1
|
Kiouptsi K, Jäckel S, Wilms E, Pontarollo G, Winterstein J, Karwot C, Groß K, Jurk K, Reinhardt C. The Commensal Microbiota Enhances ADP-Triggered Integrin α IIbβ 3 Activation and von Willebrand Factor-Mediated Platelet Deposition to Type I Collagen. Int J Mol Sci 2020; 21:ijms21197171. [PMID: 32998468 PMCID: PMC7583822 DOI: 10.3390/ijms21197171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022] Open
Abstract
The commensal microbiota is a recognized enhancer of arterial thrombus growth. While several studies have demonstrated the prothrombotic role of the gut microbiota, the molecular mechanisms promoting arterial thrombus growth are still under debate. Here, we demonstrate that germ-free (GF) mice, which from birth lack colonization with a gut microbiota, show diminished static deposition of washed platelets to type I collagen compared with their conventionally raised (CONV-R) counterparts. Flow cytometry experiments revealed that platelets from GF mice show diminished activation of the integrin αIIbβ3 (glycoprotein IIbIIIa) when activated by the platelet agonist adenosine diphosphate (ADP). Furthermore, washed platelets from Toll-like receptor-2 (Tlr2)-deficient mice likewise showed impaired static deposition to the subendothelial matrix component type I collagen compared with wild-type (WT) controls, a process that was unaffected by GPIbα-blockade but influenced by von Willebrand factor (VWF) plasma levels. Collectively, our results indicate that microbiota-triggered steady-state activation of innate immune pathways via TLR2 enhances platelet deposition to subendothelial matrix molecules. Our results link host colonization status with the ADP-triggered activation of integrin αIIbβ3, a pathway promoting platelet deposition to the growing thrombus.
Collapse
Affiliation(s)
- Klytaimnistra Kiouptsi
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg- University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (K.K.); (S.J.); (E.W.); (G.P.); (J.W.); (C.K.); (K.G.); (K.J.)
| | - Sven Jäckel
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg- University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (K.K.); (S.J.); (E.W.); (G.P.); (J.W.); (C.K.); (K.G.); (K.J.)
| | - Eivor Wilms
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg- University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (K.K.); (S.J.); (E.W.); (G.P.); (J.W.); (C.K.); (K.G.); (K.J.)
| | - Giulia Pontarollo
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg- University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (K.K.); (S.J.); (E.W.); (G.P.); (J.W.); (C.K.); (K.G.); (K.J.)
| | - Jana Winterstein
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg- University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (K.K.); (S.J.); (E.W.); (G.P.); (J.W.); (C.K.); (K.G.); (K.J.)
| | - Cornelia Karwot
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg- University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (K.K.); (S.J.); (E.W.); (G.P.); (J.W.); (C.K.); (K.G.); (K.J.)
| | - Kathrin Groß
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg- University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (K.K.); (S.J.); (E.W.); (G.P.); (J.W.); (C.K.); (K.G.); (K.J.)
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg- University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (K.K.); (S.J.); (E.W.); (G.P.); (J.W.); (C.K.); (K.G.); (K.J.)
- German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, 55131 Mainz, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg- University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (K.K.); (S.J.); (E.W.); (G.P.); (J.W.); (C.K.); (K.G.); (K.J.)
- German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, 55131 Mainz, Germany
- Correspondence:
| |
Collapse
|
2
|
Wang JB, Li J, Zhang TP, Lv TT, Li LJ, Wu J, Leng RX, Fan YG, Pan HF, Ye DQ. Expression of several long noncoding RNAs in peripheral blood mononuclear cells of patients with systemic lupus erythematosus. Adv Med Sci 2019; 64:430-436. [PMID: 31563860 DOI: 10.1016/j.advms.2019.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 06/09/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Accumulating evidence has linked long noncoding RNAs (lncRNAs) to autoimmune and inflammatory disorders. This study aimed to detect the expression levels of five lncRNAs (lnc0640, lnc3643, lnc5150, lnc7514 and lncagf) in peripheral blood mononuclear cells (PBMCs) of patients with systemic lupus erythematosus (SLE), as well as their correlation with clinical and laboratory features. MATERIALS/METHODS We recruited 76 patients with SLE and 71 normal controls into the present study, and obtained PBMCs from the blood samples of all study subjects. Expression levels of lncRNAs were determined by quantitative real-time reverse transcription polymerase chain reaction and their associations with clinical and laboratory characteristics were analyzed. RESULTS Lnc5150 expression levels were statistically significantly decreased (Z=-6.016, P < 0.001) compared with normal controls. Lnc3643 levels were also statistically significantly decreased in SLE patients with proteinuria compared with those without (Z=-2.934, P = 0.003), and the lnc7514 levels were statistically significantly lower in anti-dsDNA(+) patients compared with anti-dsDNA(-) patients. The expression levels of lnc3643 were correlated with C-reactive protein and erythrocyte sedimentation rate (ESR), lnc7514 was correlated with disease activity and ESR (all P < 0.01). CONCLUSIONS The aberrant lncRNA expression levels and their associations with laboratory features in SLE suggest their important role in SLE pathogenesis.
Collapse
|
3
|
Zhang Q, Liang Y, Yuan H, Li S, Wang JB, Li XM, Tao JH, Pan HF, Ye DQ. Integrated analysis of lncRNA, miRNA and mRNA expression profiling in patients with systemic lupus erythematosus. Arch Med Sci 2019; 15:872-879. [PMID: 31360182 PMCID: PMC6657242 DOI: 10.5114/aoms.2018.79145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/11/2018] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION A great deal of research has reported dysregulated expression of genes in systemic lupus erythematosus (SLE). This study aimed to analyze the lncRNA, miRNA and mRNA expression profile in SLE. MATERIAL AND METHODS RNA sequencing (RNA-seq) was used to detect the dysregulated RNAs in SLE. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis were used to explore the function of these differentially expressed RNAs. RESULTS 2,353 lncRNAs, 827 mRNAs and 24 miRNAs were shown to be differentially expressed. GO analyses demonstrated that differentially expressed RNAs were enriched in a variety of molecular functions and biological processes including ribonucleotide, protein serine/threonine kinase activity function, regulation of B cell differentiation and others. KEGG pathway analyses revealed that differentially expressed mRNAs and lncRNAs were both enriched in FcγR-mediated phagocytosis, glycosaminoglycan biosynthesis-chondroitin sulfate/dermatan sulfate and glyoxylate and dicarboxylate metabolism pathways. The up-regulated miRNAs target genes were mainly enriched in the nuclear factor-κB (NF-κB) signaling pathway. The down-regulated miRNAs target genes were significantly enriched in metabolism of xenobiotics by cytochrome P450, bile secretion and terpenoid backbone biosynthesis pathways. CONCLUSIONS The current study reveals a comprehensive expression profile of lncRNAs, miRNAs and mRNAs and implies potential regulatory functions of these RNAs which are involved in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, China
| | - Yan Liang
- Department of Nephrology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hui Yuan
- Department of Preventive Medicine, Wannan Medical College, Wuhu, Anhui, China
| | - Si Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, China
| | - Jie-Bing Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, China
| | - Xiao-Mei Li
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Hefei, Anhui, China
| | - Jin-Hui Tao
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, China
| |
Collapse
|
4
|
Rebelo RC, Pignaton E, Valeria Bahamondes M, Costallat LTL, Appenzeller S, Bahamondes L, Fernandes A. Disease activity and thromboembolic events in women with systemic lupus erythematosus with and without anti-phospholipid syndrome: users of the 52-mg levonorgestrel-releasing intrauterine system. Arch Gynecol Obstet 2019; 299:1597-1605. [DOI: 10.1007/s00404-019-05131-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/25/2019] [Indexed: 12/01/2022]
|
5
|
Abstract
The pathogenesis of systemic autoimmune diseases such as systemic lupus erythematosus (SLE) is based on the loss of self-tolerance against ubiquitous autoantigens involving all mechanisms of adaptive immunity. However, data accumulating over the last decade imply an important role also for numerous elements of innate immunity, namely the Toll-like receptors in the pathogenesis of SLE. Here we discuss their role in the most common organ complication of SLE, i.e. lupus nephritis. We summarize experimental and clinical data on the expression and functional contribution of the Toll-like receptors in immune complex glomerulonephritis, and intrarenal inflammation. Based on these discoveries Toll-like receptors are evolving as therapeutic targets for the treatment of SLE and lupus nephritis.
Collapse
|
6
|
Wallet SM, Puri V, Gibson FC. Linkage of Infection to Adverse Systemic Complications: Periodontal Disease, Toll-Like Receptors, and Other Pattern Recognition Systems. Vaccines (Basel) 2018; 6:E21. [PMID: 29621153 PMCID: PMC6027258 DOI: 10.3390/vaccines6020021] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/25/2018] [Accepted: 03/30/2018] [Indexed: 12/13/2022] Open
Abstract
Toll-like receptors (TLRs) are a group of pattern recognition receptors (PRRs) that provide innate immune sensing of conserved pathogen-associated molecular patterns (PAMPs) to engage early immune recognition of bacteria, viruses, and protozoa. Furthermore, TLRs provide a conduit for initiation of non-infectious inflammation following the sensing of danger-associated molecular patterns (DAMPs) generated as a consequence of cellular injury. Due to their essential role as DAMP and PAMP sensors, TLR signaling also contributes importantly to several systemic diseases including cardiovascular disease, diabetes, and others. The overlapping participation of TLRs in the control of infection, and pathogenesis of systemic diseases, has served as a starting point for research delving into the poorly defined area of infection leading to increased risk of various systemic diseases. Although conflicting studies exist, cardiovascular disease, diabetes, cancer, rheumatoid arthritis, and obesity/metabolic dysfunction have been associated with differing degrees of strength to infectious diseases. Here we will discuss elements of these connections focusing on the contributions of TLR signaling as a consequence of bacterial exposure in the context of the oral infections leading to periodontal disease, and associations with metabolic diseases including atherosclerosis and type 2 diabetes.
Collapse
Affiliation(s)
- Shannon M Wallet
- Department of Oral Biology, College of Dental Medicine, University of Florida, Gainesville, FL 32610, USA.
| | - Vishwajeet Puri
- Department of Biomedical Sciences and Diabetes Institute, Ohio University, Athens, OH 45701, USA.
| | - Frank C Gibson
- Department of Oral Biology, College of Dental Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
7
|
Gurses KM, Kocyigit D, Yalcin MU, Canpinar H, Evranos B, Canpolat U, Yorgun H, Sahiner L, Guc D, Aytemir K. Platelet Toll-like receptor and its ligand HMGB-1 expression is increased in the left atrium of atrial fibrillation patients. Cytokine 2018; 103:50-56. [PMID: 29324261 DOI: 10.1016/j.cyto.2017.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 12/03/2017] [Accepted: 12/05/2017] [Indexed: 12/13/2022]
|
8
|
Li J, Wu GC, Zhang TP, Yang XK, Chen SS, Li LJ, Xu SZ, Lv TT, Leng RX, Pan HF, Ye DQ. Association of long noncoding RNAs expression levels and their gene polymorphisms with systemic lupus erythematosus. Sci Rep 2017; 7:15119. [PMID: 29123179 PMCID: PMC5680319 DOI: 10.1038/s41598-017-15156-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 10/23/2017] [Indexed: 11/09/2022] Open
Abstract
Increasing evidence has demonstrated the association between long noncoding RNAs (lncRNAs) and multiple autoimmune diseases. To explore four lncRNAs (GAS5, lnc-DC, linc0597 and linc0949) expression levels and gene polymorphisms in systemic lupus erythematosus (SLE), a two stage design was applied. In the first stage, 85 SLE patients and 71 healthy controls were enrolled to investigate the lncRNAs expression levels. Then, 1260 SLE patients and 1231 healthy controls were included to detect the single nucleotide polymorphisms (SNPs) in the differentially expressed lncRNAs identified in the first stage. Linc0597, lnc-DC and GAS5 expression levels were significantly lower in SLE patients than healthy controls (P < 0.001, P < 0.001, P = 0.003 respectively). Association of five SNPs (rs10515177, rs2070107, rs2632516, rs2877877, rs2067079) with SLE risk were analyzed. No significant association was observed between these gene polymorphisms and susceptibility to SLE (all P > 0.010), and we did not find significant association between any genotypes at five SNPs and their respective lncRNAs expression in SLE (all P > 0.010). In summary, the expression levels of linc0597, lnc-DC and GAS5 are decreased in SLE patients, but their gene polymorphisms are not associated with SLE risk, and do not influence their expression levels.
Collapse
Affiliation(s)
- Jun Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui, P. R. China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, P. R. China.,Jiangyin Center for Disease Control and Prevention, Jiangsu, P. R. China
| | - Guo-Cui Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui, P. R. China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, P. R. China
| | - Tian-Ping Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui, P. R. China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, P. R. China
| | - Xiao-Ke Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui, P. R. China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, P. R. China
| | - Shuang-Shuang Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui, P. R. China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, P. R. China
| | - Lian-Ju Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui, P. R. China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, P. R. China
| | - Shu-Zhen Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui, P. R. China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, P. R. China
| | - Tian-Tian Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui, P. R. China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, P. R. China
| | - Rui-Xue Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui, P. R. China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, P. R. China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui, P. R. China. .,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, P. R. China.
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui, P. R. China. .,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, P. R. China.
| |
Collapse
|
9
|
Sharma S, Garg I, Ashraf MZ. TLR signalling and association of TLR polymorphism with cardiovascular diseases. Vascul Pharmacol 2016; 87:30-37. [DOI: 10.1016/j.vph.2016.10.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/26/2016] [Accepted: 10/28/2016] [Indexed: 12/13/2022]
|
10
|
Abstract
Finding better treatments for lupus nephritis requires an understanding of the pathogenesis of the causative systemic disease, how this leads to kidney disease, and how lupus nephritis progresses to end-stage kidney disease. Here, we provide a brief conceptual overview on the related pathomechanisms. As a main focus we discuss in detail the roles of neutrophils, dendritic cells, Toll-like receptors, and interferon-α in the pathogenesis of lupus nephritis by separately reviewing their roles in extrarenal systemic autoimmunity and in intrarenal inflammation and immunopathology.
Collapse
|
11
|
Lorenz G, Lech M, Anders HJ. Toll-like receptor activation in the pathogenesis of lupus nephritis. Clin Immunol 2016; 185:86-94. [PMID: 27423476 DOI: 10.1016/j.clim.2016.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 12/29/2022]
Abstract
The pathogenesis of systemic lupus erythematosus (SLE) and lupus nephritis is complex but no longer enigmatic. Much progress has been made to on the polygenetic origin of lupus in identifying gene variants that permit the loss of tolerance against nuclear autoantigens. Along the same line in about 50% of lupus patients additional genetic weaknesses promote immune complex glomerulonephritis and filtration barrier dysfunction. Here we briefly summarize the pathogenesis of SLE with a focus on loss of tolerance and the role of toll-like receptors in the "pseudo"-antiviral immunity concept of systemic lupus. In addition, we discuss the local role of Toll-like receptors in intrarenal inflammation and kidney remodeling.
Collapse
Affiliation(s)
- Georg Lorenz
- Abteilung für Nephrologie, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Maciej Lech
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilians Universität München, Munich, Germany
| | - Hans-Joachim Anders
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilians Universität München, Munich, Germany.
| |
Collapse
|
12
|
Association between the TLR2 Arg753Gln polymorphism and the risk of sepsis: a meta-analysis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:416. [PMID: 26616674 PMCID: PMC4663740 DOI: 10.1186/s13054-015-1130-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 11/04/2015] [Indexed: 01/07/2023]
Abstract
Introduction Recently, researchers in a number of studies have explored the association between the Toll-like receptor 2 (TLR2) Arg753Gln polymorphism and sepsis risk. However, the results were conflicting. In this meta-analysis, we aimed to confirm the effect of the TLR2 Arg753Gln polymorphism on sepsis risk. Methods Relevant records up to 1 June 2015 were retrieved from the PubMed, Embase, and Web of Knowledge databases. The odds ratios with their corresponding 95 % confidence intervals were used to assess the association between the TLR2 Arg753Gln polymorphism and sepsis risk. The selection of a fixed or random effects model was made according to a heterogeneity test in total and subgroup analyses. Sensitivity analysis and publication bias test were performed to ensure the reliability of our results. Results A total of 12 studies with aggregate totals of 898 cases and 1517 controls met our inclusion criteria for meta-analysis. There were significant associations between the TLR2 Arg753Gln polymorphism and sepsis risk in overall analyses under two genetic models (the allele comparison and the dominant model). In addition, subgroup analyses based on age group, ethnicity, sepsis type, and source of control also showed a significant effect of the TLR2 Arg753Gln polymorphism on sepsis risk. Conclusions Our present meta-analysis supports a direct effect of the TLR2 Arg753Gln polymorphism on sepsis risk, especially in Europeans. The TLR2 Arg753Gln polymorphism might be used as a relevant risk estimate for the development of sepsis. Studies with larger sample sizes and homogeneous groups of patients with sepsis are required for further analysis. Electronic supplementary material The online version of this article (doi:10.1186/s13054-015-1130-3) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Bazzan M, Vaccarino A, Marletto F. Systemic lupus erythematosus and thrombosis. Thromb J 2015; 13:16. [PMID: 25908929 PMCID: PMC4407320 DOI: 10.1186/s12959-015-0043-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/26/2015] [Indexed: 12/30/2022] Open
Abstract
Systemic Lupus Erythematosus (SLE) is an acquired, multiorgan, autoimmune disease. Clinical presentation is extremely variable and heterogeneous. It has been shown that SLE itself is an independent risk factor for developing both arterial and venous thrombotic events since SLE patients have an Odds Ratio (OR) for thrombosis that varies depending on the clinical and laboratory characteristics of each study cohort. The risk of developing a thrombotic event is higher in this setting than in the general population and may further increase when associated with other risk factors, or in the presence of inherited or acquired pro-thrombotic abnormalities, or trigger events. In particular, a striking increase in the number of thrombotic events was observed when SLE was associated with antiphospholipid antibodies (aPL). The presence of aPLs has been described in about 50% of SLE patients, while about 20% of antiphospholipid syndrome (APS) patients have SLE. While APS patients (with or without an autoimmune disease) have been widely studied in the last years, fewer studies are available for SLE patients and thrombosis in the absence of APS. Although the available literature undoubtedly shows that SLE patients have a greater prevalence of thrombotic events as compared to healthy subjects, it is difficult to obtain a definite result from these studies because in some cases the study cohort was too small, in others it is due to the varied characteristics of the study population, or because of the different (and very copious) laboratory assays and methods that were used. When an SLE patient develops a thrombotic event, it is of great clinical relevance since it is potentially life-threatening. Moreover, it worsens the quality of life and is a clinical challenge for the clinician.
Collapse
Affiliation(s)
- Mario Bazzan
- Haematology and Thrombosis Unit, CMID Department, San Giovanni Bosco Hospital, Piazza Donatore di Sangue 3, 10154 Turin, Italy
| | - Antonella Vaccarino
- Haematology and Thrombosis Unit, CMID Department, San Giovanni Bosco Hospital, Piazza Donatore di Sangue 3, 10154 Turin, Italy
| | - Fabio Marletto
- Haematology and Thrombosis Unit, CMID Department, San Giovanni Bosco Hospital, Piazza Donatore di Sangue 3, 10154 Turin, Italy
| |
Collapse
|
14
|
Song Y, Liu H, Long L, Zhang N, Liu Y. TLR4 rs1927911, but not TLR2 rs5743708, is associated with atherosclerotic cerebral infarction in the Southern Han population: a case-control study. Medicine (Baltimore) 2015; 94:e381. [PMID: 25590839 PMCID: PMC4602557 DOI: 10.1097/md.0000000000000381] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The objective of this study was to explore the association of toll-like receptor (TLR) 4 rs1927911 and TLR2 rs5743708 with atherosclerotic cerebral infarction (ACI) and their effects on blood pressure, fasting blood glucose, and blood lipids in the Han population of Hunan Province. TLR4 rs1927911 and TLR2 rs5743708 were detected by polymerase chain reaction and restriction fragment length polymorphism in 170 patients with ACI and 149 healthy controls. Our results indicated that the genotype and allele frequencies of TLR4 rs1927911 were significantly different between ACI patients and controls, whereas those of TLR2 rs5743708 were not significantly different between the 2 groups. For TLR4 rs1927911, blood pressure, fasting blood sugar, and serum lipid levels were not significantly different among different genotypes in the ACI and control groups. The rs1927911 polymorphism of the TLR4 gene may be a risk factor for ACI in the Southern Han population of Hunan Province; however, it may not be associated with blood pressure, fasting blood sugar, or blood lipids.
Collapse
Affiliation(s)
- Yanmin Song
- From the Department of Neurology (YS, HL, LL, NZ, YL), Xiangya Hospital, Central South University, Changsha, China
| | | | | | | | | |
Collapse
|
15
|
Lee R, Perry B, Heywood J, Reese C, Bonner M, Hatfield CM, Silver RM, Visconti RP, Hoffman S, Tourkina E. Caveolin-1 regulates chemokine receptor 5-mediated contribution of bone marrow-derived cells to dermal fibrosis. Front Pharmacol 2014; 5:140. [PMID: 24966836 PMCID: PMC4052341 DOI: 10.3389/fphar.2014.00140] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/24/2014] [Indexed: 11/13/2022] Open
Abstract
In fibrotic diseases caveolin-1 underexpression in fibroblasts results in collagen overexpression and in monocytes leads to hypermigration. These profibrotic behaviors are blocked by the caveolin-1 scaffolding domain peptide (CSD) which compensates for caveolin-1 deficiency. Monocytes and fibroblasts are related in that monocytes are the progenitors of fibrocytes (CD45+/Collagen I+ cells) that, in turn, are the progenitors of many fibroblasts in fibrotic tissues. In an additional anti-fibrotic activity, CSD blocks monocyte differentiation into fibrocytes. We studied a mouse fibrosis model (Pump Model) involving systemic bleomycin delivery that closely models scleroderma (SSc) in several ways, the most important of which for this study is that fibrosis is observed in the lungs, skin, and internal organs. We show here that dermal thickness is increased 2-fold in the Pump Model and that this effect is almost completely blocked by CSD (p < 0.001). Concomitantly, the subcutaneous fat layer becomes >80% thinner. This effect is also blocked by CSD (p < 0.001). Even in mice receiving vehicle instead of bleomycin, CSD increases the thickness of the fat layer. To study the mechanisms of action of bleomycin and CSD, we examined the accumulation of the chemokine receptor CCR5 and its ligands MIP1α and MIP1β in fibrotic tissue and their roles in monocyte migration. Fibrocytes and other leukocytes expressing CCR5 and its ligands were present at high levels in the fibrotic dermis of SSc patients and Pump Model mice while CSD blocked their accumulation in mouse dermis. Migration toward CCR5 ligands of SSc monocytes and Pump Model bone marrow cells was 3-fold greater than cells from control subjects. This enhanced migration was almost completely blocked by CSD. These results suggest that low monocyte caveolin-1 promotes fibrosis by enhancing the recruitment of fibrocytes and their progenitors into affected tissue.
Collapse
Affiliation(s)
- Rebecca Lee
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina Charleston, SC, USA
| | - Beth Perry
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina Charleston, SC, USA
| | - Jonathan Heywood
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina Charleston, SC, USA
| | - Charles Reese
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina Charleston, SC, USA
| | - Michael Bonner
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina Charleston, SC, USA
| | - Corey M Hatfield
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina Charleston, SC, USA
| | - Richard M Silver
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina Charleston, SC, USA
| | - Richard P Visconti
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina Charleston, SC, USA
| | - Stanley Hoffman
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina Charleston, SC, USA ; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina Charleston, SC, USA
| | - Elena Tourkina
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina Charleston, SC, USA ; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina Charleston, SC, USA
| |
Collapse
|