells to gp96 induced the secretion of pro-inflammatory cytokines. Collectively, our data demonstrate that gp96 released from necrotic hepatocytes aggravates immune hyperactivation and promotes liver damage and possibly the development of liver failure mainly by activating Kupffer cells.
Collapse
Affiliation(s)
- Zeliang Guan
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yun Ding
- Heilongjiang Bayi Agricultural University, Heilongjiang, China
| | - Yongai Liu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yu Zhang
- Department of Pathology and Hepatology, The 5th Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jingmin Zhao
- Department of Pathology and Hepatology, The 5th Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Changfei Li
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, USA
| | - Songdong Meng
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Hoogeveen RM, Nahrendorf M, Riksen NP, Netea MG, de Winther MPJ, Lutgens E, Nordestgaard BG, Neidhart M, Stroes ESG, Catapano AL, Bekkering S. Monocyte and haematopoietic progenitor reprogramming as common mechanism underlying chronic inflammatory and cardiovascular diseases. Eur Heart J 2018; 39:3521-3527. [PMID: 29069365 PMCID: PMC6174026 DOI: 10.1093/eurheartj/ehx581] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/11/2017] [Accepted: 10/12/2017] [Indexed: 12/19/2022] Open
Abstract
A large number of cardiovascular events are not prevented by current therapeutic regimens. In search for additional, innovative strategies, immune cells have been recognized as key players contributing to atherosclerotic plaque progression and destabilization. Particularly the role of innate immune cells is of major interest, following the recent paradigm shift that innate immunity, long considered to be incapable of learning, does exhibit immunological memory mediated via epigenetic reprogramming. Compelling evidence shows that atherosclerotic risk factors promote immune cell migration by pre-activation of circulating innate immune cells. Innate immune cell activation via metabolic and epigenetic reprogramming perpetuates a systemic low-grade inflammatory state in cardiovascular disease (CVD) that is also common in other chronic inflammatory disorders. This opens a new therapeutic area in which metabolic or epigenetic modulation of innate immune cells may result in decreased systemic chronic inflammation, alleviating CVD, and its co-morbidities.
Collapse
Affiliation(s)
- Renate M Hoogeveen
- Department of Vascular Medicine, Academic Medical Centre, Meibergdreef 9, Amsterdam, The Netherlands
| | - Matthias Nahrendorf
- Center for Systems Biology and Department of Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, 55 Fruit Street Boston, MA, USA
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, Nijmegen, The Netherlands
| | - Menno P J de Winther
- Department of Medical Biochemistry, Academic Medical Centre, Meibergdreef 9, Amsterdam, The Netherlands
| | - Esther Lutgens
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University (LMU), Pettenkoferstraße 9, Munich, Germany
| | - Børge G Nordestgaard
- The Copenhagen General Population Study and Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Ringvej 75, Herlev, Copenhagen, Denmark
| | - Michel Neidhart
- Center of Experimental Rheumatology, University Hospital Zurich, Schlieren, Switzerland
| | - Erik S G Stroes
- Department of Vascular Medicine, Academic Medical Centre, Meibergdreef 9, Amsterdam, The Netherlands
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan and IRCCS Multimedica, Via Balzaretti, Milano, Italy
| | - Siroon Bekkering
- Department of Vascular Medicine, Academic Medical Centre, Meibergdreef 9, Amsterdam, The Netherlands
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Huang QQ, Birkett R, Doyle R, Shi B, Roberts EL, Mao Q, Pope RM. The Role of Macrophages in the Response to TNF Inhibition in Experimental Arthritis. THE JOURNAL OF IMMUNOLOGY 2017; 200:130-138. [PMID: 29150565 DOI: 10.4049/jimmunol.1700229] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 10/19/2017] [Indexed: 12/31/2022]
Abstract
The reduction of synovial tissue macrophages is a reliable biomarker for clinical improvement in patients with rheumatoid arthritis (RA), and macrophages are reduced in synovial tissue shortly after initiation of TNF inhibitors. The mechanism for this initial response is unclear. These studies were performed to identify the mechanisms responsible for the initial reduction of macrophages following TNF inhibition, positing that efflux to draining lymph nodes was involved. RA synovial tissue and synovial fluid macrophages expressed CCR7, which was increased in control macrophages following incubation with TNF-α. Human TNF transgenic (hTNF-Tg) mice were treated with infliximab after development of arthritis. Ankles were harvested and examined by histology, immunohistochemistry, quantitative RT-PCR, ELISA, and flow cytometry. hTNF-Tg mice treated with infliximab demonstrated significant clinical and histologic improvement 3 d after the initiation of therapy, at which time Ly6C+ macrophages were significantly reduced in the ankles. However, no evidence was identified to support a role of macrophage efflux to draining lymph nodes following treatment with infliximab. In contrast, apoptosis of Ly6C+ macrophages in the ankles and popliteal lymph nodes, decreased migration of monocytes into the ankles, and a reduction of CCL2 were identified following the initiation of infliximab. These observations demonstrate that Ly6C+ macrophage apoptosis and decreased ingress of circulating monocytes into the joint are responsible for the initial reduction of macrophages following infliximab treatment in hTNF-Tg mice.
Collapse
Affiliation(s)
- Qi-Quan Huang
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | - Robert Birkett
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | - Renee Doyle
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | - Bo Shi
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | - Elyssa L Roberts
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | - Qinwen Mao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Richard M Pope
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| |
Collapse
|
7
|
Huang QQ, Birkett R, Doyle RE, Haines GK, Perlman H, Shi B, Homan P, Xing L, Pope RM. Association of Increased F4/80 high Macrophages With Suppression of Serum-Transfer Arthritis in Mice With Reduced FLIP in Myeloid Cells. Arthritis Rheumatol 2017; 69:1762-1771. [PMID: 28511285 DOI: 10.1002/art.40151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 05/09/2017] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Macrophages are critical in the pathogenesis of rheumatoid arthritis (RA). We recently demonstrated that FLIP is necessary for the differentiation and/or survival of macrophages. We also showed that FLIP is highly expressed in RA synovial macrophages. This study was undertaken to determine if a reduction in FLIP in mouse macrophages reduces synovial tissue macrophages and ameliorates serum-transfer arthritis. METHODS Mice with Flip deleted in myeloid cells (Flipf/f LysMc/+ mice) and littermate controls were used. Arthritis was induced by intraperitoneal injection of K/BxN serum. Disease severity was evaluated by clinical score and change in ankle thickness, and joints were examined by histology and immunohistochemistry. Cells were isolated from the ankles and bone marrow of the mice and examined by flow cytometry, real-time quantitative reverse transcriptase-polymerase chain reaction, or Western blotting. RESULTS In contrast to expectations, Flipf/f LysMc/+ mice developed more severe arthritis early in the clinical course, but peak arthritis was attenuated and the resolution phase more complete than in control mice. Prior to the induction of serum-transfer arthritis, the number of tissue-resident macrophages was reduced. On day 9 after arthritis induction, the number of F4/80high macrophages in the joints of the Flipf/f LysMc/+ mice was not decreased, but increased. FLIP was reduced in the F4/80high macrophages in the ankles of the Flipf/f LysMc/+ mice, while F4/80high macrophages expressed an antiinflammatory phenotype in both the Flipf/f LysMc/+ and control mice. CONCLUSION Our observations suggest that reducing FLIP in macrophages by increasing the number of antiinflammatory macrophages may be an effective therapeutic approach to suppress inflammation, depending on the disease stage.
Collapse
Affiliation(s)
- Qi-Quan Huang
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Robert Birkett
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Renee E Doyle
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | - Harris Perlman
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Bo Shi
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Philip Homan
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lianping Xing
- University of Rochester Medical Center, Rochester, New York
| | - Richard M Pope
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
8
|
Seignez A, Joly AL, Chaumonnot K, Hazoumé A, Sanka M, Marcion G, Boudesco C, Hammann A, Seigneuric R, Jégo G, Ducoroy P, Delarue P, Senet P, Castilla-Llorente C, Solary E, Durey MA, Rubio MT, Hermine O, Kohli E, Garrido C. Serum Gp96 is a chaperone of complement-C3 during graft-versus-host disease. JCI Insight 2017; 2:e90531. [PMID: 28352659 DOI: 10.1172/jci.insight.90531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Better identification of severe acute graft-versus-host disease (GvHD) may improve the outcome of this life-threatening complication of allogeneic hematopoietic stem cell transplantation. GvHD induces tissue damage and the release of damage-associated molecular pattern (DAMP) molecules. Here, we analyzed GvHD patients (n = 39) to show that serum heat shock protein glycoprotein 96 (Gp96) could be such a DAMP molecule. We demonstrate that serum Gp96 increases in gastrointestinal GvHD patients and its level correlates with disease severity. An increase in Gp96 serum level was also observed in a mouse model of acute GvHD. This model was used to identify complement C3 as a main partner of Gp96 in the serum. Our biolayer interferometry, yeast two-hybrid and in silico modeling data allowed us to determine that Gp96 binds to a complement C3 fragment encompassing amino acids 749-954, a functional complement C3 hot spot important for binding of different regulators. Accordingly, in vitro experiments with purified proteins demonstrate that Gp96 downregulates several complement C3 functions. Finally, experimental induction of GvHD in complement C3-deficient mice confirms the link between Gp96 and complement C3 in the serum and with the severity of the disease.
Collapse
Affiliation(s)
- Antoine Seignez
- INSERM UMR 866, Equipe labellisée, Ligue Nationale contre le Cancer, and Laboratoire d'Excellence LipSTIC, Dijon, France.,Université de Bourgogne Franche-Comté, LNC UMR 866, Dijon, France.,CHU, Dijon, France
| | - Anne-Laure Joly
- INSERM UMR 866, Equipe labellisée, Ligue Nationale contre le Cancer, and Laboratoire d'Excellence LipSTIC, Dijon, France.,Université de Bourgogne Franche-Comté, LNC UMR 866, Dijon, France
| | - Killian Chaumonnot
- INSERM UMR 866, Equipe labellisée, Ligue Nationale contre le Cancer, and Laboratoire d'Excellence LipSTIC, Dijon, France.,Université de Bourgogne Franche-Comté, LNC UMR 866, Dijon, France
| | - Adonis Hazoumé
- INSERM UMR 866, Equipe labellisée, Ligue Nationale contre le Cancer, and Laboratoire d'Excellence LipSTIC, Dijon, France.,Université de Bourgogne Franche-Comté, LNC UMR 866, Dijon, France
| | - Michel Sanka
- INSERM UMR 866, Equipe labellisée, Ligue Nationale contre le Cancer, and Laboratoire d'Excellence LipSTIC, Dijon, France.,Université de Bourgogne Franche-Comté, LNC UMR 866, Dijon, France
| | - Guillaume Marcion
- INSERM UMR 866, Equipe labellisée, Ligue Nationale contre le Cancer, and Laboratoire d'Excellence LipSTIC, Dijon, France.,Université de Bourgogne Franche-Comté, LNC UMR 866, Dijon, France
| | - Christophe Boudesco
- INSERM UMR 866, Equipe labellisée, Ligue Nationale contre le Cancer, and Laboratoire d'Excellence LipSTIC, Dijon, France.,Université de Bourgogne Franche-Comté, LNC UMR 866, Dijon, France
| | - Arlette Hammann
- INSERM UMR 866, Equipe labellisée, Ligue Nationale contre le Cancer, and Laboratoire d'Excellence LipSTIC, Dijon, France.,Université de Bourgogne Franche-Comté, LNC UMR 866, Dijon, France
| | - Renaud Seigneuric
- INSERM UMR 866, Equipe labellisée, Ligue Nationale contre le Cancer, and Laboratoire d'Excellence LipSTIC, Dijon, France.,Université de Bourgogne Franche-Comté, LNC UMR 866, Dijon, France
| | - Gaetan Jégo
- INSERM UMR 866, Equipe labellisée, Ligue Nationale contre le Cancer, and Laboratoire d'Excellence LipSTIC, Dijon, France.,Université de Bourgogne Franche-Comté, LNC UMR 866, Dijon, France
| | - Patrick Ducoroy
- Proteomic platform CLIPP, Université de Bourgogne Franche-Comté, Dijon, France
| | - Patrice Delarue
- UMR 6303 CNRS Institut Carnot, Université de Bourgogne Franche-Comté, Dijon, France
| | - Patrick Senet
- UMR 6303 CNRS Institut Carnot, Université de Bourgogne Franche-Comté, Dijon, France
| | | | - Eric Solary
- Institute Gustave Roussy, Université Paris-Sud 11, Villejuif, France.,INSERM UMR1009, Institute Gustave Roussy, Villejuif, France
| | - Marie-Agnès Durey
- Immunology Department, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France; Université Paris Descartes, Paris, France
| | - Marie-Thérèse Rubio
- Service d'Hématologie et Thérapie Cellulaire, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France.,INSERM UMR 938, Université Pierre et Marie Curie, Paris, France
| | - Olivier Hermine
- Institut Imagine, UMR 8147, Université Paris Descartes, Sorbonne Paris-Cité; Hôpital Necker, Assistance publique-Hôpitaux de Paris, Paris, France.,Laboratoire d'Excellence des Globules Rouges (GR-ex), Paris, France
| | - Evelyne Kohli
- INSERM UMR 866, Equipe labellisée, Ligue Nationale contre le Cancer, and Laboratoire d'Excellence LipSTIC, Dijon, France.,Université de Bourgogne Franche-Comté, LNC UMR 866, Dijon, France.,CHU, Dijon, France
| | - Carmen Garrido
- INSERM UMR 866, Equipe labellisée, Ligue Nationale contre le Cancer, and Laboratoire d'Excellence LipSTIC, Dijon, France.,Université de Bourgogne Franche-Comté, LNC UMR 866, Dijon, France.,Anticancer Centre Georges-François Leclerc, Dijon, France
| |
Collapse
|
9
|
Shi B, Huang QQ, Birkett R, Doyle R, Dorfleutner A, Stehlik C, He C, Pope RM. SNAPIN is critical for lysosomal acidification and autophagosome maturation in macrophages. Autophagy 2016; 13:285-301. [PMID: 27929705 DOI: 10.1080/15548627.2016.1261238] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
We previously observed that SNAPIN, which is an adaptor protein in the SNARE core complex, was highly expressed in rheumatoid arthritis synovial tissue macrophages, but its role in macrophages and autoimmunity is unknown. To identify SNAPIN's role in these cells, we employed siRNA to silence the expression of SNAPIN in primary human macrophages. Silencing SNAPIN resulted in swollen lysosomes with impaired CTSD (cathepsin D) activation, although total CTSD was not reduced. Neither endosome cargo delivery nor lysosomal fusion with endosomes or autophagosomes was inhibited following the forced silencing of SNAPIN. The acidification of lysosomes and accumulation of autolysosomes in SNAPIN-silenced cells was inhibited, resulting in incomplete lysosomal hydrolysis and impaired macroautophagy/autophagy flux. Mechanistic studies employing ratiometric color fluorescence on living cells demonstrated that the reduction of SNAPIN resulted in a modest reduction of H+ pump activity; however, the more critical mechanism was a lysosomal proton leak. Overall, our results demonstrate that SNAPIN is critical in the maintenance of healthy lysosomes and autophagy through its role in lysosome acidification and autophagosome maturation in macrophages largely through preventing proton leak. These observations suggest an important role for SNAPIN and autophagy in the homeostasis of macrophages, particularly long-lived tissue resident macrophages.
Collapse
Affiliation(s)
- Bo Shi
- a Division of Rheumatology , Feinberg School of Medicine, Northwestern University , Chicago , IL , USA
| | - Qi-Quan Huang
- a Division of Rheumatology , Feinberg School of Medicine, Northwestern University , Chicago , IL , USA
| | - Robert Birkett
- a Division of Rheumatology , Feinberg School of Medicine, Northwestern University , Chicago , IL , USA
| | - Renee Doyle
- a Division of Rheumatology , Feinberg School of Medicine, Northwestern University , Chicago , IL , USA
| | - Andrea Dorfleutner
- a Division of Rheumatology , Feinberg School of Medicine, Northwestern University , Chicago , IL , USA
| | - Christian Stehlik
- a Division of Rheumatology , Feinberg School of Medicine, Northwestern University , Chicago , IL , USA
| | - Congcong He
- b Department of Cell and Molecular Biology , Feinberg School of Medicine, Northwestern University , Chicago , IL , USA
| | - Richard M Pope
- a Division of Rheumatology , Feinberg School of Medicine, Northwestern University , Chicago , IL , USA
| |
Collapse
|
10
|
Huang QQ, Hossain MM, Sun W, Xing L, Pope RM, Jin JP. Deletion of calponin 2 in macrophages attenuates the severity of inflammatory arthritis in mice. Am J Physiol Cell Physiol 2016; 311:C673-C685. [PMID: 27488671 PMCID: PMC5129749 DOI: 10.1152/ajpcell.00331.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 07/27/2016] [Indexed: 01/08/2023]
Abstract
Calponin is an actin cytoskeleton-associated protein that regulates motility-based cellular functions. Three isoforms of calponin are present in vertebrates, among which calponin 2 encoded by the Cnn2 gene is expressed in multiple types of cells, including blood cells from the myeloid lineage. Our previous studies demonstrated that macrophages from Cnn2 knockout (KO) mice exhibit increased migration and phagocytosis. Intrigued by an observation that monocytes and macrophages from patients with rheumatoid arthritis had increased calponin 2, we investigated anti-glucose-6-phosphate isomerase serum-induced arthritis in Cnn2-KO mice for the effect of calponin 2 deletion on the pathogenesis and pathology of inflammatory arthritis. The results showed that the development of arthritis was attenuated in systemic Cnn2-KO mice with significantly reduced inflammation and bone erosion than that in age- and stain background-matched C57BL/6 wild-type mice. In vitro differentiation of calponin 2-null mouse bone marrow cells produced fewer osteoclasts with decreased bone resorption. The attenuation of inflammatory arthritis was confirmed in conditional myeloid cell-specific Cnn2-KO mice. The increased phagocytotic activity of calponin 2-null macrophages may facilitate the clearance of autoimmune complexes and the resolution of inflammation, whereas the decreased substrate adhesion may reduce osteoclastogenesis and bone resorption. The data suggest that calponin 2 regulation of cytoskeleton function plays a novel role in the pathogenesis of inflammatory arthritis, implicating a potentially therapeutic target.
Collapse
Affiliation(s)
- Qi-Quan Huang
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; and
| | - M Moazzem Hossain
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Wen Sun
- Department of Pathology, University of Rochester, Rochester, New York
| | - Lianping Xing
- Department of Pathology, University of Rochester, Rochester, New York
| | - Richard M Pope
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; and
| | - J-P Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan;
| |
Collapse
|
11
|
Leifer CA, Medvedev AE. Molecular mechanisms of regulation of Toll-like receptor signaling. J Leukoc Biol 2016; 100:927-941. [PMID: 27343013 DOI: 10.1189/jlb.2mr0316-117rr] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/01/2016] [Indexed: 01/22/2023] Open
Abstract
TLRs play a critical role in the detection of microbes and endogenous "alarmins" to initiate host defense, yet they can also contribute to the development and progression of inflammatory and autoimmune diseases. To avoid pathogenic inflammation, TLR signaling is subject to multilayer regulatory control mechanisms, including cooperation with coreceptors, post-translational modifications, cleavage, cellular trafficking, and interactions with negative regulators. Nucleic acid-sensing TLRs are particularly interesting in this regard, as they can both recognize host-derived structures and require internalization of their ligand as a result of intracellular sequestration of the nucleic acid-sensing TLRs. This review summarizes the regulatory mechanisms of TLRs, including regulation of their access to ligands, receptor folding, intracellular trafficking, and post-translational modifications, as well as how altered control mechanism could contribute to inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Cynthia A Leifer
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA; and
| | - Andrei E Medvedev
- Department of Immunology, University of Connecticut Heath Center, Farmington, Connecticut, USA
| |
Collapse
|
12
|
Toll-like receptors and chronic inflammation in rheumatic diseases: new developments. Nat Rev Rheumatol 2016; 12:344-57. [PMID: 27170508 DOI: 10.1038/nrrheum.2016.61] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In the past few years, new developments have been reported on the role of Toll-like receptors (TLRs) in chronic inflammation in rheumatic diseases. The inhibitory function of TLR10 has been demonstrated. Receptors that enhance the function of TLRs, and several TLR inhibitors, have been identified. In addition, the role of the microbiome and TLRs in the onset of rheumatic diseases has been reported. We review novel insights on the role of TLRs in several inflammatory joint diseases, including rheumatoid arthritis, systemic lupus erythematosus, gout and Lyme arthritis, with a focus on the signalling mechanisms mediated by the Toll-IL-1 receptor (TIR) domain, the exogenous and endogenous ligands of TLRs, and the current and future therapeutic strategies to target TLR signalling in rheumatic diseases.
Collapse
|
13
|
Alquraini A, Garguilo S, D'Souza G, Zhang LX, Schmidt TA, Jay GD, Elsaid KA. The interaction of lubricin/proteoglycan 4 (PRG4) with toll-like receptors 2 and 4: an anti-inflammatory role of PRG4 in synovial fluid. Arthritis Res Ther 2015; 17:353. [PMID: 26643105 PMCID: PMC4672561 DOI: 10.1186/s13075-015-0877-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 11/27/2015] [Indexed: 11/20/2022] Open
Abstract
Background Lubricin/proteoglycan-4 (PRG4) is a mucinous glycoprotein secreted by synovial fibroblasts and superficial zone chondrocytes. PRG4 has a homeostatic multifaceted role in the joint. PRG4 intra-articular treatment retards progression of cartilage degeneration in pre-clinical posttraumatic osteoarthritis models. The objective of this study is to evaluate the binding of recombinant human PRG4 (rhPRG4) and native human PRG4 (nhPRG4) to toll-like receptors 2 and 4 (TLR2 and TLR4) and whether this interaction underpins a PRG4 anti-inflammatory role in synovial fluid (SF) from patients with osteoarthritis (OA) and rheumatoid arthritis (RA). Methods rhPRG4 and nhPRG4 binding to TLR2 and TLR4 was evaluated using a direct enzyme linked immunosorbent assay (ELISA). Association of rhPRG4 with TLR2 and TLR4 overexpressing human embryonic kidney (HEK) cells was studied by flow cytometry. Activation of TLR2 and TLR4 on HEK cells by agonists Pam3CSK4 and lipopolysaccharide (LPS) was studied in the absence or presence of nhPRG4 at 50, 100 and 150 μg/ml. Activation of TLR2 and TLR4 by OA SF and RA SF and the effect of nhPRG4 SF treatment on receptor activation was assessed. PRG4 was immunoprecipitated from pooled OA and RA SF. TLR2 and TLR4 activation by pooled OA and RA SF with or without PRG4 immunoprecipitation was compared. Results rhPRG4 and nhPRG4 exhibited concentration-dependent binding to TLR2 and TLR4. rhPRG4 associated with TLR2- and TLR4-HEK cells in a time-dependent manner. Co-incubation of nhPRG4 (50, 100 and 150 μg/ml) and Pam3CSK4 or LPS reduced TLR2 or TLR4 activation compared to Pam3CSK4 or LPS alone (p <0.05). OA SF and RA SF activated TLR2 and TLR4 and nhPRG4 treatment reduced SF-induced receptor activation (p <0.001). PRG4 depletion by immunoprecipitation significantly increased TLR2 activation by OA SF and RA SF (p <0.001). Conclusion PRG4 binds to TLR2 and TLR4 and this binding mediates a novel anti-inflammatory role for PRG4.
Collapse
Affiliation(s)
- Ali Alquraini
- Department of Pharmaceutical Sciences, School of Pharmacy, MCPHS University, 179 Longwood Ave, Boston, MA, 02115, USA.
| | - Steven Garguilo
- Department of Pharmaceutical Sciences, School of Pharmacy, MCPHS University, 179 Longwood Ave, Boston, MA, 02115, USA.
| | - Gerard D'Souza
- Department of Pharmaceutical Sciences, School of Pharmacy, MCPHS University, 179 Longwood Ave, Boston, MA, 02115, USA.
| | - Ling X Zhang
- Department of Emergency Medicine, Rhode Island Hospital, Providence, RI, USA.
| | - Tannin A Schmidt
- Faculty of Kinesiology and Schulich School of Engineering, University of Calgary, Calgary, Canada.
| | - Gregory D Jay
- Department of Emergency Medicine, Rhode Island Hospital, Providence, RI, USA. .,Department of Biomedical Engineering, Brown University, Providence, RI, USA.
| | - Khaled A Elsaid
- Department of Pharmaceutical Sciences, School of Pharmacy, MCPHS University, 179 Longwood Ave, Boston, MA, 02115, USA.
| |
Collapse
|
14
|
Liu Y, Yin H, Zhao M, Lu Q. TLR2 and TLR4 in autoimmune diseases: a comprehensive review. Clin Rev Allergy Immunol 2015; 47:136-47. [PMID: 24352680 DOI: 10.1007/s12016-013-8402-y] [Citation(s) in RCA: 265] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autoimmune diseases are immune disorders characterized by T cell hyperactivity and B cell overstimulation leading to overproduction of autoantibodies. Although the pathogenesis of various autoimmune diseases remains to be elucidated, environmental factors have been thought to contribute to the initiation and maintenance of auto-respond inflammation. Toll-like receptors (TLRs) are pattern recognition receptors belonging to innate immunity that recognize and defend invading microorganisms. Besides these exogenous pathogen-associated molecular patterns, TLRs can also bind with damage-associated molecular patterns produced under strike or by tissue damage or cells apoptosis. It is believed that TLRs build a bridge between innate immunity and autoimmunity. There are five adaptors to TLRs including MyD88, TRIF, TIRAP/MAL, TRAM, and SARM. Upon activation, TLRs recruit specific adaptors to initiate the downstream signaling pathways leading to the production of inflammatory cytokines and chemokines. Under certain circumstances, ligation of TLRs drives to aberrant activation and unrestricted inflammatory responses, thereby contributing to the perpetuation of inflammation in autoimmune diseases. In the past, most studies focused on the intracellular TLRs, such as TLR3, TLR7, and TLR9, but recent studies reveal that cell surface TLRs, especially TLR2 and TLR4, also play an essential role in the development of autoimmune diseases and afford multiple therapeutic targets. In this review, we summarized the biological characteristics, signaling mechanisms of TLR2/4, the negative regulators of TLR2/4 pathway, and the pivotal function of TLR2/4 in the pathogenesis of autoimmune diseases including rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis, Sjogren's syndrome, psoriasis, multiple sclerosis, and autoimmune diabetes.
Collapse
Affiliation(s)
- Yu Liu
- Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Rd, Changsha, Hunan, 410011, People's Republic of China
| | | | | | | |
Collapse
|
15
|
Huang QQ, Perlman H, Birkett R, Doyle R, Fang D, Haines GK, Robinson W, Datta S, Huang Z, Li QZ, Phee H, Pope RM. CD11c-mediated deletion of Flip promotes autoreactivity and inflammatory arthritis. Nat Commun 2015; 6:7086. [PMID: 25963626 PMCID: PMC4429912 DOI: 10.1038/ncomms8086] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/01/2015] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) are critical for immune homeostasis. To target DCs, we generated a mouse line with Flip deficiency in cells that express cre under the CD11c promoter (CD11c-Flip-KO). CD11c-Flip-KO mice spontaneously develop erosive, inflammatory arthritis, resembling rheumatoid arthritis, which is dramatically reduced when these mice are crossed with Rag−/− mice. The CD8α+ DC subset is significantly reduced, along with alterations in NK cells and macrophages. Autoreactive CD4+ T cells and autoantibodies specific for joint tissue are present, and arthritis severity correlates with the number of autoreactive CD4+ T cells and plasmablasts in the joint-draining lymph nodes. Reduced T regulatory cells (Tregs) inversely correlate with arthritis severity, and the transfer of Tregs ameliorates arthritis. This KO line identifies a model that will permit in depth interrogation of the pathogenesis of rheumatoid arthritis, including the role of CD8α+ DCs and other cells of the immune system. Dendritic cells are critical for initiation of immune responses and for induction of tolerance. Here the authors show that deletion of survival factor c-flip in CD11c-expressing cells subset perturbs CD8a+ dendritic cell, NK and macrophage pools, and leads to development of autoimmune arthritis.
Collapse
Affiliation(s)
- Qi-Quan Huang
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Harris Perlman
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Robert Birkett
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Renee Doyle
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - G Kenneth Haines
- Department of Pathology, Mount Sinai Hospital School of Medicine, New York city, New York 10029, USA
| | - William Robinson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, VA Health Care System, Palo Alto, California 94304, USA
| | - Syamal Datta
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Zan Huang
- Department of Biochemistry, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Quan-Zhen Li
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Hyewon Phee
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Richard M Pope
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
16
|
Huang QQ, Birkett R, Koessler RE, Cuda CM, Haines GK, Jin JP, Perlman H, Pope RM. Fas signaling in macrophages promotes chronicity in K/BxN serum-induced arthritis. Arthritis Rheumatol 2014; 66:68-77. [PMID: 24431281 DOI: 10.1002/art.38198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 09/10/2013] [Indexed: 12/29/2022]
Abstract
OBJECTIVE A nonapoptotic role of Fas signaling has been implicated in the regulation of inflammation and innate immunity. This study was undertaken to elucidate the contribution of Fas signaling in macrophages to the development of arthritis. METHODS K/BxN serum-transfer arthritis was induced in a mouse line in which Fas was conditionally deleted in the myeloid lineage (Cre(LysM) Fas(flox/flox) mice). The arthritis was assessed clinically and histologically. Expression of interleukin-1β (IL-1β), CXCL5, IL-10, IL-6, and gp96 was determined by enzyme-linked immunosorbent assay. Bone marrow-derived macrophages were activated with IL-1β and gp96. Cell phenotype and apoptosis were analyzed by flow cytometry. RESULTS Arthritis onset in Cre(LysM) Fas(flox/flox) mice was comparable with that observed in control mice; however, resolution was accelerated during the chronic phase. The attenuated arthritis was associated with reduced articular expression of the endogenous Toll-like receptor 2 (TLR-2) ligand gp96 and the neutrophil chemotactic chemokine CXCL5, and enhanced expression of IL-10. Activation with IL-1β or gp96 induced increased IL-10 expression in Fas-deficient murine macrophages compared with control macrophages. IL-10 suppressed IL-6 and CXCL5 expression induced by IL-1β plus gp96. IL-1β-mediated activation of ERK, which regulates IL-10 expression, was increased in Fas-deficient mouse macrophages. CONCLUSION Taken together, our findings indicate that impaired Fas signaling results in enhanced expression of antiinflammatory IL-10 and reduced expression of gp96, and these effects are associated with accelerated resolution of inflammation during the chronic phase of arthritis. These observations suggest that strategies to reduce endogenous TLR ligands and increase IL-10 may be beneficial in the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Qi-Quan Huang
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Alghasham A, Rasheed Z. Therapeutic targets for rheumatoid arthritis: Progress and promises. Autoimmunity 2014; 47:77-94. [PMID: 24437572 DOI: 10.3109/08916934.2013.873413] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent therapeutic advancements in understanding of molecular and cellular mechanisms of rheumatoid arthritis (RA) have highlighted the strategies that aim to inhibit the harmful effects of up-regulated cytokines or other inflammatory mediators and to inhibit their associated signaling events. The utility of cytokine as therapeutic targets in RA has been unequivocally demonstrated by the success of tumor necrosis factor (TNF)-α blockade in clinical practice. Partial and non-responses to TNF-α blocking agents, however, together with the increasing clinical drive to remission induction, requires that further therapeutic targets be identified. Numerous proinflammatory mediators with their associated cell signaling events have now been demonstrated in RA, including interleukin (IL)-1 and IL-12 superfamilies. Continued efforts are ongoing to target IL-6, IL-15 and IL-17 in clinical trials with promising data emerging. In the present review, we focus on IL-7, IL-18, IL-32 and IL-10 family of cytokines (IL-19, IL-20 and IL-22) as they are implicated in contributing to the pathogenesis of RA, which could be targeted and offer new therapeutic options for RA therapy. Recent evidences also suggest that multiligand receptor for advanced glycation end products (RAGE), several adipokines and various components of immune system play a critical role in the pathophysiology of RA; therefore we have also highlighted them as therapeutic targets for RA therapy. Components of subcellular pathways, involve in nuclear transcription factor (NF)-κB, mitogen-activated protein kinases (MAPKs) and the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway have also been discussed and offer several novel potential therapeutic opportunities for RA.
Collapse
|
18
|
Rola-Łuszczak M, Materniak M, Pluta A, Hulst M, Kuźmak J. Transcriptomic microarray analysis of BoMac cells after infection with bovine foamy virus. Arch Virol 2014; 159:1515-9. [PMID: 24380972 DOI: 10.1007/s00705-013-1959-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 11/18/2013] [Indexed: 12/22/2022]
Abstract
Bovine foamy virus (BFV) infections are highly prevalent among cattle worldwide. However, relatively little is known about the impact of this virus on the host immune system. In our study, we focused on a bovine macrophage cell line (BoMac) and examined changes in the BoMac transcriptome after in vitro infection with BFV using bovine BLOPlus oligo microarrays. One hundred twenty-four genes showed significant changes in expression level. The biological process categories found to be enriched include metabolic processes, cell communication, transport, immune system processes, and response to extracellular stimuli. RT-qPCR was applied to confirm the results obtained for representative genes.
Collapse
Affiliation(s)
- Marzena Rola-Łuszczak
- Department of Biochemistry, National Veterinary Research Institute, Partyzantów 57, 24-100, Pulawy, Poland,
| | | | | | | | | |
Collapse
|
19
|
Ochayon DE, Mizrahi M, Shahaf G, Baranovski BM, Lewis EC. Human α1-Antitrypsin Binds to Heat-Shock Protein gp96 and Protects from Endogenous gp96-Mediated Injury In vivo. Front Immunol 2013; 4:320. [PMID: 24191154 PMCID: PMC3808895 DOI: 10.3389/fimmu.2013.00320] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/21/2013] [Indexed: 12/11/2022] Open
Abstract
The extracellular form of the abundant heat-shock protein, gp96, is involved in human autoimmune pathologies. In patients with type 1 diabetes, circulating gp96 is found to be elevated, and is bound to the acute-phase protein, α1-antitrypsin (AAT). The two molecules also engage intracellularly during the physiological folding of AAT. AAT therapy promotes pancreatic islet survival in both transplantation and autoimmune diabetes models, and several clinical trials are currently examining AAT therapy for individuals with type 1 diabetes. However, its mechanism of action is yet unknown. Here, we examine whether the protective activity of AAT is related to binding of extracellular gp96. Primary mouse islets, macrophages, and dendritic cells were added recombinant gp96 in the presence of clinical-grade human AAT (hAAT, Glassia™, Kamada Ltd., Israel). Islet function was evaluated by insulin release. The effect of hAAT on IL-1β/IFNγ-induced gp96 cell-surface levels was also evaluated. In vivo, skin transplantation was performed for examination of robust immune responses, and systemic inflammation was induced by cecal puncture. Endogenous gp96 was inhibited by gp96-inhibitory peptide (gp96i, Compugen Ltd., Israel) in an allogeneic islet transplantation model. Our findings indicate that hAAT binds to gp96 and diminishes gp96-induced inflammatory responses; e.g., hAAT-treated gp96-stimulated islets released less pro-inflammatory cytokines (IL-1β by 6.16-fold and TNFα by 2.69-fold) and regained gp96-disrupted insulin release. hAAT reduced cell activation during both skin transplantation and systemic inflammation, as well as lowered inducible surface levels of gp96 on immune cells. Finally, inhibition of gp96 significantly improved immediate islet graft function. These results suggest that hAAT is a regulator of gp96-mediated inflammatory responses, an increasingly appreciated endogenous damage response with relevance to human pathologies that are exacerbated by tissue injury.
Collapse
Affiliation(s)
- David E Ochayon
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev , Be'er Sheva , Israel
| | | | | | | | | |
Collapse
|
20
|
Lambrecht S, Juchtmans N, Elewaut D. Heat-shock proteins in stromal joint tissues: innocent bystanders or disease-initiating proteins? Rheumatology (Oxford) 2013; 53:223-32. [DOI: 10.1093/rheumatology/ket277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
21
|
Huang QQ, Koessler RE, Birkett R, Perlman H, Xing L, Pope RM. TLR2 deletion promotes arthritis through reduction of IL-10. J Leukoc Biol 2013; 93:751-9. [PMID: 23446149 DOI: 10.1189/jlb.0912473] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
RA is a chronic inflammatory disease characterized by the persistent expression of inflammatory cytokines from macrophages, which may be mediated, in part, through TLR2 signaling. Earlier studies demonstrate a role for TLR2 signaling in dampening the arthritis in IL-1Ra-/- mice, which was mediated through T cells. This study was performed to determine whether TLR2 signaling plays a role in the pathogenesis of T cell-independent arthritis triggered by transferring serum from K/BxN mice. We documented more severe arthritis in Tlr2-/- mice compared with WT controls. The Tlr2-/- mice also demonstrated increased inflammation, erosion, pannus formation, and osteoclastogenesis, as well as increased IL-1β and decreased IL-10 within the joints. In vitro bone marrow-differentiated macrophages expressed comparable levels of activating and inhibitory FcγRs, however when stimulated with immune complexes, the Tlr2-/- macrophages expressed decreased IL-10 and reduced activation of Akt and ERK. Our findings indicate that Tlr2-/- promotes the effector phase of arthritis through decreased IL-10 by macrophages, which is important, not only as an anti-inflammatory cytokine but also in restraining the differentiation and activation of osteoclasts.
Collapse
Affiliation(s)
- Qi-Quan Huang
- Department of Medicine/Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611-2909, USA
| | | | | | | | | | | |
Collapse
|
22
|
Huang QQ, Pope RM. The role of glycoprotein 96 in the persistent inflammation of rheumatoid arthritis. Arch Biochem Biophys 2012; 530:1-6. [PMID: 23257071 DOI: 10.1016/j.abb.2012.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 11/28/2012] [Accepted: 12/04/2012] [Indexed: 12/29/2022]
Abstract
The 96-kDa glycoprotein (gp96) is an endoplasmic reticulum (ER) resident molecular chaperone. Under physiologic conditions, gp96 facilitates the transport of toll-like receptors (TLRs) to cell or endosomal membranes. Under pathologic circumstances such as rheumatoid arthritis, gp96 translocates to the cell surface and extracellular space, serving as an endogenous danger signal promoting TLR signaling. Macrophages play a central role in regulating innate and adaptive immunity, and are the major source of proinflammatory cytokines and chemokines in rheumatoid arthritis (RA). Macrophage numbers in the sublining of RA synovial tissue correlate with clinical response. This review focuses on the recent findings that implicate gp96 induced macrophage activation mediated through TLR signaling in the pathogenesis of RA and provides insights concerning the targeting gp96 and the TLR signaling pathway as therapeutic approaches for patients with RA and possibly other chronic inflammatory conditions.
Collapse
Affiliation(s)
- Qi-Quan Huang
- Northwestern University Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, 240 East Huron, McGaw M220, Chicago, IL 60611, USA.
| | | |
Collapse
|