1
|
Arnaud L, Chasset F, Martin T. Immunopathogenesis of systemic lupus erythematosus: An update. Autoimmun Rev 2024; 23:103648. [PMID: 39343084 DOI: 10.1016/j.autrev.2024.103648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease characterized by dysregulated immune responses leading to widespread inflammation and damage in various organs. Environmental factors such as infections, hormonal influences and exposure to ultraviolet light can trigger the disease in genetically predisposed individuals. Genome-wide association studies have identified over 100 susceptibility loci linked to immune regulation, interferon (IFN) signaling and antigen presentation in SLE. In addition, rare cases of monogenic lupus have been instrumental in understanding critical underlying disease mechanisms. Several immunological abnormalities contribute to the loss of self-tolerance and the perpetuation of autoimmune responses in SLE. In particular, defective clearance of apoptotic cells due to defective phagocytosis and complement activation leads to accumulation of self-antigens. Dysregulated innate immune responses activate the adaptive immune system, amplifying the inflammatory response with an important role for type I IFNs. Abnormalities in B cell development and activation lead to the production of autoreactive antibodies, forming immune complexes that cause tissue damage. Similarly, disturbances in T-cell compartments, altered regulatory T-cell functions and altered cytokine production, particularly IFN-α, contribute to tissue damage. Understanding of the immunopathogenesis of SLE is evolving rapidly, with ongoing research identifying new molecular pathways and potential therapeutic targets. Future classifications of SLE are likely to be based on underlying biological pathways rather than clinical and serological signs alone. This review aims to provide a detailed update on the most recent findings regarding the immunopathogenesis of SLE, focusing on the variability of biological pathways and the implications for future therapeutic strategies, in particular chimeric antigen receptor T (CAR T) cells.
Collapse
Affiliation(s)
- Laurent Arnaud
- Service de Rhumatologie, Hôpitaux Universitaires de Strasbourg, Centre National de Référence des Maladies Systémiques Auto-immunes Rares Est Sud-Ouest, INSERM UMRS-1109, Université de Strasbourg, Strasbourg, France.
| | - François Chasset
- Sorbonne Université, Faculté de Médecine, AP-HP, Service de Dermatologie et Allergologie, Hôpital Tenon, INSERM U1135, CIMI, Paris, France
| | - Thierry Martin
- Service d'immunologie Clinique et de médecine interne, Hôpitaux Universitaires de Strasbourg, Centre National de Référence des Maladies Systémiques Auto-immunes Rares, Strasbourg, France
| |
Collapse
|
2
|
Dellaripa PF, Sung LH, Bain PA, Lanata C, Blazar A, Miller FW, Feldman CH. American College of Rheumatology White Paper: The Effects of Climate Change on Rheumatic Conditions-An Evolving Landscape and a Path Forward. Arthritis Rheumatol 2024; 76:1459-1466. [PMID: 38751102 PMCID: PMC11498941 DOI: 10.1002/art.42919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024]
Abstract
OBJECTIVE Increases in global temperatures and extreme weather events associated with climate change have complex yet poorly understood detrimental impacts on human health. We reviewed the current published literature on climate change-related effects and rheumatic conditions. METHODS To summarize our current understanding of the likely effects of climate change, including increased air pollution, on rheumatic disease, we searched the published, peer-reviewed English-language literature from January 2000 to December 2022. Articles were reviewed by a team of rheumatologists and clinical and translational science researchers. Systematic review articles were not included but informed additional literature searches. RESULTS After extensive examination and adjudication, 88 articles met inclusion criteria and were selected for review. Much of the epidemiologic investigations assessed associations between air pollution and increased risk of development of rheumatoid arthritis, anti-citrullinated protein antibodies, flares of gout, and hospitalizations for systemic lupus erythematosus. Increased heat vulnerability was associated with higher odds of recurrent hospitalizations across rheumatic conditions. Mechanisms for observed associations are poorly understood but could include the effects of epigenetic changes, oxidative stress, and inflammatory cytokines. Studies had limitations, including restricted geography and populations studied without focus on historically marginalized communities at highest risk for adverse effects from pollution and climate change, the relative lack of mechanistic evaluations, and most with only indirect links to climate change. CONCLUSION To date, the published literature lacks studies that directly examine effects of climate change on rheumatic diseases. Collaborative translational and epidemiologic research is needed to enhance our understanding and awareness in this area.
Collapse
Affiliation(s)
- Paul F Dellaripa
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Lily H Sung
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Paul A Bain
- Countway Library, Harvard Medical School, Boston, MA
| | - Cristina Lanata
- Genomics of Autoimmune Rheumatic Disease Section, National Human Genome Research Institution, NIH
| | | | - Frederick W Miller
- Clinical Research Branch, National Institute of Environmental Health Sciences, NIH
| | - Candace H Feldman
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | | |
Collapse
|
3
|
Gao J, Pi C, Pan J, Zhou W. Research progress on Hippo signaling pathway effector molecules in rheumatic immune system diseases. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:376-381. [PMID: 38899353 PMCID: PMC11348685 DOI: 10.3724/zdxbyxb-2023-0567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/10/2024] [Indexed: 06/21/2024]
Abstract
The core components of the Hippo signaling pathway encompass upstream regulatory molecules, core kinase cascade complexes, and downstream transcriptional regulation complexes. This pathway modulates cellular behaviors by influencing the effector molecules of its core components and plays a pivotal role in immune regulation. Effector molecules,such as Yes-associated protein (YAP), transcriptional coactivator with PDZ-binding motif (TAZ), transcriptional enhanced associate domain transcriptional factor (TEAD), monopolar spindle-one binder (MOB1), large tumor suppressor (LATS), can stimulate fibroblast-like synovial cell migration and invasion in rheumatoid arthritis, regulate osteoarthritis disease progression, promote pathological new bone formation in ankylosing spondylitis, sustain submandibular gland development while delaying Sjogren's syndrome progression, mediate alpha-smooth muscle actin in systemic sclerosis, and refine the regulation of target genes associated with pulmonary fibrosis. This article provides an overview of the regulatory mechanisms involving Hippo signaling pathway-related effector molecules in the pathogenesis and progression of rheumatic immune system diseases, to serve as a reference for exploring novel therapeutic targets of rheumatic immune system diseases.
Collapse
Affiliation(s)
- Jie Gao
- Department of Rheumatology and Immunology, Affiliated Hospital of Yangzhou University, Yangzhou 225003, Jiangsu Province, China.
- Graduate School of Dalian Medical University, Dalian 116044, Liaoning Province, China.
| | - Caihong Pi
- Department of Rheumatology and Immunology, Affiliated Hospital of Yangzhou University, Yangzhou 225003, Jiangsu Province, China
- Graduate School of Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Junmei Pan
- Department of Rheumatology and Immunology, Affiliated Hospital of Yangzhou University, Yangzhou 225003, Jiangsu Province, China
| | - Wei Zhou
- Department of Rheumatology and Immunology, Affiliated Hospital of Yangzhou University, Yangzhou 225003, Jiangsu Province, China.
- Graduate School of Dalian Medical University, Dalian 116044, Liaoning Province, China.
| |
Collapse
|
4
|
Furment MM, Perl A. Immmunometabolism of systemic lupus erythematosus. Clin Immunol 2024; 261:109939. [PMID: 38382658 DOI: 10.1016/j.clim.2024.109939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/26/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Systemic lupus erythematosus (SLE) is a potentially fatal chronic autoimmune disease which is underlain by complex dysfunction of the innate and adaptive immune systems. Although a series of well-defined genetic and environmental factors have been implicated in disease etiology, neither the development nor the persistence of SLE is well understood. Given that several disease susceptibility genes and environmental factors interact and influence inflammatory lineage specification through metabolism, the field of immunometabolism has become a forefront of cutting edge research. Along these lines, metabolic checkpoints of pathogenesis have been identified as targets of effective therapeutic interventions in mouse models and validated in clinical trials. Ongoing studies focus on mitochondrial oxidative stress, activation of the mechanistic target of rapamycin, calcium signaling, glucose utilization, tryptophan degradation, and metabolic cross-talk between gut microbiota and the host immune system.
Collapse
Affiliation(s)
- Marlene Marte Furment
- Departments of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York 13210, United States of America
| | - Andras Perl
- Departments of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York 13210, United States of America; Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York 13210, United States of America; Microbiology and Immunology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York 13210, United States of America.
| |
Collapse
|
5
|
Uppala R, Sarkar MK, Young KZ, Ma F, Vemulapalli P, Wasikowski R, Plazyo O, Swindell WR, Maverakis E, Gharaee-Kermani M, Billi AC, Tsoi LC, Kahlenberg JM, Gudjonsson JE. HERC6 regulates STING activity in a sex-biased manner through modulation of LATS2/VGLL3 Hippo signaling. iScience 2024; 27:108986. [PMID: 38327798 PMCID: PMC10847730 DOI: 10.1016/j.isci.2024.108986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/10/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024] Open
Abstract
Interferon (IFN) activity exhibits a gender bias in human skin, skewed toward females. We show that HERC6, an IFN-induced E3 ubiquitin ligase, is induced in human keratinocytes through the epidermal type I IFN; IFN-κ. HERC6 knockdown in human keratinocytes results in enhanced induction of interferon-stimulated genes (ISGs) upon treatment with a double-stranded (ds) DNA STING activator cGAMP but not in response to the RNA-sensing TLR3 agonist. Keratinocytes lacking HERC6 exhibit sustained STING-TBK1 signaling following cGAMP stimulation through modulation of LATS2 and TBK1 activity, unmasking more robust ISG responses in female keratinocytes. This enhanced female-biased immune response with loss of HERC6 depends on VGLL3, a regulator of type I IFN signature. These data identify HERC6 as a previously unrecognized negative regulator of ISG expression specific to dsDNA sensing and establish it as a regulator of female-biased immune responses through modulation of STING signaling.
Collapse
Affiliation(s)
- Ranjitha Uppala
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mrinal K. Sarkar
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kelly Z. Young
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Feiyang Ma
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Rachael Wasikowski
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Olesya Plazyo
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - William R. Swindell
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Emanual Maverakis
- Department of Dermatology, University of California, Davis, Davis, CA 95616, USA
| | - Mehrnaz Gharaee-Kermani
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Allison C. Billi
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lam C. Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - J. Michelle Kahlenberg
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- A. Alfred Taubman Medical Research Institute, Ann Arbor, MI 48109, USA
| | - Johann E. Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- A. Alfred Taubman Medical Research Institute, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Lu D, Zhu X, Hong T, Yao X, Xie Z, Chen L, Wang Y, Zhang K, Ren Y, Cao Y, Wang X. Serum Metabolomics Analysis of Skin-Involved Systemic Lupus Erythematosus: Association of Anti-SSA Antibodies with Photosensitivity. J Inflamm Res 2023; 16:3811-3822. [PMID: 37667802 PMCID: PMC10475307 DOI: 10.2147/jir.s426337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023] Open
Abstract
Purpose Systemic lupus erythematosus is a heterogeneous autoimmune disease in which skin involvement is a common manifestation. It is currently thought that the photosensitivity of SLE skin involvement is associated with anti-SSA antibodies. This study aimed to expand the current state of knowledge surrounding the molecular pathophysiology of SLE skin photosensitivity through Serum metabolomics analysis. Patients and Methods The serum metabolites of 23 cases of skin-involved SLE (SI) group, 14 cases of no SI (NSI) group, and 30 cases of healthy controls (HC) were analyzed by using UPLC-MS/MS technology, and subgroup analysis was performed according to the expression of anti-SSA antibodies in SI. MetaboAnalyst 5.0 was used for enrichment analysis and ROC curve construction, identifying serum metabolic markers of skin-involved SLE associated with anti-SSA antibodies. Results We identified several metabolites and metabolic pathways associated with SLE photosensitivity. Two metabolites, SM (d18:1/24:0) and gamma-CEHC can distinguish between anti-SSA antibody-positive and negative SI, with AUC of 0.829 and 0.806. These two photosensitization-related substances may be potential markers of skin involvement in SLE associated with anti-SSA antibody. Conclusion This study provides new insights into the pathogenesis of SI patients, and provides a new molecular biological basis for the association between anti-SSA antibodies and skin photoallergic manifestations of SLE.
Collapse
Affiliation(s)
- Dingqi Lu
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, People’s Republic of China
| | - Xinchao Zhu
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, People’s Republic of China
| | - Tao Hong
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, People’s Republic of China
| | - Xinyi Yao
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, People’s Republic of China
| | - Zhiming Xie
- The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, People’s Republic of China
| | - Liying Chen
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, People’s Republic of China
| | - Yihan Wang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, People’s Republic of China
| | - Kaiyuan Zhang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, People’s Republic of China
| | - Yating Ren
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, People’s Republic of China
| | - Yi Cao
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, People’s Republic of China
| | - Xinchang Wang
- The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, People’s Republic of China
| |
Collapse
|