1
|
Pan TT, Gao W, Song ZH, Long DD, Cao P, Hu R, Chen DY, Zhou WJ, Jin Y, Hu SS, Wei W, Chai XQ, Zhang Z, Wang D. Glutamatergic neurons and myeloid cells in the anterior cingulate cortex mediate secondary hyperalgesia in chronic joint inflammatory pain. Brain Behav Immun 2022; 101:62-77. [PMID: 34973395 DOI: 10.1016/j.bbi.2021.12.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Affiliation(s)
- Ting-Ting Pan
- Pain Clinic, Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Wei Gao
- Pain Clinic, Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zi-Hua Song
- Department of Neurobiology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China; Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Dan-Dan Long
- Pain Clinic, Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Peng Cao
- Department of Neurobiology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Rui Hu
- Department of Neurobiology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Dan-Yang Chen
- Department of Neurobiology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Wen-Jie Zhou
- Department of Neurobiology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Yan Jin
- Department of Neurobiology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Shan-Shan Hu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Xiao-Qing Chai
- Pain Clinic, Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhi Zhang
- Pain Clinic, Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Department of Neurobiology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Di Wang
- Pain Clinic, Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
2
|
Barriga M, Benitez R, Robledo G, Caro M, O'Valle F, Campos-Salinas J, Delgado M. Neuropeptide Cortistatin Regulates Dermal and Pulmonary Fibrosis in an Experimental Model of Systemic Sclerosis. Neuroendocrinology 2022; 112:784-795. [PMID: 34649259 DOI: 10.1159/000520194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/13/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Scleroderma, or systemic sclerosis, is a complex connective tissue disorder characterized by autoimmunity, vasculopathy, and progressive fibrosis of the skin and internal organs. Because its aetiology is unknown, the identification of genes/factors involved in disease severity, differential clinical forms, and associated complications is critical for understanding its pathogenesis and designing novel treatments. Neuroendocrine mediators in the skin emerge as potential candidates. We investigated the role played by the neuropeptide cortistatin in a preclinical model of scleroderma. METHODS Dermal fibrosis was induced by repetitive intradermal injections of bleomycin in wild-type and cortistatin-deficient mice. The histopathological signs and expression of fibrotic markers were evaluated in the skin and lungs. RESULTS An inverse correlation between cortistatin levels and fibrogenic activation exists in the damaged skin and dermal fibroblasts. Bleomycin-challenged skin lesions of mice that are partially and totally deficient in cortistatin showed exacerbated histopathological signs of scleroderma, characterized by thicker and more fibrotic dermal layer, enlarged epidermis, and increased inflammatory infiltration in comparison to those of wild-type mice. Cortistatin deficiency enhanced dermal collagen deposits, connective tissue growth factor expression, loss of microvessels, and predisposition to suffer severe complications that co-occur with dermal exposition to bleomycin, including pulmonary fibrotic disease and increased mortality. Treatment with cortistatin mitigated these pathological processes. DISCUSSION/CONCLUSION We identify cortistatin as an endogenous break of skin inflammation and fibrosis. Deficiency in cortistatin could be a marker of poor prognosis of scleroderma and associated complications. Cortistatin-based therapies emerge as attractive candidates to treat severe forms of systemic sclerosis and to manage fibrosis-related side effects of bleomycin chemotherapy in oncologic patients.
Collapse
Affiliation(s)
- Margarita Barriga
- Institute of Parasitology and Biomedicine Lopez-Neyra IPBLN-CSIC, Granada, Spain
| | - Raquel Benitez
- Institute of Parasitology and Biomedicine Lopez-Neyra IPBLN-CSIC, Granada, Spain
| | - Gema Robledo
- Institute of Parasitology and Biomedicine Lopez-Neyra IPBLN-CSIC, Granada, Spain
| | - Marta Caro
- Institute of Parasitology and Biomedicine Lopez-Neyra IPBLN-CSIC, Granada, Spain
| | - Francisco O'Valle
- Pathology Department, School of Medicine, IBIMER, CIBM, University of Granada and Biosanitary Research Institute IBS-Granada, Granada, Spain
| | - Jenny Campos-Salinas
- Institute of Parasitology and Biomedicine Lopez-Neyra IPBLN-CSIC, Granada, Spain
| | - Mario Delgado
- Institute of Parasitology and Biomedicine Lopez-Neyra IPBLN-CSIC, Granada, Spain
| |
Collapse
|
3
|
Falo CP, Benitez R, Caro M, Morell M, Forte-Lago I, Hernandez-Cortes P, Sanchez-Gonzalez C, O’Valle F, Delgado M, Gonzalez-Rey E. The Neuropeptide Cortistatin Alleviates Neuropathic Pain in Experimental Models of Peripheral Nerve Injury. Pharmaceutics 2021; 13:pharmaceutics13070947. [PMID: 34202793 PMCID: PMC8309056 DOI: 10.3390/pharmaceutics13070947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/25/2022] Open
Abstract
Neuropathic pain is one of the most severe forms of chronic pain caused by the direct injury of the somatosensory system. The current drugs for treating neuropathies have limited efficacies or show important side effects, and the development of analgesics with novel modes of action is critical. The identification of endogenous anti-nociceptive factors has emerged as an attractive strategy for designing new pharmacological approaches to treat neuropathic pain. Cortistatin is a neuropeptide with potent anti-inflammatory activity, recently identified as a natural analgesic peptide in several models of pain evoked by inflammatory conditions. Here, we investigated the potential analgesic effect of cortistatin in neuropathic pain using a variety of experimental models of peripheral nerve injury caused by chronic constriction or partial transection of the sciatic nerve or by diabetic neuropathy. We found that the peripheral and central injection of cortistatin ameliorated hyperalgesia and allodynia, two of the dominant clinical manifestations of chronic neuropathic pain. Cortistatin-induced analgesia was multitargeted, as it regulated the nerve damage-induced hypersensitization of primary nociceptors, inhibited neuroinflammatory responses, and enhanced the production of neurotrophic factors both at the peripheral and central levels. We also demonstrated the neuroregenerative/protective capacity of cortistatin in a model of severe peripheral nerve transection. Interestingly, the nociceptive system responded to nerve injury by secreting cortistatin, and a deficiency in cortistatin exacerbated the neuropathic pain responses and peripheral nerve dysfunction. Therefore, cortistatin-based therapies emerge as attractive alternatives for treating chronic neuropathic pain of different etiologies.
Collapse
Affiliation(s)
- Clara P. Falo
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, Parque Tecnologico de la Salud, 18016 Granada, Spain; (C.P.F.); (R.B.); (M.C.); (M.M.); (I.F.-L.); (C.S.-G.)
| | - Raquel Benitez
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, Parque Tecnologico de la Salud, 18016 Granada, Spain; (C.P.F.); (R.B.); (M.C.); (M.M.); (I.F.-L.); (C.S.-G.)
| | - Marta Caro
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, Parque Tecnologico de la Salud, 18016 Granada, Spain; (C.P.F.); (R.B.); (M.C.); (M.M.); (I.F.-L.); (C.S.-G.)
| | - Maria Morell
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, Parque Tecnologico de la Salud, 18016 Granada, Spain; (C.P.F.); (R.B.); (M.C.); (M.M.); (I.F.-L.); (C.S.-G.)
- Genyo Center for Genomics and Oncological Research, Parque Tecnologico de la Salud, 18016 Granada, Spain
| | - Irene Forte-Lago
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, Parque Tecnologico de la Salud, 18016 Granada, Spain; (C.P.F.); (R.B.); (M.C.); (M.M.); (I.F.-L.); (C.S.-G.)
| | - Pedro Hernandez-Cortes
- Department of Orthopedic Surgery, San Cecilio University Hospital, 18071 Granada, Spain;
| | - Clara Sanchez-Gonzalez
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, Parque Tecnologico de la Salud, 18016 Granada, Spain; (C.P.F.); (R.B.); (M.C.); (M.M.); (I.F.-L.); (C.S.-G.)
| | - Francisco O’Valle
- Department of Pathology, School of Medicine, IBIMER and IBS-Granada, Granada University, 18016 Granada, Spain;
| | - Mario Delgado
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, Parque Tecnologico de la Salud, 18016 Granada, Spain; (C.P.F.); (R.B.); (M.C.); (M.M.); (I.F.-L.); (C.S.-G.)
- Correspondence: (M.D.); (E.G.-R.)
| | - Elena Gonzalez-Rey
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, Parque Tecnologico de la Salud, 18016 Granada, Spain; (C.P.F.); (R.B.); (M.C.); (M.M.); (I.F.-L.); (C.S.-G.)
- Correspondence: (M.D.); (E.G.-R.)
| |
Collapse
|
4
|
Qiu C, Li J, Luo D, Chen X, Qu R, Liu T, Li F, Liu Y. Cortistatin protects against inflammatory airway diseases through curbing CCL2 and antagonizing NF-κB signaling pathway. Biochem Biophys Res Commun 2020; 531:595-601. [PMID: 32811643 DOI: 10.1016/j.bbrc.2020.07.088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/19/2020] [Indexed: 12/26/2022]
Abstract
Asthma is a chronic inflammatory disease affecting millions of people around the world, yet much remains unknown about its underlying mechanisms. Cortistatin (CST) is a neuropeptide which is reported to be a potential endogenous anti-inflammatory factor in several conditions. To testify the potential involvement of CST in airway inflammatory reaction, an ovalbumin (OVA)-induced mice model was established in wild-type (WT) as well as CST-knockout (Cort-/-) mice. Thereafter, lung tissue or cell samples were gathered in each group, and histological analysis as well as cell counting assay indicated that Cort-/- mice exhibited exaggeration of asthma compared with WT control group. Moreover, mRNA sequencing assay revealed that CCL2 was a potential target of CST in asthma, and administration of CCL2 inhibitor alleviated airway inflammation of asthma in Cort-/- mice. Moreover, NF-κB signaling pathway might be closely associated with the protective function of CST in asthma, as enhanced activation of NF-κB signaling pathway was observed in OVA-induced asthma model of Cort-/- mice, and SN50, an inhibitor of NF-κB signaling pathway, antagonized asthma development in Cort-/- mice. In summary, CST might represent as a promising target for the treatment of asthma through interacting with CCL2 and NF-κB signaling pathway.
Collapse
Affiliation(s)
- Cheng Qiu
- Department of Pathology, The School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, PR China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Jiayi Li
- Department of Pathology, The School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, PR China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Dan Luo
- College of Stomatology, Qingdao University, Qingdao, Shandong, 266071, PR China
| | - Xiaomin Chen
- Department of Pathology, The School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, PR China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Ruize Qu
- Department of Pathology, The School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, PR China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Tianyi Liu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Feng Li
- Department of Medical Imaging, First People's Hospital of Jinan, Jinan, Shandong, 250011, PR China.
| | - Yansong Liu
- Department of Breast Surgery, Shandong Cancer Hospital, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
5
|
Loss of control over mild aversive events produces significant helplessness in mice. Behav Brain Res 2019; 376:112173. [PMID: 31445976 DOI: 10.1016/j.bbr.2019.112173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/05/2019] [Accepted: 08/21/2019] [Indexed: 02/08/2023]
Abstract
Most of the pathophysiology of depression are still unknown because of its numerous disease states of distinct etiology and pathogenesis. Stressful rodent models have been used to test a number of hypotheses regarding the etiology of depression. The learned helplessness rodent model demonstrates that having no control at all over aversive events produces helplessness and depression, but the role of loss of control over aversive events in helplessness is still not reliably modelled or deeply investigated. A rodent model of helplessness produced by loss of control is closer to human conditions and is therefore more useful for novel mechanistic and pre-clinic studies. The present work proposed a triadic experimental design in which a Loss Of Control (LOC) group of mice was firstly exposed to escapable mild footshocks to acquire control, and then to inescapable shocks to lose control, with a yoked (L-Yoked) group receiving identical but always uncontrollable shocks. Although both the LOC and the L-Yoked groups developed helplessness, as compared with the naive control group, the helplessness exhibited in the LOC group was significantly more serious than that in the L-Yoked group. The difference in severity between the LOC and the L-Yoked groups demonstrates the effects of loss of control over aversive events, in addition to the effects of the aversive events per se. The LOC paradigm can be used to reproduce pathology of depression induced by loss of control over aversive life events, with a good constructive validity.
Collapse
|
6
|
Zhao Y, Li Y, Qu R, Chen X, Wang W, Qiu C, Liu B, Pan X, Liu L, Vasilev K, Hayball J, Dong S, Li W. Cortistatin binds to TNF-α receptors and protects against osteoarthritis. EBioMedicine 2019; 41:556-570. [PMID: 30826358 PMCID: PMC6443028 DOI: 10.1016/j.ebiom.2019.02.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/06/2019] [Accepted: 02/15/2019] [Indexed: 02/06/2023] Open
Abstract
Background Osteoarthritis (OA) is a common degenerative disease, and tumor necrosis factor (TNF-α) is known to play a critical role in OA. Cortistatin (CST) is a neuropeptide discovered over 20 years ago, which plays a vital role in inflammatory reactions. However, it is unknown whether CST is involved in cartilage degeneration and OA development. Methods The interaction between CST and TNF-α receptors was investigated through Coimmunoprecipitation and Biotin-based solid-phase binding assay. Western blot, Real-time PCR, ELISA, immunofluorescence staining, nitrite production assay and DMMB assay of GAG were performed for the primary chondrocyte experiments. Surgically induced and spontaneous OA models were established and western blot, flow cytometry, Real-time PCR, ELISA, immunohistochemistry and fluorescence in vivo imaging were performed for in vivo experiments. Findings CST competitively bound to TNFR1 as well as TNFR2. CST suppressed proinflammatory function of TNF-α. Both spontaneous and surgically induced OA models indicated that deficiency of CST led to an accelerated OA-like phenotype, while exogenous CST attenuated OA development in vivo. Additionally, TNFR1- and TNFR2-knockout mice were used for analysis and indicated that TNFRs might be involved in the protective role of CST in OA. CST inhibited activation of the NF-κB signaling pathway in OA. Interpretation This study provides new insight into the pathogenesis and therapeutic strategy of cartilage degenerative diseases, including OA. Fund The National Natural Science Foundation of China, the Natural Science Foundation of Shandong Province, Key Research and Development Projects of Shandong Province and the Cross-disciplinary Fund of Shandong University.
Collapse
Affiliation(s)
- Yunpeng Zhao
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Yuhua Li
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Ruize Qu
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012. PR China
| | - Xiaomin Chen
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012. PR China
| | - Wenhan Wang
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012. PR China
| | - Cheng Qiu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012. PR China
| | - Ben Liu
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Xin Pan
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Liang Liu
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Krasimir Vasilev
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; School of Engineering, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - John Hayball
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Shuli Dong
- College of Chemistry, Shandong University, Jinan, Shandong 250101, PR China
| | - Weiwei Li
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China.
| |
Collapse
|
7
|
Günther T, Tulipano G, Dournaud P, Bousquet C, Csaba Z, Kreienkamp HJ, Lupp A, Korbonits M, Castaño JP, Wester HJ, Culler M, Melmed S, Schulz S. International Union of Basic and Clinical Pharmacology. CV. Somatostatin Receptors: Structure, Function, Ligands, and New Nomenclature. Pharmacol Rev 2019; 70:763-835. [PMID: 30232095 PMCID: PMC6148080 DOI: 10.1124/pr.117.015388] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Somatostatin, also known as somatotropin-release inhibitory factor, is a cyclopeptide that exerts potent inhibitory actions on hormone secretion and neuronal excitability. Its physiologic functions are mediated by five G protein-coupled receptors (GPCRs) called somatostatin receptor (SST)1-5. These five receptors share common structural features and signaling mechanisms but differ in their cellular and subcellular localization and mode of regulation. SST2 and SST5 receptors have evolved as primary targets for pharmacological treatment of pituitary adenomas and neuroendocrine tumors. In addition, SST2 is a prototypical GPCR for the development of peptide-based radiopharmaceuticals for diagnostic and therapeutic interventions. This review article summarizes findings published in the last 25 years on the physiology, pharmacology, and clinical applications related to SSTs. We also discuss potential future developments and propose a new nomenclature.
Collapse
Affiliation(s)
- Thomas Günther
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Giovanni Tulipano
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Pascal Dournaud
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Corinne Bousquet
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Zsolt Csaba
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Hans-Jürgen Kreienkamp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Márta Korbonits
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Justo P Castaño
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Hans-Jürgen Wester
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Michael Culler
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Shlomo Melmed
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| |
Collapse
|
8
|
Chai H, Tao Z, Chen W, Xu Y, Huang F, Su C, Chen X. Cortistatin attenuates angiotensin II-induced abdominal aortic aneurysm through inactivation of the ERK1/2 signaling pathways. Biochem Biophys Res Commun 2018; 495:1801-1806. [DOI: 10.1016/j.bbrc.2017.12.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/06/2017] [Indexed: 02/07/2023]
|
9
|
Moazen P, Taherianfard M, Ahmadi Soleimani M, Norozpor M. Synergistic effect of spexin and progesterone on pain sensitivity attenuation in ovariectomized rats. Clin Exp Pharmacol Physiol 2017; 45:349-354. [PMID: 28949407 DOI: 10.1111/1440-1681.12862] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 08/25/2017] [Accepted: 09/10/2017] [Indexed: 11/30/2022]
Abstract
Spexin is a central modulator of nociception. The aim of the present study was to investigate the effect of intra-hippocampal CA3 (IHCA3) injection of spexin and spexin-progesterone co-administration on pain sensitivity in ovariectomized rat. Thirty-five adult female rats were divided into five groups. Sham: the animals received injection of 0.5 μL ACSF by IHCA3. Experiments 1 and 2: the animals received injection of 0.5 μL of spexin bilaterally (10 and 30 nmol/rat respectively). Experiments 3 and 4: the animals received injection of 0.5 μL of spexin bilaterally (10 and 30 nmol/rat respectively) + subcutaneous (s.c.) injection of progesterone (5 mg/kg). Ovariectomy was performed in all groups to eliminate the effects of cyclic changes in the female rats. The formalin test (formalin 2.5%) was performed following the administration of spexin and progesterone. Results showed that bilateral injection of spexin in IHCA3 at both concentrations a significant (P < .05) decrease in the pain sensitivity in the two phases of formalin test. Similarly, the bilateral injection of spexin in IHCA3 at both concentrations following the s.c. injection of progesterone significantly (P < .05) decreases pain sensitivity in two phases of the formalin test. This pain attenuation due to the co-administration of spexin and progesterone was more potent than spexin-induced analgesia. According to the present results, spexin has a modulatory effect on pain sensitivity, which becomes more pronounced by progesterone administration.
Collapse
Affiliation(s)
- Parisa Moazen
- Department of Physiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mahnaz Taherianfard
- Department of Physiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Mitra Norozpor
- Department of Physiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
10
|
Otis C, Guillot M, Moreau M, Martel-Pelletier J, Pelletier JP, Beaudry F, Troncy E. Spinal neuropeptide modulation, functional assessment and cartilage lesions in a monosodium iodoacetate rat model of osteoarthritis. Neuropeptides 2017; 65:56-62. [PMID: 28456437 DOI: 10.1016/j.npep.2017.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/31/2017] [Accepted: 04/22/2017] [Indexed: 01/19/2023]
Abstract
BACKGROUND AND AIMS Characterising the temporal evolution of changes observed in pain functional assessment, spinal neuropeptides and cartilage lesions of the joint after chemical osteoarthritis (OA) induction in rats. METHODS AND RESULTS On day (D) 0, OA was induced by an IA injection of monosodium iodoacetate (MIA). Rats receiving 2mg MIA were temporally assessed at D3, D7, D14 and D21 for the total spinal cord concentration of substance P (SP), calcitonin gene related-peptide (CGRP), bradykinin (BK) and somatostatin (STT), and for severity of cartilage lesions. At D21, the same outcomes were compared with the IA 1mg MIA, IA 2mg MIA associated with punctual IA injection of lidocaine at D7, D14 and D21, sham (sterile saline) and naïve groups. Tactile allodynia was sequentially assessed using a von Frey anaesthesiometer. Non-parametric and mixed models were applied for statistical analysis. Tactile allodynia developed in the 2mg MIA group as soon as D3 and was maintained up to D21. Punctual IA treatment with lidocaine counteracted it at D7 and D14. Compared to naïve, [STT], [BK] and [CGRP] reached a maximum as early as D7, which plateaued up to D21. For [SP], the increase was delayed up to D14 and maintained at D21. No difference in levels of neuropeptides was observed between MIA doses, except for higher [STT] in the 2mg MIA group (P=0.029). Neuropeptides SP and BK were responsive to lidocaine treatment. The increase in severity of cartilage lesions was significant only in the 2mg MIA groups (P=0.01). CONCLUSION In the MIA OA pain model, neuropeptide modulation appears early, and confirms the central nervous system to be an attractive target for OA pain quantification. The relationship of neuropeptide release with severity of cartilage lesions and functional assessment are promising and need further validation.
Collapse
Affiliation(s)
- Colombe Otis
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, St.-Hyacinthe, QC J2S 7C6, Canada; Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Pavillon R, Montreal, QC H2X 0A9, Canada
| | - Martin Guillot
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, St.-Hyacinthe, QC J2S 7C6, Canada; Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Pavillon R, Montreal, QC H2X 0A9, Canada
| | - Maxim Moreau
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, St.-Hyacinthe, QC J2S 7C6, Canada; Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Pavillon R, Montreal, QC H2X 0A9, Canada
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Pavillon R, Montreal, QC H2X 0A9, Canada
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Pavillon R, Montreal, QC H2X 0A9, Canada
| | - Francis Beaudry
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, St.-Hyacinthe, QC J2S 7C6, Canada; Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Pavillon R, Montreal, QC H2X 0A9, Canada
| | - Eric Troncy
- Animal Pharmacology Research Group of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, St.-Hyacinthe, QC J2S 7C6, Canada; Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Pavillon R, Montreal, QC H2X 0A9, Canada.
| |
Collapse
|
11
|
Neuropeptides and Microglial Activation in Inflammation, Pain, and Neurodegenerative Diseases. Mediators Inflamm 2017; 2017:5048616. [PMID: 28154473 PMCID: PMC5244030 DOI: 10.1155/2017/5048616] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/26/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022] Open
Abstract
Microglial cells are responsible for immune surveillance within the CNS. They respond to noxious stimuli by releasing inflammatory mediators and mounting an effective inflammatory response. This is followed by release of anti-inflammatory mediators and resolution of the inflammatory response. Alterations to this delicate process may lead to tissue damage, neuroinflammation, and neurodegeneration. Chronic pain, such as inflammatory or neuropathic pain, is accompanied by neuroimmune activation, and the role of glial cells in the initiation and maintenance of chronic pain has been the subject of increasing research over the last two decades. Neuropeptides are small amino acidic molecules with the ability to regulate neuronal activity and thereby affect various functions such as thermoregulation, reproductive behavior, food and water intake, and circadian rhythms. Neuropeptides can also affect inflammatory responses and pain sensitivity by modulating the activity of glial cells. The last decade has witnessed growing interest in the study of microglial activation and its modulation by neuropeptides in the hope of developing new therapeutics for treating neurodegenerative diseases and chronic pain. This review summarizes the current literature on the way in which several neuropeptides modulate microglial activity and response to tissue damage and how this modulation may affect pain sensitivity.
Collapse
|
12
|
Abstract
Knee osteoarthritis (KOA) is the most common degenerative arthritis and is treated by a wide range of practitioners. Treatment planning requires knowledge of the knee joint components and the influence of systemic and environmental factors. The treatment of KOA has changed little in 50 years. We are entering a new stage where KOA is now being viewed as an organ in failure. Neurotransmission of pain is both peripheral and central. Medical treatment can influence both pathways. Current guidelines for treatment have more rigid criteria based on the literature. In the future, the use of genetic-based biomarkers, clinical patterns of response and imaging characteristics will likely create subgroups of individuals who could benefit from improved designer therapies.
Collapse
Affiliation(s)
- Fred Rt Nelson
- Emeritus, Department of Orthopaedics, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI 48202, USA;
| |
Collapse
|
13
|
Gonzalez-Rey E, Pedreño M, Delgado-Maroto V, Souza-Moreira L, Delgado M. Lulling immunity, pain, and stress to sleep with cortistatin. Ann N Y Acad Sci 2015; 1351:89-98. [PMID: 25951888 DOI: 10.1111/nyas.12789] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cortistatin is a neuropeptide isolated from cortical brain regions, showing high structural homology and sharing many functions with somatostatin. However, cortistatin exerts unique functions in the central nervous and immune systems, including decreasing locomotor activity, inducing sleep-promoting effects, and deactivating inflammatory and T helper (TH )1/TH 17-driven responses in preclinical models of sepsis, arthritis, multiple sclerosis, and colitis. Besides its release by cortical and hippocampal interneurons, cortistatin is produced by macrophages, lymphocytes, and peripheral nociceptive neurons in response to inflammatory stimuli, supporting a physiological role of cortistatin in the immune and nociceptive systems. Cortistatin-deficient mice have been shown to have exacerbated nociceptive responses to neuropathic and inflammatory pain sensitization. However, a paradoxical effect has been observed in studies of immune disorders, in which, despite showing competent inflammatory/autoreactive responses, cortistatin-deficient mice were partially resistant to systemic autoimmunity and inflammation. This unexpected phenotype was associated with elevated circulating glucocorticoids and anxiety-like behavior. These findings support cortistatin as a novel multimodal therapeutic approach to treat autoimmunity and clinical pain and identify it as a key endogenous component of the neuroimmune system related to stress responses.
Collapse
Affiliation(s)
- Elena Gonzalez-Rey
- Institute of Parasitology and Biomedicine Lopez-Neyra, Spanish National Research Council (CSIC), Granada, Spain
| | - Marta Pedreño
- Institute of Parasitology and Biomedicine Lopez-Neyra, Spanish National Research Council (CSIC), Granada, Spain
| | - Virginia Delgado-Maroto
- Institute of Parasitology and Biomedicine Lopez-Neyra, Spanish National Research Council (CSIC), Granada, Spain
| | | | - Mario Delgado
- Institute of Parasitology and Biomedicine Lopez-Neyra, Spanish National Research Council (CSIC), Granada, Spain
| |
Collapse
|
14
|
Carvalho TT, Borghi SM, Pinho-Ribeiro FA, Mizokami SS, Cunha TM, Ferreira SH, Cunha FQ, Casagrande R, Verri WA. Granulocyte-colony stimulating factor (G-CSF)-induced mechanical hyperalgesia in mice: Role for peripheral TNFα, IL-1β and IL-10. Eur J Pharmacol 2015; 749:62-72. [PMID: 25584775 DOI: 10.1016/j.ejphar.2014.12.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 12/17/2014] [Accepted: 12/22/2014] [Indexed: 01/28/2023]
Abstract
Granulocyte-colony stimulating factor (G-CSF) is a therapeutic approach to increase peripheral neutrophil counts after anti-tumor therapies. Pain is the major side effect of G-CSF. Intraplantar administration of G-CSF in mice induces mechanical hyperalgesia. However, the peripheral mechanisms involved in this effect were not elucidated. Therefore, the participation of pronociceptive cytokines tumor necrosis factor (TNF) alpha (TNFα), interleukin (IL)-1 beta (IL-1β) and antinociceptive cytokine IL-10 in G-CSF-induced mechanical hyperalgesia in mice was investigated. G-CSF-induced mechanical hyperalgesia was inhibited by systemic and local treatment with etanercept and IL-1 receptor antagonist (IL-1ra) or TNF receptor 1 (TNFR1) deficiency and increased in IL-10 deficient mice. In agreement, G-CSF injection induced significant TNFα, IL-1β and IL-10 production in paw tissue. G-CSF-induced hyperalgesia was dose-dependently inhibited by thalidomide (5-45mg/kg) and pentoxifylline (0.5-13.5mg/kg), and treatment with these drugs inhibited G-CSF-induced TNFα, IL-1β and IL-10 production. The combined treatment with pentoxifylline or thalidomide with morphine, at doses that are ineffective as single treatment, diminished G-CSF-induced hyperalgesia through inhibiting cytokine production. Indomethacin also reduces G-CSF hyperalgesia alone or combined with pentoxifylline or thalidomide. Thus, G-CSF-induced hyperalgesia might be mediate by peripheral production of pronociceptive cytokines TNFα and IL-1β and down-regulated by IL-10. Systemic IL-1ra reduced G-CSF-induced increase of peripheral neutrophil counts. However, local treatment with morphine, IL-1ra or etanercept, and systemic treatment with indomethacin, etanercept, thalidomide and pentoxifylline did not alter G-CSF-induced mobilization of neutrophils. Therefore, this study advances in the understanding of G-CSF-induced hyperalgesia and suggests therapeutic approaches for its control.
Collapse
Affiliation(s)
- Thacyana T Carvalho
- Department of Pathology, Center of Biological Science, Londrina State University, Rod. Celso Garcia Cid KM480 PR445, CEP 86057-970, Cx Postal 10.011, Londrina, Paraná, Brazil.
| | - Sergio M Borghi
- Department of Pathology, Center of Biological Science, Londrina State University, Rod. Celso Garcia Cid KM480 PR445, CEP 86057-970, Cx Postal 10.011, Londrina, Paraná, Brazil.
| | - Felipe A Pinho-Ribeiro
- Department of Pathology, Center of Biological Science, Londrina State University, Rod. Celso Garcia Cid KM480 PR445, CEP 86057-970, Cx Postal 10.011, Londrina, Paraná, Brazil.
| | - Sandra S Mizokami
- Department of Pathology, Center of Biological Science, Londrina State University, Rod. Celso Garcia Cid KM480 PR445, CEP 86057-970, Cx Postal 10.011, Londrina, Paraná, Brazil.
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Avenida Bandeirantes, 3900, CEP 14049-900 Ribeirao Preto, Sao Paulo, Brazil.
| | - Sergio H Ferreira
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Avenida Bandeirantes, 3900, CEP 14049-900 Ribeirao Preto, Sao Paulo, Brazil.
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Avenida Bandeirantes, 3900, CEP 14049-900 Ribeirao Preto, Sao Paulo, Brazil.
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, University Hospital (Health Science Centre), Londrina State University, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, Paraná, Brazil.
| | - Waldiceu A Verri
- Department of Pathology, Center of Biological Science, Londrina State University, Rod. Celso Garcia Cid KM480 PR445, CEP 86057-970, Cx Postal 10.011, Londrina, Paraná, Brazil.
| |
Collapse
|
15
|
Gruber HE, Hoelscher GL, Bethea SF, Menscher EA, Ingram JA, Templin MA, Hanley EN. Cortistatin is endogenous to the human intervertebral disc and exerts in vitro mitogenic effects on annulus cells and a downregulatory effect on TNF-α expression. Spine J 2014; 14:2995-3001. [PMID: 24912122 DOI: 10.1016/j.spinee.2014.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/29/2014] [Accepted: 06/02/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Cortistatin (CST) is a recently discovered cyclic neuropeptide with biologic anti-inflammatory properties relevant to disc degeneration. PURPOSE To test whether CST is present in the disc tissue, whether its expression is influenced by tumor necrosis factor-α (TNF-α), and whether it influences cell proliferation. STUDY DESIGN Institutional review board-approved study using immunohistochemistry on human disc tissue, in vitro annulus cultures to determine the effect of CST on cell proliferation, and the effect of TNF-α on CST gene expression. PATIENT SAMPLE Discs from 12 subjects used for immunohistochemistry, four annulus specimens used for cell culture with proinflammatory cytokines, and 11 used for cell proliferation analyses. OUTCOME MEASURES Immunohistochemical localization of CST, gene expression of CST, and cell proliferation analyses. METHODS Immunohistochemistry localized CST in disc tissue. Microarray analysis measured CST gene expression. Human annulus cells were exposed to CST for proliferation tests or cultured for the effect of TNF-α on CST expression. Standard statistical analyses were performed. RESULTS Immunohistochemistry identified CST in outer annulus, inner annulus, and nucleus tissue. Annulus cells exposed to TNF-α revealed significantly lower CST expression (p=.013). Exposure to CST significantly increased proliferation. Quantitative real-time polymerase chain reaction also confirmed expression of CST in vitro. CONCLUSIONS Data provide the first evidence that CST is present in the human disc. Addition of CST significantly increased cell proliferation. Cortistatin expression was significantly downregulated by TNF-α exposure in vitro. Findings suggest possible in vivo reduction of the anti-inflammatory actions of CST because of elevated proinflammatory cytokines during degenerating disc.
Collapse
Affiliation(s)
- Helen E Gruber
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, NC 28232, USA.
| | - Gretchen L Hoelscher
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, NC 28232, USA
| | - Synthia F Bethea
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, NC 28232, USA
| | - Evan A Menscher
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, NC 28232, USA
| | - Jane A Ingram
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, NC 28232, USA
| | - Megan A Templin
- Dickson Advanced Analytics, Carolinas Medical Center, PO Box 32861, Charlotte, NC 28232, USA
| | - Edward N Hanley
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, NC 28232, USA
| |
Collapse
|
16
|
Horváth K, Boros M, Bagoly T, Sándor V, Kilár F, Kemény A, Helyes Z, Szolcsányi J, Pintér E. Analgesic topical capsaicinoid therapy increases somatostatin-like immunoreactivity in the human plasma. Neuropeptides 2014; 48:371-8. [PMID: 25455106 DOI: 10.1016/j.npep.2014.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 10/02/2014] [Accepted: 10/07/2014] [Indexed: 01/26/2023]
Abstract
The aim of the present study was to evaluate the therapeutic potential of local capsaicinoid (EMSPOMA(®) cream) treatment on chronic low back pain in patients with degenerative spine diseases and to investigate the possible mechanism of action of the therapy. The qualitative and quantitative analyses of capsaicinoids in EMSPOMA(®) cream were performed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). In the clinical study 20 patients with degenerative spine diseases were involved in a self-controlled examination. During the 21 day therapy they received 30 min daily treatment with capsaicinoid (EMSPOMA(®)) cream to the lumbar region of the back. The pain (VASs, Oswestry Disability Index) and the mobility of the lumbar region of the spine (Schober's, Domján's L and R test) were detected at baseline and at the end of the 1st, 2nd and 3rd weeks. The plasma level of somatostatin-like immunoreactivity (SST-LI) was measured by radioimmunoassay (RIA) before and after the treatment on the first and the last day of the therapy. Nonivamide (0.01%) was identified as the only capsaicinoid molecule in the cream. In the clinical study the 21 day local nonivamide treatment reduced the pain sensation. Oswestry Disability Index decreased from 39 ± 3.9% to 32.5 ± 4.4%. VASs showed 37.29%-59.51% improvement. In the plasma level of SST-LI threefold elevation was observed after the first nonivamide treatment. We conclude that nonivamide treatment exerts analgesic action in chronic low back pain and causes the release of the antinociceptive and anti-inflammatory neuropeptide somatostatin which may play pivotal role in the pain-relieving effect.
Collapse
Affiliation(s)
- Katalin Horváth
- Zsigmondy Vilmos Harkány Medicinal Spa Hospital, 1 Zsigmondy Street, Harkány 7815, Hungary
| | - Melinda Boros
- Department of Pharmacology and Pharmacotherapy, University of Pécs, 12 Szigeti Street, Pécs 7624, Hungary
| | - Teréz Bagoly
- Department of Pharmacology and Pharmacotherapy, University of Pécs, 12 Szigeti Street, Pécs 7624, Hungary
| | - Viktor Sándor
- MTA-PTE Molecular Interactions in Separation Science Research Group, 12 Szigeti Street, Pécs 7624, Hungary; Szentágothai Research Center, University of Pécs, 20 Ifjúság Street, Pécs 7624, Hungary
| | - Ferenc Kilár
- Department of Bioanalysis, University of Pécs, 12 Szigeti Street, Pécs 7624, Hungary; Szentágothai Research Center, University of Pécs, 20 Ifjúság Street, Pécs 7624, Hungary
| | - Agnes Kemény
- Department of Pharmacology and Pharmacotherapy, University of Pécs, 12 Szigeti Street, Pécs 7624, Hungary; Szentágothai Research Center, University of Pécs, 20 Ifjúság Street, Pécs 7624, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, University of Pécs, 12 Szigeti Street, Pécs 7624, Hungary; Szentágothai Research Center, University of Pécs, 20 Ifjúság Street, Pécs 7624, Hungary
| | - János Szolcsányi
- Department of Pharmacology and Pharmacotherapy, University of Pécs, 12 Szigeti Street, Pécs 7624, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, University of Pécs, 12 Szigeti Street, Pécs 7624, Hungary; Szentágothai Research Center, University of Pécs, 20 Ifjúság Street, Pécs 7624, Hungary.
| |
Collapse
|
17
|
Gahete MD, Luque RM, Yubero-Serrano EM, Cruz-Teno C, Ibañez-Costa A, Delgado-Lista J, Gracia-Navarro F, Perez-Jimenez F, Castaño JP, Lopez-Miranda J. Dietary fat alters the expression of cortistatin and ghrelin systems in the PBMCs of elderly subjects: putative implications in the postprandial inflammatory response. Mol Nutr Food Res 2014; 58:1897-906. [PMID: 24995559 DOI: 10.1002/mnfr.201400059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/02/2014] [Accepted: 05/18/2014] [Indexed: 12/11/2022]
Abstract
SCOPE Dietary fat influences systemic inflammatory status, which determines the progression of age-associated diseases. Since somatostatin (SST), cortistatin (CORT), and ghrelin systems modulate inflammatory response, we aim to comprehensively characterize the presence and regulation of the components of these systems in the peripheral blood mononuclear cells (PMBCs), a subset of white blood cells placed at the crossroad between diet and inflammation, in response to diets with different fat composition, and during the postprandial phase in elderly subjects. METHODS AND RESULTS The applied nutrigenomic, inflammation-related PBMC-based approach revealed that the majority of components of SST/CORT and ghrelin systems are present in the human PBMCs. Particularly, CORT, SST/CORT receptors (sst2, sst3, sst5, and sst5TMD4), ghrelin, its acylating enzyme (GOAT), In1-ghrelin variant, and GHSR1b were detected in PBMCs. Their expression was altered in the long-term by diet composition, and in the short-term, during the postprandial phase. Of particular relevance is the postprandial elevation of CORT, sst2, and sst5 expression in PBMCs of subjects under n-3 PUFAs-enriched diet. CONCLUSION Our results suggest a potential relevant role of CORT/ssts and ghrelin systems in regulating PBMCs response to nutrient intake, which could help to explain the positive effects of n-3 PUFAs-enriched diets in reducing the inflammatory response.
Collapse
Affiliation(s)
- Manuel D Gahete
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Reina Sofia University Hospital, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Córdoba, Spain; Lipid and Atherosclerosis Research Unit, Reina Sofia University Hospital, University of Cordoba, IMIBIC and CIBERObn, Córdoba, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Morell M, Camprubí-Robles M, Culler MD, de Lecea L, Delgado M. Cortistatin attenuates inflammatory pain via spinal and peripheral actions. Neurobiol Dis 2013; 63:141-54. [PMID: 24333694 DOI: 10.1016/j.nbd.2013.11.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/20/2013] [Accepted: 11/26/2013] [Indexed: 12/01/2022] Open
Abstract
Clinical pain, as a consequence of inflammation or injury of peripheral organs (inflammatory pain) or nerve injury (neuropathic pain), represents a serious public health issue. Treatment of pain-related suffering requires knowledge of how pain signals are initially interpreted and subsequently transmitted and perpetuated. To limit duration and intensity of pain, inhibitory signals participate in pain perception. Cortistatin is a cyclic-neuropeptide that exerts potent inhibitory actions on cortical neurons and immune cells. Here, we found that cortistatin is a natural analgesic component of the peripheral nociceptive system produced by peptidergic nociceptive neurons of the dorsal root ganglia in response to inflammatory and noxious stimuli. Moreover, cortistatin is produced by GABAergic interneurons of deep layers of dorsal horn of spinal cord. By using cortistatin-deficient mice, we demonstrated that endogenous cortistatin critically tunes pain perception in physiological and pathological states. Furthermore, peripheral and spinal injection of cortistatin potently reduced nocifensive behavior, heat hyperalgesia and tactile allodynia in experimental models of clinical pain evoked by chronic inflammation, surgery and arthritis. The analgesic effects of cortistatin were independent of its anti-inflammatory activity and directly exerted on peripheral and central nociceptive terminals via Gαi-coupled somatostatin-receptors (mainly sstr2) and blocking intracellular signaling that drives neuronal plasticity including protein kinase A-, calcium- and Akt/ERK-mediated release of nociceptive peptides. Moreover, cortistatin could modulate, through its binding to ghrelin-receptor (GHSR1), pain-induced sensitization of secondary neurons in spinal cord. Therefore, cortistatin emerges as an anti-inflammatory factor with potent analgesic effects that offers a new approach to clinical pain therapy, especially in inflammatory states.
Collapse
Affiliation(s)
- María Morell
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, 18016 Granada, Spain
| | - María Camprubí-Robles
- Institute of Molecular and Cell Biology, Miguel Hernandez University, 03202 Alicante, Spain
| | | | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Mario Delgado
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, 18016 Granada, Spain.
| |
Collapse
|
19
|
Souza-Moreira L, Morell M, Delgado-Maroto V, Pedreño M, Martinez-Escudero L, Caro M, O'Valle F, Luque R, Gallo M, de Lecea L, Castaño JP, Gonzalez-Rey E. Paradoxical effect of cortistatin treatment and its deficiency on experimental autoimmune encephalomyelitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:2144-54. [PMID: 23918980 DOI: 10.4049/jimmunol.1300384] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cortistatin is a cyclic-neuropeptide produced by brain cortex and immune cells that shows potent anti-inflammatory activity. In this article, we investigated the effect of cortistatin in two models of experimental autoimmune encephalomyelitis (EAE) that mirror chronic and relapsing-remitting multiple sclerosis. A short-term systemic treatment with cortistatin reduced clinical severity and incidence of EAE, the appearance of inflammatory infiltrates in spinal cord, and the subsequent demyelination and axonal damage. This effect was associated with a reduction of the two deleterious components of the disease, namely, the autoimmune and inflammatory response. Cortistatin decreased the presence/activation of encephalitogenic Th1 and Th17 cells in periphery and nervous system, and downregulated various inflammatory mediators, whereas it increased the number of regulatory T cells with suppressive effects on the encephalitogenic response. Moreover, cortistatin regulated glial activity and favored an active program of neuroprotection/regeneration. We further used cortistatin-deficient mice to investigate the role of endogenous cortistatin in the control of immune responses. Surprisingly, cortistatin-deficient mice were partially resistant to EAE and other inflammatory disorders, despite showing competent inflammatory/autoreactive responses. This unexpected phenotype was associated with elevated circulating glucocorticoids and an anxiety-like behavior. Our findings provide a powerful rationale for the assessment of the efficacy of cortistatin as a novel multimodal therapeutic approach to treat multiple sclerosis and identify cortistatin as a key endogenous component of neuroimmune system.
Collapse
Affiliation(s)
- Luciana Souza-Moreira
- Institute of Parasitology and Biomedicine "López-Neyra," Consejo Superior Investigaciones Cientificas, Granada 18016, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|