1
|
Jin L, Zhang Z, Pan P, Zhao Y, Zhou M, Liu L, Zhai Y, Wang H, Xu L, Mei D, Zhang H, Yang Y, Hua J, Zhang X, Zhang L. Low-dose ethanol consumption inhibits neutrophil extracellular traps formation to alleviate rheumatoid arthritis. Commun Biol 2023; 6:1088. [PMID: 37884797 PMCID: PMC10603044 DOI: 10.1038/s42003-023-05473-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease. Ethanol consumption has been reported to reduce morbidity in RA patients, but the mechanism behind it remains unclear. Our results showed that Muribaculaceae was predominant in the gut microbiota of mice after ethanol treatment, and the levels of microbiota metabolite acetate were increased. Acetate reduced arthritis severity in collagen-induced arthritis (CIA) mice, which was associated with a decrease in the articular neutrophils and the myeloperoxidase-deoxyribonucleic acid complex in serum. Meanwhile, in vitro experiments confirmed that acetate affected neutrophil activity by acting on G-protein-coupled receptor 43, which reduced endoplasmic reticulum stress in neutrophils and inhibited neutrophil extracellular traps formation. Furthermore, exogenous acetate reversed CIA mice with exacerbated gut microbial disruption, further confirming that the effect of gut microbial metabolite acetate on neutrophils in vivo is crucial for the immune regulation. Our findings illuminate the metabolic and cellular mechanisms of the gut-joint axis in the regulation of autoimmune arthritis, and may offer alternative avenues to replicate or induce the joint-protective benefits of ethanol without associated detrimental effects.
Collapse
Affiliation(s)
- Lin Jin
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China
| | - Ziwei Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China
| | - Pin Pan
- Department of orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui, China
| | - Yuchen Zhao
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China
| | - Mengqi Zhou
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China
| | - Lianghu Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China
| | - Yuanfang Zhai
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China
| | - Han Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China
| | - Li Xu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China
| | - Dan Mei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China
| | - Han Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China
| | - Yining Yang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China
| | - Jinghan Hua
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China
| | - Xianzheng Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China.
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China.
- Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China.
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China.
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China.
- Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China.
| |
Collapse
|
2
|
Dang K, Zhang N, Gao H, Wang G, Liang H, Xue M. Influence of intestinal microecology in the development of gout or hyperuricemia and the potential therapeutic targets. Int J Rheum Dis 2023; 26:1911-1922. [PMID: 37606177 DOI: 10.1111/1756-185x.14888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023]
Abstract
Gout and hyperuricemia are common metabolic diseases. Patients with purine metabolism disorder and/or decreased uric acid excretion showed increased uric acid levels in the blood. The increase of uric acid in the blood leads to the deposition of urate crystals in tissues, joints, and kidneys, and causes gout. Recent studies have revealed that imbalance of the intestinal microecology is closely related to the occurrence and development of hyperuricemia and gout. Disorder of the intestinal flora often occurs in patients with gout, and high purine and high fructose may induce the disorder of intestinal flora. Short-chain fatty acids and endotoxins produced by intestinal bacteria are closely related to the inflammatory response of gout. This article summarizes the characteristics of intestinal microecology in patients or animal models with hyperuricemia or gout, and explores the relationship between intestinal microecology and gout or hyperuricemia from the aspect of the intestinal barrier, intestinal microorganisms, intestinal metabolites, and intestinal immune system. We also review the current status of hyperuricemia treatment by targeting intestinal microecology.
Collapse
Affiliation(s)
- Kai Dang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Nan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Haiqi Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Guifa Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hui Liang
- Department of Human Nutrition, College of Public Health, Qingdao University, Qingdao, China
| | - Meilan Xue
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Wen X, Lou Y, Song S, He Z, Chen J, Xie Z, Shi X, Wen C, Shao T. Qu-Zhuo-Tong-Bi Decoction Alleviates Gouty Arthritis by Regulating Butyrate-Producing Bacteria in Mice. Front Pharmacol 2021; 11:610556. [PMID: 33603667 PMCID: PMC7884811 DOI: 10.3389/fphar.2020.610556] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/30/2020] [Indexed: 11/30/2022] Open
Abstract
Qu-zhuo-tong-bi decoction (QZTBD) is a traditional Chinese medicine prescription used to treat hyperuricemia and gout with no obvious adverse effects. However, the mechanism by which QZTBD treats gout has not been fully explored. Here, we investigated the effects of QZTBD on gouty arthritis and its therapeutic mechanism from the perspective of the gut microbiome. Our results demonstrated that QZTBD was effective for reducing serum uric acid level and attenuating paw edema and mechanical allodynia. QZTBD promoted the abundance of butyrate-producing bacteria and the production of SCFAs. Further study revealed that QZTBD restored the intestinal barrier function, modulated the expression of GPR43 and ABCG2, suppressed the activity of key glycolysis-related enzymes, and inhibited the generation of intestinal inflammatory factors. These findings suggested that QZTBD is an effective therapeutic drug for gouty arthritis. Butyrate-producing bacteria and its metabolites SCFAs might act as a potential target of QZTBD.
Collapse
Affiliation(s)
- Xianghui Wen
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Lou
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Siyue Song
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhixing He
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Juan Chen
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhijun Xie
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaowei Shi
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chengping Wen
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tiejuan Shao
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
7
|
Abstract
Acute gout arthritis flares contribute dominantly to gout-specific impaired health-related quality of life, representing a progressively increasing public health problem. Flares can be complex and expensive to treat, partly due to the frequent comorbidities. Unmet needs in gout management are more pressing given the markedly increasing gout flare hospital admission rates. In addition, chronic gouty arthritis can cause joint damage and functional impairment. This review addresses new knowledge on the basis for the marked, inherent variability of responses to deposited urate crystals, including the unpredictable and self-limited aspects of many gout flares. Specific topics reviewed include how innate immunity and two-signal inflammasome activation intersect with diet, metabolism, nutritional biosensing, the microbiome, and the phagocyte cytoskeleton and cell fate. The paper discusses the roles of endogenous constitutive regulators of inflammation, including certain nutritional biosensors, and emerging genetic and epigenetic factors. Recent advances in the basis of variability in responses to urate crystals in gout provide information about inflammatory arthritis, and have identified potential new targets and strategies for anti-inflammatory prevention and treatment of gouty arthritis.
Collapse
Affiliation(s)
- Robert Terkeltaub
- VA San Diego Healthcare System, 111K, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA. .,Department of Medicine, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|